JPS6316235A - Temperature detecting device - Google Patents

Temperature detecting device

Info

Publication number
JPS6316235A
JPS6316235A JP16112686A JP16112686A JPS6316235A JP S6316235 A JPS6316235 A JP S6316235A JP 16112686 A JP16112686 A JP 16112686A JP 16112686 A JP16112686 A JP 16112686A JP S6316235 A JPS6316235 A JP S6316235A
Authority
JP
Japan
Prior art keywords
resistance
temperature
resistor
chip
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16112686A
Other languages
Japanese (ja)
Other versions
JPH0584852B2 (en
Inventor
Tadashi Ozawa
正 小澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP16112686A priority Critical patent/JPS6316235A/en
Publication of JPS6316235A publication Critical patent/JPS6316235A/en
Publication of JPH0584852B2 publication Critical patent/JPH0584852B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To improve temperature detection sensitivity by using resistances which have a positive and a negative temperature coefficient on the same chip. CONSTITUTION:This device consists of a transistor(TR) 11, a base contact area 12, an emitter contact area 13, a collector contact area 14, a polycrystal silicon resistance 15, a single crystal silicon resistance 16, etc. A resistance 15 which determines the value of a current flowing when the temperature of a chip where circuits are formed rises has the negative temperature coefficient, so the resistance value R0 decreases and the current value increases. A resistance R1, on the other hand, is a resistance 16 and has the positive temperature coefficient, so the resistance value increases. A voltage drop, therefore, appears as the multiplied value. Namely, when the collector-side potential of a TR Q1 drops below a reference voltage VREF, a TR Q2 turns off and a TR Q3 turns on. Thus, a switch circuit is turned on and off to detect the chip temperature.

Description

【発明の詳細な説明】 [産業上の利用分野〕 本発明は温度検出装置に関し、特に多結晶シリコンによ
る抵抗と単結晶シリコンによる抵抗により構成された温
度検出装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a temperature detection device, and more particularly to a temperature detection device configured with a resistor made of polycrystalline silicon and a resistor made of single crystal silicon.

1、従来の技術〕 第2図(a>及び(b)は従来の温度検出装置の一例を
示す平面図及び要部回路図である。
1. Prior Art FIGS. 2(a) and 2(b) are a plan view and a circuit diagram of a main part of an example of a conventional temperature detection device.

従来、この種の温度検出装置は上位装置内に使用される
チップ等の温度を検出するために使用されており、シス
テムの信頼性を向上させている。
Conventionally, this type of temperature detection device has been used to detect the temperature of a chip or the like used in a host device, thereby improving the reliability of the system.

第2図(°a)に示す従来例は、半導体チップ20上に
製品領域21とダイオードからなる温度検出部22とに
より構成される。温度検出部22は同図(b)に示すダ
イオードを用い、アノード23及びカソード24から構
成されている。
The conventional example shown in FIG. 2 (°a) includes a product area 21 and a temperature detection section 22 made of a diode on a semiconductor chip 20. The temperature detection section 22 uses a diode shown in FIG. 2(b), and includes an anode 23 and a cathode 24.

以下にこの従来例による温度検出方法を説明する。ダイ
オードのアノード23及びカソード24間に印加する電
圧を■とすると、流れる電流値IOは次式にて表わされ
る。
The temperature detection method according to this conventional example will be explained below. Assuming that the voltage applied between the anode 23 and cathode 24 of the diode is 2, the flowing current value IO is expressed by the following equation.

1  o  =K   (e  ev″k”   −1
>なお、e:電子の電荷量、T:温度、k:ボルツマン
定数、K:比例定数である。
1 o = K (e ev″k” −1
> Note that e: electron charge, T: temperature, k: Boltzmann's constant, and K: proportionality constant.

ここで流れる電流値IOを一定としたとき、単位温度あ
たりの電圧の変化は約−1,8mVである。
When the current value IO flowing here is constant, the change in voltage per unit temperature is about -1.8 mV.

よって、この電圧変化の値から温度Tを検出するように
なっている。
Therefore, the temperature T is detected from the value of this voltage change.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述した従来の温度検出装置は、ダイオードを用いて素
子自身の特性を利用しているので、素子の変化分による
温度検出しかできないという欠点がある。
The above-described conventional temperature detection device uses a diode to utilize the characteristics of the element itself, and therefore has the disadvantage that it can only detect temperature based on changes in the element.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の温度検出装置は、同一のチップ上に形成された
負の抵抗温度係数を有する多結晶シリコンの抵抗及び正
の抵抗温度係数を有する単結晶シリコンの抵抗と、前記
チップの温度の上昇及び下降による前記抵抗の抵抗値の
変化に従って、オン・オフするスイ・ソチング回路とを
備えている。
The temperature detection device of the present invention includes a polycrystalline silicon resistor having a negative temperature coefficient of resistance and a single crystal silicon resistor having a positive temperature coefficient of resistance formed on the same chip, and an increase in the temperature of the chip. A switching circuit is provided which turns on and off according to a change in the resistance value of the resistor due to a drop.

〔実施例〕〔Example〕

次に、本発明について図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図(a>及び(b)は本発明の一実施例の部分平面
図及び本実施例を応用した回路図である。
FIGS. 1(a) and 1(b) are a partial plan view of an embodiment of the present invention and a circuit diagram to which this embodiment is applied.

本実施例は多結晶シリコン及び単結晶シリコンによる抵
抗からなる温度検出部を主要構成とし、トランジスタ1
1、ベース・コンタクト領域12及びその引出し配線1
2′、エミ・ツタ・コンタクト領域13及びその引出し
配線13′、引出し配線13′に接続された多結晶シリ
コン抵抗15、コレクタ・コンタク■・領域14及びそ
の引出し配線14′、引出し配線14′に接続された単
結晶シリコン抵抗16から構成される。また第1図<b
>は本実施例をE CL (E+++1tter−Co
upled−L。
This embodiment mainly consists of a temperature detection section consisting of a resistor made of polycrystalline silicon and single crystalline silicon, and has a transistor 1.
1. Base contact area 12 and its lead wiring 1
2', the emitter contact region 13 and its lead wire 13', the polycrystalline silicon resistor 15 connected to the lead wire 13', the collector contact region 14 and its lead wire 14', the lead wire 14' It is composed of connected single crystal silicon resistors 16. Also, Figure 1<b
> represents this example as E CL (E+++1tter-Co
upled-L.

(ic)回路にて応用した例を示し、トランジスタQs
 、Q2 、Q3 、Q4、多結晶シリコンによる抵抗
R,−単結晶シリコンによる抵抗Rs 、 R2、R3
,R4,R5,R6,R?、R8、電圧源Vcc、 E
o 、 VO2,VREF及びVEEから構成される。
(ic) An example of application in a circuit is shown, and the transistor Qs
, Q2, Q3, Q4, resistance R made of polycrystalline silicon, - resistance Rs made of single crystal silicon, R2, R3
, R4, R5, R6, R? , R8, voltage source Vcc, E
o, VO2, VREF and VEE.

次に、上述した構成の本実施例及びその応用回路の動作
を説明する。まず、電圧源VCC,EO。
Next, the operation of this embodiment having the above-described configuration and its application circuit will be explained. First, voltage sources VCC and EO.

■cs、■1εP及びVEEは印加されているものとす
る。抵抗R1に流れる電流は抵抗ROに流れる電流と殆
んど等しく、この電流値■は電圧源Eoと抵抗ROの値
により決定される。よって抵抗R1に生ずる電圧降下は
2:l−R1となる。またこの出力はトランジスタQz
、Q9からなるスイッチ回路に抵抗R8を介して接続さ
れる。このスイッチ回路はトランジスタQ1のコレクタ
電位の変化を検出して、変化分の同相及び反転の出力を
得ることが可能である。
(2) It is assumed that cs, (1)1εP and VEE are applied. The current flowing through the resistor R1 is almost equal to the current flowing through the resistor RO, and this current value (2) is determined by the voltage source Eo and the value of the resistor RO. Therefore, the voltage drop occurring across the resistor R1 is 2:l-R1. Also, this output is the transistor Qz
, Q9 via a resistor R8. This switch circuit can detect a change in the collector potential of the transistor Q1 and obtain in-phase and inverted outputs corresponding to the change.

通常動作では抵抗R1のトランジスタQ1のコレクタ側
の電位が、トランジスタQ3の抵抗R6の人力電位より
高い。このときトランジスタQ2はオン、トランジスタ
Q3はオフとなっている。
In normal operation, the potential on the collector side of the transistor Q1 of the resistor R1 is higher than the human potential of the resistor R6 of the transistor Q3. At this time, transistor Q2 is on and transistor Q3 is off.

いま、この回路が形成されているチップの温度が上昇し
たとき、流れる電流値■を決定する多結晶シリコン抵抗
は負の温度係数を有するので、抵抗値Roは小さくなり
電流値Iは増加する。逆に抵抗R1は単結晶シリコン抵
抗で正の温度係数を有するので、抵抗値は増加する。よ
って電圧降下は相乗された値で現われるのである。つま
りトランジスタQ1のコレクタ側の電位はより低くなり
、基準電圧■RεFより低くなれば、トランジスタQ2
はオフし、トランジスタQ3はオンするのである。この
ようにスイッチ回路のオン・オフによって、チップの温
度を検出することができる。
Now, when the temperature of the chip on which this circuit is formed rises, the polycrystalline silicon resistor that determines the flowing current value (2) has a negative temperature coefficient, so the resistance value Ro decreases and the current value I increases. Conversely, since the resistor R1 is a single crystal silicon resistor and has a positive temperature coefficient, its resistance value increases. Therefore, the voltage drop appears as a multiplicative value. In other words, the potential on the collector side of transistor Q1 becomes lower, and if it becomes lower than the reference voltage ■RεF, transistor Q2
is turned off, and transistor Q3 is turned on. In this way, the temperature of the chip can be detected by turning the switch circuit on and off.

なお、本実施例では、基準電圧VREPを電圧源として
説明したが、基準電圧VREFに検出回路の単結晶シリ
コン抵抗と多結晶シリコン抵抗を入れ換えた基準電圧発
生回路を゛使用すれば、より検出感度を向上することが
できる。
Although this embodiment has been described using the reference voltage VREP as a voltage source, if a reference voltage generation circuit in which the single crystal silicon resistor and the polycrystalline silicon resistor of the detection circuit are replaced is used for the reference voltage VREF, the detection sensitivity can be improved. can be improved.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、同一チップ上に正及び負
の温度係数を有する抵抗を使用することにより、温度検
出装置を高め得る効果がある。
As described above, the present invention has the effect of improving the temperature detection device by using resistors having positive and negative temperature coefficients on the same chip.

【図面の簡単な説明】 第1図(a>及び(b)は本発明の一実施例の部分平面
図及び本実施例を応用した回路図、第2図(a)及び(
b)は従来の温度検出装置の一例を示す平面図及び要部
回路図である。 11・・・トランジスタ、12・・・ベース・コンタク
ト領域、13・・・エミッタ・コンタクト領域、14・
−・コレクタ・コンタクト領域、15・・・多結晶シリ
コンによる抵抗、16・・・単結晶シリコンによる抵抗
、12′、13′、14′・・・引出し配線、20・・
半導体チップ、21・・・製品領域、22・・・温度検
出部、23・・・アノード、24・・・カソード、VC
C。 Eo 、 VC5,VREF 、 Vcc・・・電圧源
、Ro・・・多結晶シリコンによる抵抗、R1,R2、
R3、R4゜Rs 、R6、R7,Rs・・・単結晶シ
リコンによる抵抗、Q+ 、Q2 、Q3 、Q4・・
・トランジスタ。 牛 I 図 (d) 12: /J′、 /、1’  引出し看こ、衆(ネジ
[Brief Description of the Drawings] Fig. 1 (a> and (b) is a partial plan view of an embodiment of the present invention and a circuit diagram to which this embodiment is applied, and Fig. 2 (a) and (b) are
b) is a plan view and a main part circuit diagram showing an example of a conventional temperature detection device. DESCRIPTION OF SYMBOLS 11... Transistor, 12... Base contact region, 13... Emitter contact region, 14...
- Collector contact region, 15... Resistance made of polycrystalline silicon, 16... Resistance made of single crystal silicon, 12', 13', 14'... Leading wiring, 20...
Semiconductor chip, 21... Product area, 22... Temperature detection section, 23... Anode, 24... Cathode, VC
C. Eo, VC5, VREF, Vcc...voltage source, Ro...resistance made of polycrystalline silicon, R1, R2,
R3, R4゜Rs, R6, R7, Rs... Resistance made of single crystal silicon, Q+, Q2, Q3, Q4...
・Transistor. Cow I Figure (d) 12: /J', /, 1' Look at the drawer, people (screws)

Claims (1)

【特許請求の範囲】[Claims] 同一のチップ上に形成された負の抵抗温度係数を有する
多結晶シリコンの抵抗及び正の抵抗温度係数を有する単
結晶シリコンの抵抗と、前記チップの温度の上昇及び下
降による前記抵抗の抵抗値の変化に従って、オン・オフ
するスイッチング回路とを備えることを特徴とする温度
検出装置。
A polycrystalline silicon resistor with a negative temperature coefficient of resistance and a single crystal silicon resistor with a positive temperature coefficient of resistance formed on the same chip, and changes in the resistance value of the resistor as the temperature of the chip increases and decreases. A temperature detection device characterized by comprising a switching circuit that turns on and off according to changes.
JP16112686A 1986-07-08 1986-07-08 Temperature detecting device Granted JPS6316235A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16112686A JPS6316235A (en) 1986-07-08 1986-07-08 Temperature detecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16112686A JPS6316235A (en) 1986-07-08 1986-07-08 Temperature detecting device

Publications (2)

Publication Number Publication Date
JPS6316235A true JPS6316235A (en) 1988-01-23
JPH0584852B2 JPH0584852B2 (en) 1993-12-03

Family

ID=15729095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16112686A Granted JPS6316235A (en) 1986-07-08 1986-07-08 Temperature detecting device

Country Status (1)

Country Link
JP (1) JPS6316235A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0473193A2 (en) * 1990-08-30 1992-03-04 Nec Corporation Semiconductor device having a temperature detection circuit
CN112729578A (en) * 2020-12-08 2021-04-30 广东美的白色家电技术创新中心有限公司 Electrical equipment, electronic device and temperature detection circuit thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0473193A2 (en) * 1990-08-30 1992-03-04 Nec Corporation Semiconductor device having a temperature detection circuit
CN112729578A (en) * 2020-12-08 2021-04-30 广东美的白色家电技术创新中心有限公司 Electrical equipment, electronic device and temperature detection circuit thereof
CN112729578B (en) * 2020-12-08 2024-03-22 广东美的白色家电技术创新中心有限公司 Electrical equipment, electronic device and temperature detection circuit thereof

Also Published As

Publication number Publication date
JPH0584852B2 (en) 1993-12-03

Similar Documents

Publication Publication Date Title
US4730228A (en) Overtemperature detection of power semiconductor components
US7279954B2 (en) On-chip temperature detection device
JP2540753B2 (en) Overheat detection circuit
JPS6316235A (en) Temperature detecting device
JPH10290144A (en) Semiconductor device
JPH0334026B2 (en)
JP3114966B2 (en) DC stabilized power supply
JPH0749540Y2 (en) Semiconductor integrated circuit device
JPH0569328B2 (en)
JP2755848B2 (en) Micro voltage detection circuit and current limiting circuit using the same
JPH0722515A (en) Semiconductor integrated circuit
JP2519304B2 (en) Semiconductor device and its circuit
JPS5853778Y2 (en) Muting warmer
JP2001133330A (en) Temperature detector for semiconductor module
JPH0666648B2 (en) Hysteresis comparator
JPS6365894B2 (en)
JP3032061B2 (en) Semiconductor switch
JPH04238513A (en) Power unit
JP2002368222A (en) Semiconductor device with overheating detecting function
JPH027615A (en) Power supply voltage detection circuit
JP2520898B2 (en) Temperature detection circuit
JPH0726753Y2 (en) Microcomputer signal input circuit
JPH0126493B2 (en)
JPS5855454Y2 (en) constant current circuit
JPH10233669A (en) Semiconductor relay