JPS6316215B2 - - Google Patents

Info

Publication number
JPS6316215B2
JPS6316215B2 JP4562682A JP4562682A JPS6316215B2 JP S6316215 B2 JPS6316215 B2 JP S6316215B2 JP 4562682 A JP4562682 A JP 4562682A JP 4562682 A JP4562682 A JP 4562682A JP S6316215 B2 JPS6316215 B2 JP S6316215B2
Authority
JP
Japan
Prior art keywords
molten metal
mold
temperature
elements
solid fraction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4562682A
Other languages
Japanese (ja)
Other versions
JPS5921445A (en
Inventor
Yoshitomo Arase
Shinichi Oohama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP4562682A priority Critical patent/JPS5921445A/en
Publication of JPS5921445A publication Critical patent/JPS5921445A/en
Publication of JPS6316215B2 publication Critical patent/JPS6316215B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)

Description

【発明の詳細な説明】 この発明は収縮巣の発生を防止する鋳造鋳型方
案の作製方法に係り、更に詳しく言えば鋳型とそ
のキヤビテイ内の溶湯とを組にした解析モデルに
ついて数値計算を施し、所要の条件を満たす鋳型
形状、構造すなわち鋳型方案を求めることにより
収縮巣の発生を防止する方法に係る。
[Detailed Description of the Invention] The present invention relates to a method for manufacturing a casting mold that prevents the occurrence of shrinkage cavities, and more specifically, performs numerical calculations on an analytical model that combines a mold and molten metal in its cavity. The present invention relates to a method for preventing the occurrence of shrinkage cavities by finding a mold shape and structure that satisfies required conditions, that is, a mold plan.

鋳造品では溶融金属いわゆる溶湯が鋳型内で凝
固する過程において溶湯補給の困難な個所或いは
最後に凝固する個所に収縮巣を生ずることは広く
知られており、種々の対策が構じられている。す
なわち収縮巣の発生し易い個所の上部或いは外側
に押湯を設けて溶湯を収縮巣発生個所に供給し、
押湯部分は凝固後に切捨てるとか、或いは収縮巣
発生のおそれのあるところは凝固を促進させると
か、溶湯の供給を妨げるような例えばくびれた部
分には余肉をつけて凝固を遅らせる等種々の方法
が採用され、経験によつてまとめられた実験式が
提案され、押湯の大きさ或いは余肉のつけ方等が
計算できるようになつている。
It is widely known that in cast products, shrinkage cavities occur in areas where it is difficult to replenish the molten metal or where it solidifies last during the process of solidifying the molten metal in the mold, and various countermeasures have been taken. That is, a feeder is provided above or outside the area where shrinkage cavities are likely to occur, and molten metal is supplied to the location where shrinkage cavities occur.
Various measures can be taken, such as cutting off the feeder part after solidification, accelerating solidification in areas where there is a risk of shrinkage cavities, and adding extra wall to constricted areas that may impede the supply of molten metal to delay solidification. This method has been adopted, and empirical formulas compiled based on experience have been proposed, making it possible to calculate the size of the riser, how to add extra thickness, etc.

しかしながら常に一定形状の鋳造品を製作する
場合でも最初は試行錯誤的に鋳込試験を繰返して
収縮巣の発生を防止する鋳型構造、換言すれば鋳
型方案を求めており、一品生産の場合には押湯や
余肉を過大に設けるとか或いはX線検査等によつ
て鋳造品内部の収縮巣の有無を調べ、溶接補修が
可能なものについては補修を行なうことが日常行
なわれている。
However, even when producing a cast product with a constant shape, the initial process is to repeat casting tests by trial and error to find a mold structure that prevents the occurrence of shrinkage cavities, in other words, a mold method. It is a common practice to check for shrinkage cavities inside a cast product by providing an excessively large feeder or extra wall, or by X-ray inspection, and to repair the product if it can be repaired by welding.

これに対して電算機の普及に伴ない、鋳造品の
凝固過程の数値計算によつて収縮巣の発生しない
ような鋳型構造、形状を求める試みが行なわれて
いる。
On the other hand, with the spread of computers, attempts have been made to find mold structures and shapes that do not generate shrinkage cavities through numerical calculations of the solidification process of cast products.

例えば鋳造品上部に押湯を設けた場合、鋳造品
内部の各部分の凝固時間を計算し、等凝固時間曲
線を画き、凝固が鋳造品下部から上部の押湯に向
つて順次進行するような鋳型条件を求めて収縮巣
の発生を防止する方法が試みられ、収縮巣の発生
が予測される場合には造型方案上の手当てによつ
て或る程度成績を上げている。然しながら等凝固
時間曲線から鋳型の構造、形状を変えて収縮巣の
発生を防止する方法では計算結果から等凝固時間
曲線が上方の押湯に向つてほぼ平行に画かれ、押
湯に向つて凝固が進行するように思われる場合で
も収縮巣が発生することが知られている。
For example, when a feeder is installed at the top of a casting, the solidification time of each part inside the casting is calculated and an equal solidification time curve is drawn so that solidification progresses sequentially from the bottom of the casting to the feeder at the top. Methods have been attempted to prevent the occurrence of shrinkage cavities by determining mold conditions, and when the occurrence of shrinkage cavities is predicted, some success has been achieved by taking steps in the molding strategy. However, in the method of preventing the occurrence of shrinkage cavities by changing the structure and shape of the mold based on the equal solidification time curve, the calculation results show that the equal solidification time curve is drawn almost parallel to the riser above, and solidification occurs toward the riser. It is known that shrinkage foci occur even when the disease appears to be progressing.

本発明者は鋳型とそのキヤビテイ内の溶湯から
成る解析モデルを使用した数値計算と実際鋳造品
の収縮巣発生の関係について研究の結果、後述す
るように解析モデルのセクシヨンにおいて想定し
た要素の固相率勾配Fの値が或る一定の値以下の
場合に収縮巣が発生することを知つた。本発明は
この知見に基づき、鋳型と溶湯から成る解析モデ
ルの各セクシヨン上の溶湯要素が一定値を超える
固相率勾配値Fを持つような鋳造鋳型方案を求め
ることによつて鋳造品の収縮巣発生を防止する方
法を提供することを目的とし、鋳型と該鋳型キヤ
ビテイ内の溶湯とより成る解析モデルを一つまた
は平行な複数個のセクシヨンに分断し、各セクシ
ヨンを四角形または三角形に区切つて要素に分割
し、各要素に材質を与えて鋳型要素と溶湯要素と
に分け、各要素に初期温度を与えると共に各境界
に境界条件を与え、微小時間ごとに求めた各要素
間の熱量の流れから各要素の温度変化を換算し、
該温度における溶湯要素の固相率fiを次式によつ
て求め、 固相率fi=1.0×液相線温度−要素温度/液相線温度
−固相線温度 各溶湯要素ごとに該溶湯要素の凝固終了時の周
囲要素との固相率勾配Fを次式によつて求め F=oi=1 1.0−fi/△li ただし △li=要素節点距離、 F≦0.2となるときは解析モデルを作り直して
上記の計算を繰返し、全溶湯要素が凝固完了した
ときの各溶湯要素の固相率勾配Fを0.2を超える
大きさとすることを特徴とする収縮巣の発生を防
止する鋳造鋳型方案の作製法に係る。
As a result of research on the relationship between numerical calculations using an analytical model consisting of a mold and the molten metal in its cavity and the occurrence of shrinkage cavities in actual cast products, the inventor found that the solid phase of the element assumed in the section of the analytical model is as described below. It has been learned that shrinkage foci occur when the value of the rate gradient F is below a certain value. Based on this knowledge, the present invention calculates the shrinkage of a cast product by finding a casting mold plan in which the molten metal elements on each section of the analytical model consisting of the mold and molten metal have a solid fraction gradient value F exceeding a certain value. In order to provide a method for preventing the formation of cavities, an analysis model consisting of a mold and the molten metal in the mold cavity is divided into one or a plurality of parallel sections, and each section is divided into squares or triangles. Divide into elements, give each element a material, divide it into mold elements and molten metal elements, give each element an initial temperature, and give boundary conditions to each boundary, and calculate the flow of heat between each element at each minute time. Convert the temperature change of each element from
The solid fraction f i of the molten metal element at the above temperature is determined by the following formula, solid fraction f i = 1.0 x liquidus temperature - element temperature / liquidus temperature - solidus temperature for each molten metal element. The solid fraction gradient F between the molten metal element and the surrounding elements at the end of solidification is determined by the following formula: F= oi=1 1.0−f i /△l i where △l i = element nodal distance, F≦0.2 When this occurs, the analysis model is recreated and the above calculation is repeated, and the solid phase gradient F of each molten metal element is set to a value exceeding 0.2 when all molten metal elements are completely solidified. Relating to a method of manufacturing a casting mold to prevent

次に添付図面を参照しながらコンプレツサ用ベ
ーンを例にして本発明の方法を説明する。
Next, the method of the present invention will be explained using a compressor vane as an example with reference to the accompanying drawings.

第1〜第2図に示すベーン1についての従来の
方法に従つて等凝固時間曲線を求めると例えば
−断面については第3図のようになり、ベーン
の先端2から次第に下方のベーン基部3に向つて
凝固が進行することが読みとられ、羽根部4の内
部には収縮巣が発生することは予想されない。し
かしながら実際の鋳造品には第4図に示すように
羽根4のほぼ中央部に収縮巣5が発生しているこ
とがX線写真によつて認められた。
If an isosolidification time curve is obtained according to the conventional method for the vane 1 shown in FIGS. 1 and 2, for example, the cross section will be as shown in FIG. It can be seen that the solidification progresses over time, and no shrinkage nests are expected to be generated inside the blade portion 4. However, as shown in FIG. 4, in the actual cast product, it was confirmed by X-ray photography that a shrinkage cavity 5 was generated approximately in the center of the blade 4.

本発明の方法によつてこの収縮巣の発生を防止
することのできる鋳型構造、形状を求めるのには
次のようにする。
The method of the present invention is used to find a mold structure and shape that can prevent the occurrence of shrinkage cavities as follows.

まず鋳型6およびそのキヤビテイ内の溶湯7よ
り成る第6〜8図に示すような解析モデルを設定
し、これを通例の手順によつて数値計算にかけ
る。鋳造品がほぼ左右対称の場合には計算を簡単
にするため例えば本例のベーンの場合には第3図
の一点鎖線で示す断面でベーンを左右に分割し、
該断面を断熱面としていずれか一方について数値
計算にかければよい。
First, an analytical model as shown in FIGS. 6 to 8 consisting of the mold 6 and the molten metal 7 in its cavity is set up, and this is subjected to numerical calculations according to the usual procedure. If the cast product is almost symmetrical, in order to simplify the calculation, for example, in the case of the vane in this example, the vane is divided into left and right sections along the cross-section shown by the dashed-dotted line in Figure 3.
Numerical calculations may be performed on either one of the cross sections as a heat insulating surface.

この解析モデルを等凝固時間曲線を求める通例
の計算方法の場合と同様に例えば第1図−断
面に平行な面によつて第7〜8図に示すように複
数個のセクシヨンS1,S2,S3,………に分
割する。各セクシヨンの取り方は計算結果を検討
するときに少ないセクシヨン数によつて鋳造品全
体が見えるようにとるとよい。本例のベーンの場
合のようにほぼ平たい形状をしたものの場合は羽
根に平行にセクシヨンをとつた方が羽根に直角方
向にセクシヨンをとるよりも少ないセクシヨンで
鋳造品内部を見ることができることは容易に理解
されよう。なおセクシヨンの数は二次元解析の場
合は一つ、三次元解析の場合は複数個とする。
This analytical model can be used to calculate sections S1, S2, S3 as shown in FIGS. Divide into ,……. It is preferable to select each section so that the entire cast product can be seen with a small number of sections when examining the calculation results. If the vane in this example has a nearly flat shape, it is easier to see inside the cast product by taking a section parallel to the vane than by taking a section perpendicular to the vane. be understood. Note that the number of sections is one in the case of two-dimensional analysis, and multiple in the case of three-dimensional analysis.

次に各セクシヨンを第9図に示すように四角形
または三角形の要素8を区切る。各要素8の大き
さは小さければ計算精度は高くなるが、計算に要
する時間が多くなる。一方大き過ぎると計算精度
は低下するが、計算時間は短くて済む。従つて鋳
造品の形状にもよるが一般的には数mmから数cm大
の四角形に区切る。
Next, each section is divided into square or triangular elements 8 as shown in FIG. The smaller the size of each element 8, the higher the calculation accuracy will be, but the time required for calculation will increase. On the other hand, if it is too large, the calculation accuracy will decrease, but the calculation time will be short. Therefore, depending on the shape of the cast product, it is generally divided into rectangular pieces ranging from several millimeters to several centimeters in size.

次に各要素8に材質を与える。すなわち鋳型材
料×或いは溶湯〇の記号によつて各要素が区別で
きるようにする。材質によつて各要素の熱伝導
率、比重、比熱が異なる。
Next, each element 8 is given a material. That is, each element can be distinguished by a symbol of mold material × or molten metal ○. The thermal conductivity, specific gravity, and specific heat of each element vary depending on the material.

次に境界条件すなわち断熱+か空気△かを記号
で記入する。
Next, write in the symbol for the boundary condition, ie, insulation + or air △.

以上の処理を施した解析モデルのセクシヨンの
例を第10図および第11図に例示してある。
Examples of sections of the analytical model subjected to the above processing are illustrated in FIGS. 10 and 11.

上記のとおり周知の方法で処理した各セクシヨ
ンの各要素について次のようにして周囲要素との
間の固相率勾配を求める。それにはまず各要素に
初期温度(例えば溶湯要素に1600℃、鋳型要素に
1050℃)を与え、要素中心の節点にその要素温度
を代表させ、時間ゼロから微小時間△tごとに各
要素間の熱量の流れを次の(1)式で求め温度変化を
計算する。
For each element of each section treated by the well-known method as described above, the solid fraction gradient with respect to surrounding elements is determined as follows. To do this, first set the initial temperature of each element (for example, 1600℃ for the molten metal element, and 1600℃ for the mold element.
1050°C), let the node at the center of the element represent the element temperature, and calculate the temperature change by determining the flow of heat between each element at every minute time Δt from time zero using the following equation (1).

熱量=要素間面積×温度差×△t/熱抵抗 ……(1) 熱抵抗はそれぞれの材質(熱伝導率)と節点間
の距離および熱伝達率によつて定まる。
Amount of heat = area between elements x temperature difference x △t/thermal resistance... (1) Thermal resistance is determined by each material (thermal conductivity), distance between nodes, and heat transfer coefficient.

この熱量の移動によつて各要素の温度の変化を
次の(2)式によつて求める。ただし要素の密度を
d、同じく比熱をc、同じく体積をVとして、 温度変化=熱量/d×c×V ……(2) 次に溶湯要素の固相率を求める。各要素は時間
の経過と共に温度が下がるが、溶湯要素は液相線
温度TLと固相線温度TSとの間で固相率fiが第12
図に示すように、温度の降下に比例してゼロから
1まで変化するものとする。従つて要素iの温度
Tiにおける固相率fiは次の(3)式によつて求めるこ
とができる。
The change in temperature of each element due to the transfer of this amount of heat is calculated using the following equation (2). However, if the density of the element is d, the specific heat is c, and the volume is V, then temperature change = amount of heat/d x c x V... (2) Next, find the solid fraction of the molten metal element. The temperature of each element decreases over time, but the molten metal element has a solidus ratio f i of 12 between the liquidus temperature T L and the solidus temperature T S.
As shown in the figure, it is assumed that the value changes from zero to 1 in proportion to the drop in temperature. Therefore the temperature of element i
The solid fraction f i at T i can be determined by the following equation (3).

fi=1.0×TL−Ti/TL−TS ……(3) 次に各溶湯要素ごとにその要素が凝固終了した
ときの周囲の要素との間の固相率勾配Fを次の(4)
式によつて求める。ただし△liはi要素の節点と
隣接する要素の接点との間の距離である。
f i =1.0×T L −T i /T L −T S ……(3) Next, for each molten metal element, when that element has finished solidifying, the solid fraction gradient F between it and the surrounding elements is as follows. of(4)
Obtained by the formula. However, Δl i is the distance between the node of the i element and the contact point of the adjacent element.

F=oi=1 1.0−fi/△li ……(4) 式中nは要素が四角形の場合は二次元計算では
4、三次元計算では6である。
F= oi=1 1.0−f i /△l i ...(4) In the formula, n is 4 in two-dimensional calculation and 6 in three-dimensional calculation when the element is a rectangle.

各溶湯要素が凝固終了するごとに固相率勾配F
を計算すれば各溶湯要素は第13図に例示するよ
うにそれぞれのF値を有することになる。
Each time each molten metal element finishes solidifying, the solid phase gradient F
If calculated, each molten metal element will have its own F value as illustrated in FIG.

固相率勾配Fは凝固部分への溶湯の供給の難易
を表わすパラメータと考えられるので、Fの値が
小さいほど収縮巣は発生し易くなる。
Since the solid fraction gradient F is considered to be a parameter representing the difficulty of supplying molten metal to the solidified portion, the smaller the value of F, the more likely shrinkage cavities will occur.

発明者はF値と収縮巣の発生との関係を調査し
た結果F≦0.2になると其処に収縮巣が発生する
ことが判つた。従つて所望の形状の鋳造品につい
て鋳型の材質、厚さおよび境界条件を変えて解析
モデルを作り、上記の計算を繰返して全ての溶湯
要素についてF≦0.2とならない、すなわちF>
0.2となる鋳型条件、境界条件を求め、このよう
な鋳型および境界条件で鋳造することによつて収
縮巣の発生を防止できることになる。
The inventor investigated the relationship between the F value and the occurrence of shrinkage foci and found that when F≦0.2, shrinkage foci occur there. Therefore, create an analytical model for a cast product of the desired shape by changing the mold material, thickness, and boundary conditions, and repeat the above calculation to find out that F≦0.2 does not hold for all molten metal elements, that is, F>
By finding the mold conditions and boundary conditions that give 0.2 and casting with such molds and boundary conditions, it is possible to prevent the occurrence of shrinkage cavities.

前記の第1〜2図に示すベーンについて収縮巣
の発生を防止するためには羽根4の下半部の凝固
を遅らせればよいであろうと考えられるので第1
4図に示すように羽根部下半部の鋳型6′の外側
に厚さ12mmのセラミツクウール断熱材9を巻い
た。なお鋳型6の材料はジルコン・シヤモツト系
で厚さ8mmとしてある。このような鋳型構造で凝
固解析を行ない、各溶湯要素についてF値を求
め、セクシヨン5についてF=0.2およびF=0.3
の等分布曲線を例示すると第14図に記入してあ
るとおりである。これではなおF≦0.2の領域が
あり、収縮巣の発生を防止できないことが伴つ
た。
In order to prevent the occurrence of shrinkage cavities in the vanes shown in FIGS.
As shown in Figure 4, a 12 mm thick ceramic wool insulation material 9 was wrapped around the outside of the mold 6' for the lower half of the blade. The mold 6 is made of zircon-shamotsu material and has a thickness of 8 mm. Solidification analysis was performed with such a mold structure, and the F value was determined for each molten metal element, and F = 0.2 and F = 0.3 for section 5.
An example of the equal distribution curve is shown in FIG. With this, there was still a region where F≦0.2, and the occurrence of shrinkage foci could not be prevented.

よつて次に羽根部の上半部の鋳型部分6″の厚
さを8mmから半分の4mmに減じた鋳型構造で凝固
解析を行ない、F分布を求めた結果のうちセクシ
ヨン5についての等分布曲線を例示すると第15
図に示すとおりである。この図から明らかなよう
に羽根部にはF≦0.2の場所が存在せず、全てF
>0.2であり、収縮巣の発生を防止できることが
予想できたので実際にこの構造で鋳型を造型し、
クロム系ステンレス鋼を1600℃で注入してベーン
を鋳造し、X線検査を行なつて収縮巣が発生して
いないことを確認した。
Therefore, we next performed a solidification analysis using a mold structure in which the thickness of the mold part 6'' in the upper half of the blade was reduced from 8 mm to halved to 4 mm, and among the results of determining the F distribution, the equal distribution curve for section 5 was obtained. For example, the 15th
As shown in the figure. As is clear from this figure, there is no place where F≦0.2 in the blade, and all F
>0.2, and it was predicted that the occurrence of shrinkage cavities could be prevented, so we actually made a mold with this structure,
The vanes were cast by injecting chromium-based stainless steel at 1,600°C, and X-ray inspection was conducted to confirm that no shrinkage cavities had occurred.

以上説明したように本発明の方法によれば従来
の経験或いは実験式に頼つた造型方案では余肉を
つけたり過度に押湯を大きくしてもなお防止でき
ないような収縮巣の発生を防止することができ
る。
As explained above, according to the method of the present invention, it is possible to prevent the occurrence of shrinkage cavities that cannot be prevented using conventional molding methods based on experience or experimental methods even if extra thickness is added or the feeder is made excessively large. Can be done.

計算は電子計算機を用い、予め組んだプログラ
ムによつて行なえば容易に行なうことができる。
而して収縮巣を防止できる最も経済的な鋳型構
造、従つて技術的に最適な造型方案を求めること
ができ、その実用上の効果はきわめて大きい。
Calculations can be easily performed by using an electronic computer and using a pre-programmed program.
As a result, the most economical mold structure capable of preventing shrinkage cavities, and therefore the technically optimal molding method, can be found, and the practical effects thereof are extremely large.

なお溶湯の冷却速度を変えてF≦0.2の場所を
無くす方法あるいは手段としては上記の鋳型肉厚
を変えるほかに断熱材を用いる、ヒーターを組み
こんで部分的に加熱する、圧縮空気等を吹きつけ
て部分的に強制冷却する、鋳型の一部に冷し金を
用いる、或いは押湯を適所に設ける等従来公知の
手段を用いることができる。
In addition to changing the wall thickness of the mold, there are other ways or means to change the cooling rate of the molten metal to eliminate areas where F≦0.2, such as using heat insulating material, incorporating a heater to partially heat the mold, or blowing compressed air, etc. Conventionally known means can be used, such as forcing the mold to cool partially, using a chiller for a part of the mold, or providing a riser at a suitable location.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の方法の実施態様を説明するた
めのベーンのa正面図およびb平面図、第2図は
同じく側面図、第3図は従来方法による等凝固時
間線図、第4図は同じく収縮巣の存在を示すX線
写真のスケツチ、第5図は本発明の方法によつて
計算した等固相率勾配線の例を示す線図、第6図
は本発明の方法を適用するための解析モデルの例
の正面図、第7図は同じく−矢視断面図、第
8図は同じく側面図、第9図は同じく要素の取り
方を示す要部セクシヨン図、第10図は鋳型要素
より成るセクシヨンの一例を示すグラフ、第11
図は鋳型要素と溶湯要素より成るセクシヨンの一
例を示すグラフ、第12図は溶湯要素の温度と固
相率との関係を示すグラフ、第13図は溶湯要素
と固相率勾配の分布の一例を示すグラフ、第14
図は収縮巣の発生した解析モデルセクシヨンの一
例の等固相率勾配分布線図、第15図は収縮巣の
発生を防止した一例の等固相率勾配分布線図であ
る。 1……ベーン、2……ベーン先端部、3……ベ
ーン基部、4……ベーン羽根部、5……収縮巣、
6……鋳型、7……キヤビテイ内溶湯、8……要
素、9……セラミツクウール。
Fig. 1 is a front view and b plan view of a vane for explaining an embodiment of the method of the present invention, Fig. 2 is a side view thereof, Fig. 3 is an isosolidification time diagram according to a conventional method, and Fig. 4 5 is a sketch of an X-ray photograph showing the presence of shrinkage foci, FIG. 5 is a diagram showing an example of a constant solid fraction gradient line calculated by the method of the present invention, and FIG. 6 is a diagram to which the method of the present invention is applied. 7 is a sectional view taken in the same direction as shown in FIG. Graph showing an example of a section consisting of mold elements, No. 11
The figure is a graph showing an example of a section consisting of a mold element and a molten metal element, Figure 12 is a graph showing the relationship between the temperature of the molten metal element and the solid fraction, and Figure 13 is an example of the distribution of the molten metal element and the solid fraction gradient. Graph showing 14th
The figure is a constant solid fraction gradient distribution diagram of an example of an analytical model section where shrinkage cavities occur, and FIG. 15 is a uniform solid fraction gradient distribution diagram of an example in which shrinkage cavities are prevented from occurring. 1... Vane, 2... Vane tip, 3... Vane base, 4... Vane blade, 5... Shrinkage nest,
6... Mold, 7... Molten metal in cavity, 8... Element, 9... Ceramic wool.

Claims (1)

【特許請求の範囲】 1 鋳型と該鋳型キヤビテイ内の溶湯とよりなる
解析モデルを一つまたは平行な複数個のセクシヨ
ンに分断し、 各セクシヨンを四角形または三角形に区切つて
要素とし、 各要素に材質を与えて鋳型要素と溶湯要素とに
分け、 各要素に初期温度を与えると共に各境界に境界
条件を与え、微小時間ごとに求めた各要素間の熱
量の流れから各要素の温度変化を換算し、 該温度における溶湯要素の固相率fiを次式によ
つて求め、 固相率fi=1.0×液相線温度−要素温度/液相線温度
−固相線温度 各溶湯要素ごとに該溶湯要素の凝固終了時の周
囲要素との固相率勾配Fを次式によつて求め、 F=oi=1 1.0−fi/△li ただし △li=節点距離、 F≦0.2となるときは解析モデルを作り直して
上記の計算を繰返し、 全溶湯要素が凝固完了したとき各溶湯要素の固
相率勾配Fを0.2を超える大きさとすることを特
徴とする収縮巣の発生を防止する鋳造鋳型方案の
作製法。
[Claims] 1. An analytical model consisting of a mold and the molten metal in the mold cavity is divided into one or a plurality of parallel sections, each section is divided into quadrangles or triangles as elements, and each element has its own material. is divided into mold elements and molten metal elements, giving an initial temperature to each element and a boundary condition to each boundary, and converting the temperature change of each element from the flow of heat between each element determined at each minute time. , The solid fraction f i of the molten metal element at that temperature is determined by the following formula, solid fraction f i = 1.0 x liquidus temperature - element temperature / liquidus temperature - solidus temperature For each molten metal element. The solid fraction gradient F with respect to the surrounding elements at the end of solidification of the molten metal element is determined by the following formula: F= oi=1 1.0−f i /△l i where △l i = nodal distance, F≦ When it becomes 0.2, the analysis model is recreated and the above calculation is repeated, and when all the molten metal elements have solidified, the solid fraction gradient F of each molten metal element is set to a size exceeding 0.2 to prevent the occurrence of shrinkage cavities. How to make a casting mold plan to prevent this.
JP4562682A 1982-03-24 1982-03-24 Making method of casting plan with casting mold Granted JPS5921445A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4562682A JPS5921445A (en) 1982-03-24 1982-03-24 Making method of casting plan with casting mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4562682A JPS5921445A (en) 1982-03-24 1982-03-24 Making method of casting plan with casting mold

Publications (2)

Publication Number Publication Date
JPS5921445A JPS5921445A (en) 1984-02-03
JPS6316215B2 true JPS6316215B2 (en) 1988-04-07

Family

ID=12724575

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4562682A Granted JPS5921445A (en) 1982-03-24 1982-03-24 Making method of casting plan with casting mold

Country Status (1)

Country Link
JP (1) JPS5921445A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106311982A (en) * 2015-06-17 2017-01-11 株式会社日立制作所 Design method of vertical neutron in metal mold casting die, and metal mold casting die

Also Published As

Publication number Publication date
JPS5921445A (en) 1984-02-03

Similar Documents

Publication Publication Date Title
EP1452251B1 (en) Mould for component casting using a directional solidification process
CN109063322B (en) Method for predicting numerical value of shrinkage porosity defect of casting
US3659645A (en) Means for supporting core in open ended shell mold
US4549599A (en) Preventing mold and casting cracking in high rate directional solidification processes
US4440834A (en) Process for the manufacture of turbine blades cooled by means of a porous body and product obtained by the process
US7164963B2 (en) System, method and apparatus for lost foam casting analysis
US3690368A (en) Casting single crystal articles
US5677844A (en) Method for numerically predicting casting defects
Patnaik et al. Die casting parameters and simulations for crankcase of automobile using MAGMAsoft
Vdovin Improving the quality of the manufacturing process of turbine blades of the gas turbine engine
JPS6316215B2 (en)
CN108897967B (en) Casting freckle defect numerical prediction method in directional solidification process
US3608617A (en) Art of making precision castings
JP2020082157A (en) Molding die and molding method
US3519063A (en) Shell mold construction with chill plate having uniform roughness
US3485291A (en) Method of casting by directional solidification
Sowa Mathematical model of solidification of the axisymmetric casting while taking into account its shrinkage
Gopinath et al. Effect of solidification parameters on the feeding efficiency of Lm6 aluminium alloy casting
US3411563A (en) Elimination of equiaxed grain superimposed on columnar structures
JP2004174512A (en) Casting method
RU2094163C1 (en) Composite ceramic core
JPH0641015B2 (en) Three-dimensional solidification analysis method
JP3403322B2 (en) Design method of aluminum DC casting mold using elasto-plastic solidification stress analysis and the mold
CN105880533B (en) The directional freeze method of freckle in changes of section casting can be reduced
Huang et al. A Free Thermal Contraction Method for Modelling the Heat-transfer Coefficient at the Casting/Mould Interface