JPS63162089A - Method for preventing sticking of marine organism by using external ultraviolet light source - Google Patents

Method for preventing sticking of marine organism by using external ultraviolet light source

Info

Publication number
JPS63162089A
JPS63162089A JP61306437A JP30643786A JPS63162089A JP S63162089 A JPS63162089 A JP S63162089A JP 61306437 A JP61306437 A JP 61306437A JP 30643786 A JP30643786 A JP 30643786A JP S63162089 A JPS63162089 A JP S63162089A
Authority
JP
Japan
Prior art keywords
ultraviolet light
seawater
cable
light source
sea water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61306437A
Other languages
Japanese (ja)
Inventor
Hideki Kon
今 英樹
Takuya Sasaki
卓也 佐々木
Yasutaka Iida
飯田 康孝
Takashi Nakahachi
仲鉢 隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP61306437A priority Critical patent/JPS63162089A/en
Publication of JPS63162089A publication Critical patent/JPS63162089A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers

Abstract

PURPOSE:To assure high safety and excellent maintenance characteristic, by sending the UV rays condensed from an external UV light source into one end of an optical fiber cable, putting the cable into sea water, and projecting the UV rays in the sea water from the other end of the cable. CONSTITUTION:The UV light is projected to the systems of a heat exchanger which uses the sea water as its cooling water or a marine structure or ship which is in constant contact with the sea water in order to prevent the propagation of adhesive contaminating organism. The UV rays condensed from the external UV light source 2 is sent into one end of the optical fiber cable 7 without immersing a UV lamp directly into the sea water. This cable 7 is put into the sea water and the UV rays are projected in the sea water from the other end of the cable. As a result, the safety is enhanced and the maintenance characteristic is improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は海棲生物付着防止方法に係り、特にタービン等
で用いられる復水器等の管式熱交換器用の海水冷却水系
統中にある復水器氷室や管路、系内ストレーナ等の構造
物に海棲生物が付着成長するのを防止する方法の改良に
関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for preventing the adhesion of marine organisms, particularly in a seawater cooling water system for a tubular heat exchanger such as a condenser used in a turbine, etc. This invention relates to improvements in methods for preventing marine organisms from growing on structures such as condenser ice chambers, pipes, and system strainers.

〔従来の技術〕[Conventional technology]

冷却海水系路中での海棲生物の付着成長は、付着物或は
それらが脱落し流れるものによって、復水器細管の閉塞
、異常損傷を招いたり、ストレーナや系内構造物での異
常目詰りや送水量の低下を来たし、プラント運転に障害
を発生させることがある。従来より、この様な海棲生物
の付着成長を防止する方法としては塩素の注入が行なわ
れていた。塩素は公知の如く海棲生物に対する殺菌力が
高く特公昭52−335&2号に記載のように、海水を
電気分解し海水中の塩素イオンから次亜塩素酸を発生さ
せて海棲生物の付着防止を行なう方法が用いられている
The growth of marine organisms in the cooling seawater system may cause blockage or abnormal damage to the condenser tubules due to deposits or their falling off and flowing, and may cause abnormalities in the strainer or other structures within the system. This can lead to blockages and a decrease in water supply, which can cause problems in plant operation. Conventionally, chlorine injection has been used as a method to prevent the growth of marine organisms. As is well known, chlorine has a high sterilizing power against marine organisms, and as described in Japanese Patent Publication No. 52-335&2, it electrolyzes seawater and generates hypochlorous acid from chlorine ions in seawater to prevent marine organisms from adhering to it. A method is used to do this.

しかし、塩素は発電プラント用などの大量の冷却海水に
注入使用された場合には、排水海水が海洋の生態系に悪
影響を与える恐れがあるとして、環境保全の見地から塩
素注入方法は忌避される傾向にある。
However, when chlorine is injected into large amounts of cooling seawater used in power generation plants, etc., the method of chlorine injection is avoided from the perspective of environmental conservation, as the wastewater seawater may have a negative impact on the marine ecosystem. There is a tendency.

このため、環境に与える影響が無く付着防止効果の高い
方法として紫外線光照射する方法がある。
For this reason, there is a method of irradiating ultraviolet light that does not affect the environment and has a high adhesion prevention effect.

これは、波長253.7nmの紫外線による殺菌効果を
利用したもので、海棲生物が付着成長し易い環境領域に
紫外線光を照射し、照射部を海棲生物の生息に不適な環
境としてしまうものである。
This method utilizes the sterilizing effect of ultraviolet light with a wavelength of 253.7 nm, and irradiates ultraviolet light onto environmental areas where marine organisms are likely to attach and grow, making the irradiated area an unsuitable environment for marine organisms to live in. It is.

紫外線の照射方法として最も単純なものは主波長253
.7nmの紫外線ランプを石英外管などで防水処理して
浸水させる方法がある。
The simplest way to irradiate ultraviolet rays is with a dominant wavelength of 253.
.. There is a method of waterproofing a 7 nm ultraviolet lamp with a quartz outer tube and submerging it in water.

〔発明が解決しようとする問題点〕 しかし、この方法によると灯具自体が浸水されるため、
次の様な欠点を有することになる。
[Problems to be solved by the invention] However, according to this method, the lamp itself is submerged in water, so
It has the following drawbacks.

第1に1発電プラントに使用されている冷却海水は非常
に大量であり、灯具に与える衝撃力が大きい上、圧力も
高い場合がある。紫外線は石英ガラス以外の物質では減
衰が激しく、保護カバーとしては石英ガラスを使用せざ
るを得ないため、強度上の限界がある。万が一流水中に
固形異物が混入し、石英ガラス面に衝突した場合には、
これが損傷し、ランプが機能しなくなる恐れがある。
First, the amount of cooling seawater used in a power generation plant is extremely large, and not only does it have a large impact force on the lamps, but the pressure may also be high. Ultraviolet rays are severely attenuated by materials other than quartz glass, and quartz glass must be used as a protective cover, which limits its strength. In the event that a solid foreign object enters the first water and collides with the quartz glass surface,
This can be damaged and the lamp may no longer function.

第2に、運転中にランプが寿命或は異常などの理由で機
能しなくなった場合に、ランプを確認或は交換するため
には、冷却海水系を一時停止させなければならない。発
電プラントなどでは冷却海水系を停止することは発電事
情などの問題があり、数週間不可能な場合もある。従っ
て、その間に、海棲生物の付着成長が発生する恐れがあ
る。
Second, if the lamp stops functioning due to end of life or abnormality during operation, the cooling seawater system must be temporarily stopped in order to check or replace the lamp. In power generation plants, it may not be possible to shut down the cooling seawater system for several weeks due to power generation issues and other issues. Therefore, during this time, there is a risk that attached growth of marine organisms will occur.

本発明の目的は、安全性が高くさらに、保守性の優れた
、紫外線照射方法を提供することにある。
An object of the present invention is to provide an ultraviolet irradiation method that is highly safe and easy to maintain.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、直接に紫外線ランプを浸水させずに、冷却
海水系外に外部紫外線光源を置き、ここでアルミ蒸着な
どで紫外線を反射するように内面処理した反射鏡などで
集光し紫外線を効率よく透過する石英ファイバの一端に
紫外線光を送り込み、ファイバのもう一方の他端を海水
中に設置することにより達成される。
The above purpose is to place an external UV light source outside the cooling seawater system, without directly submerging the UV lamp in water, and to collect the UV light efficiently using a reflector whose inner surface has been treated with aluminum vapor deposition to reflect the UV light. This is accomplished by pumping ultraviolet light into one end of a highly transparent quartz fiber and placing the other end of the fiber in seawater.

〔作用〕[Effect]

すなわち、ファイバの端部だけが浸水されているため、
上述したような厳しい使用条件にも十分耐え有ることが
容易であり、さらに固形異物に対しても損傷を受けにく
い。またランプ本体が気中にあるため万が−、ファイバ
が損傷してもランプの機能は維持されるし、ランプの交
換み海水系とは無関係に行なうことが可能となる。
That is, since only the end of the fiber is flooded,
It can easily withstand the severe usage conditions mentioned above, and is also less likely to be damaged by solid foreign matter. Furthermore, since the lamp body is in the air, even if the fiber is damaged, the lamp function will be maintained, and the lamp can be replaced regardless of the seawater system.

さらに、ファイバの本数を増やし、その出口端を様々な
方向へ配置しておき、外部光源のファイバ入口端の前に
回転酸は移動する反射板を設置することによって、反射
板の開口部にあるファイバ入口から、集中化された紫外
線を送り出し、高照度の紫外線を任意の方向へ照射する
ことが可能となる。また、反射板開口部の形状や回転酸
は移動する速度を調節することによって、紫外線照度や
照射時間を任意に調節することが可能となる。
Furthermore, by increasing the number of fibers and arranging their exit ends in various directions, the rotating acid can be placed at the opening of the reflector by installing a moving reflector in front of the fiber inlet end of the external light source. It is possible to send out concentrated ultraviolet rays from the fiber entrance and irradiate high-intensity ultraviolet rays in any direction. Further, by adjusting the shape of the opening of the reflecting plate and the speed at which the rotating acid moves, it becomes possible to arbitrarily adjust the ultraviolet irradiance and irradiation time.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図ないし第3図により説
明する。第1図は海棲生物の付着防止の対象部分に、本
発明による外部紫外線光源を使用した紫外線照射装置を
取り付けた全体図を示している。
An embodiment of the present invention will be described below with reference to FIGS. 1 to 3. FIG. 1 shows an overall view of an ultraviolet irradiation device using an external ultraviolet light source according to the present invention attached to an area to be prevented from adhering to marine organisms.

ロ金部1.紫外線ランプ2.大反射鏡3及び小反射鏡4
よりなる光源筐体5は押え具6でファイバケーブル7の
保護筐体8に固定される。保1JHiJ体8の先端には
ファイバケーブル7の出口端を集めた照射部9が取り付
けられており保!?!筺体8とともに固定部10で海水
中に設置固定される。
B Gold part 1. UV lamp 2. Large reflector 3 and small reflector 4
The light source housing 5 is fixed to the protective housing 8 of the fiber cable 7 with a presser 6. An irradiation section 9 that collects the outlet ends of the fiber cables 7 is attached to the tip of the maintenance body 8. ? ! It is installed and fixed together with the housing 8 in seawater by the fixing part 10.

光源筐体5の内部には小型駆動装置が内蔵さ九ておりシ
ャフト11に回転を与える。第2図は保護筺体8のファ
イバケーブル7の光源側の端部を示したものであり、多
数のファイバ端部が放射状に配置されている。この面に
接してシャフト11と連結して回転する反射板12が取
り付けられている。この反射板12には第2図に示す通
りに2ケ所の長穴の開口部13がある。止め具14は小
反射鏡4を固定するための棒である。
A small drive device is built inside the light source housing 5 and rotates the shaft 11. FIG. 2 shows the end of the fiber cable 7 of the protective housing 8 on the light source side, and a large number of fiber ends are arranged radially. A reflecting plate 12 that rotates while being connected to the shaft 11 is attached in contact with this surface. This reflecting plate 12 has two elongated openings 13 as shown in FIG. The stopper 14 is a rod for fixing the small reflecting mirror 4.

第3図は照射部9のファイバケーブル7の照射側の端部
を示したものであり、半円筒状の外面に格子状に配置さ
れている。第2図に示した開口部13にあるファイバケ
ーブル7が丁度第3@の配列の中で軸方向の一列分に相
肖する様にファイバケーブル7が保護筐体8の中で引き
廻わされている。
FIG. 3 shows the irradiation side end of the fiber cable 7 of the irradiation section 9, which is arranged in a grid pattern on the semi-cylindrical outer surface. The fiber cable 7 is routed in the protective housing 8 so that the fiber cable 7 in the opening 13 shown in FIG. ing.

口金部1まで通電し、紫外線ランプ2を点灯すると主波
長253.7nmの紫外線が発生し、これは大反射@3
及び小反射鏡4によってファイバケーブル7の入口端へ
向かう、この入口端には反射板12があるため、開口部
13にある列のファイバ端以外はまた反射される。この
様にして開口部13には集中化された紫外線光が入る。
When electricity is applied to the base part 1 and the UV lamp 2 is turned on, ultraviolet light with a main wavelength of 253.7 nm is generated, which has a large reflection @3
The small reflector 4 directs the fiber cable 7 toward the inlet end. Since there is a reflector plate 12 at this inlet end, fibers other than the ends of the rows located in the openings 13 are also reflected. In this way, concentrated ultraviolet light enters the opening 13.

この紫外線光は照射部9の半円筒の軸方向のある一列の
ファイバ端より照射される。従って1反射板12を回転
することによって照射部9から平面光が180’動きな
がら照射している様相を呈することになる。
This ultraviolet light is irradiated from a certain row of fiber ends in the axial direction of the semicircular cylinder of the irradiation section 9. Therefore, by rotating the first reflecting plate 12, it appears that the plane light is irradiated from the irradiating section 9 while moving 180'.

本実施例によると、反射板12の回転運動及び開口部1
3の形状を変化させることによって、照射部9に配置さ
れているファイバ端の方向に対しては種々の照射量、照
射時間及び照射パターンが得られるため、設置環境に対
し有効的な照射ができるという効果がある。また、照射
部9にてすでに海水とのシールがなされるため、紫外線
ランプ2の検査や交換の場合には、押え具6を外すこと
によって、海水系とは無関係に何時でも実施できるとい
う効果がある。
According to this embodiment, the rotational movement of the reflection plate 12 and the opening 1
By changing the shape of 3, various irradiation amounts, irradiation times, and irradiation patterns can be obtained for the direction of the fiber end arranged in the irradiation section 9, so that effective irradiation can be performed for the installation environment. There is an effect. In addition, since the irradiation unit 9 is already sealed with seawater, inspection or replacement of the ultraviolet lamp 2 can be carried out at any time by removing the presser 6, regardless of the seawater system. be.

〔発明の効果〕〔Effect of the invention〕

本発明によれば照射部の海水中のml!、圧力及び固形
異物の衝突などの環境条件による損傷を受けにくい構造
とすることが可能であり、もし万が一損傷があっても紫
外線ランプに直接影響が無いため、安全性の高い照射を
行なうことができるという効果がある。
According to the present invention, ml of seawater in the irradiated area! It is possible to create a structure that is less susceptible to damage due to environmental conditions such as pressure and collision with solid foreign objects, and even if damage occurs, it will not directly affect the UV lamp, making it possible to perform highly safe irradiation. There is an effect that it can be done.

また、海水系とは無関係に紫外線ランプを操作できるた
め、保守性の優れた照射装置とすることができるという
効果がある。
Furthermore, since the ultraviolet lamp can be operated independently of the seawater system, the irradiation device has the advantage of being easy to maintain.

さらに、開口部形状や、その動かし方、またファイバケ
ーブルの入口端及び出口端の配置方法によって、様々な
照射パターンが得られるため高効率照射のための柔軟性
があるという効果がある。
Furthermore, various irradiation patterns can be obtained depending on the shape of the opening, how it is moved, and how the inlet and outlet ends of the fiber cable are arranged, so there is flexibility for highly efficient irradiation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示した全体図、第2図は第
1図の■−■線断面図、第3図は第1図のm−m矢視図
である。 1・・・口金部、2・・・紫外線ランプ、3・・・大反
射鏡、4・・・小反射鏡、5・・・光源筐体、6・・・
押え具、7・・・ファイバケーブル、8・・・保護筐体
、9・・・照射部、10・・・固定部、11・・・シャ
フト、12・・・反射板。 13・・・開口部、14・・・止め具。
FIG. 1 is an overall view showing one embodiment of the present invention, FIG. 2 is a sectional view taken along the line ■--■ in FIG. 1, and FIG. 3 is a view taken along the line mm in FIG. 1. 1... Base portion, 2... Ultraviolet lamp, 3... Large reflecting mirror, 4... Small reflecting mirror, 5... Light source housing, 6...
Holding tool, 7... Fiber cable, 8... Protective casing, 9... Irradiation section, 10... Fixing section, 11... Shaft, 12... Reflection plate. 13... opening, 14... stopper.

Claims (1)

【特許請求の範囲】 1、海水を冷却水として使用している熱交換器などの系
路あるいは海水と常時接触する海洋構造物や船舶などに
対し、付着性汚損生物の繁殖を防止するために紫外線光
を照射する方法において、紫外線ランプを直接海水中に
浸水させずに、外部の紫外線光源から集光した紫外線を
光ファイバケーブルの一端へ送り込み、該ケーブルを海
水中に入れ、もう一方の該ケーブル端から海水中で紫外
線を照射することを特徴とする海棲生物付着防止方法。 2、紫外線ランプと多数の光ファイバケーブル端よりな
る外部紫外線光源において、ファイバ端群の手前に回転
又は移動する開口を有する反射板を設置し、開口部に集
中化された紫外線光が当たる様に反射鏡を構成し、開口
部の形状・移動方法及びファイバの照射端の配置を任意
に組み合わせることによつて、紫外線照射の方向・強度
を可変とした特許請求の範囲第1項記載の海棲生物付着
防止方法。
[Claims] 1. To prevent the growth of adherent fouling organisms on systems such as heat exchangers that use seawater as cooling water or on marine structures and ships that are in constant contact with seawater. In the method of irradiating ultraviolet light, the ultraviolet lamp is not directly immersed in seawater, but instead the ultraviolet light is concentrated from an external ultraviolet light source and sent to one end of an optical fiber cable, the cable is placed in seawater, and the other end is A method for preventing the adhesion of marine organisms, which is characterized by irradiating ultraviolet rays into seawater from the end of a cable. 2. In an external ultraviolet light source consisting of an ultraviolet lamp and multiple optical fiber cable ends, a reflector plate with a rotating or moving aperture is installed in front of the group of fiber ends so that concentrated ultraviolet light hits the aperture. The marine habitat according to claim 1, wherein the direction and intensity of ultraviolet irradiation are variable by configuring a reflecting mirror and arbitrarily combining the shape and movement method of the aperture and the arrangement of the irradiation end of the fiber. Biofouling prevention method.
JP61306437A 1986-12-24 1986-12-24 Method for preventing sticking of marine organism by using external ultraviolet light source Pending JPS63162089A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61306437A JPS63162089A (en) 1986-12-24 1986-12-24 Method for preventing sticking of marine organism by using external ultraviolet light source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61306437A JPS63162089A (en) 1986-12-24 1986-12-24 Method for preventing sticking of marine organism by using external ultraviolet light source

Publications (1)

Publication Number Publication Date
JPS63162089A true JPS63162089A (en) 1988-07-05

Family

ID=17956998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61306437A Pending JPS63162089A (en) 1986-12-24 1986-12-24 Method for preventing sticking of marine organism by using external ultraviolet light source

Country Status (1)

Country Link
JP (1) JPS63162089A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5385677A (en) * 1993-04-30 1995-01-31 Venable; William B. Fiber optic photochemical oxidation decontamination of aqueous leachate plumes
WO1997037936A1 (en) * 1996-04-11 1997-10-16 Rijksuniversiteit Groningen A photocatalytic reactor for water purification and use thereof
JP2018524155A (en) * 2015-06-09 2018-08-30 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. An assembly comprising a wet compartment and at least one antifouling energy source
JP2018535089A (en) * 2015-10-27 2018-11-29 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Anti-fouling system and controller and method for controlling anti-fouling system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5385677A (en) * 1993-04-30 1995-01-31 Venable; William B. Fiber optic photochemical oxidation decontamination of aqueous leachate plumes
WO1997037936A1 (en) * 1996-04-11 1997-10-16 Rijksuniversiteit Groningen A photocatalytic reactor for water purification and use thereof
JP2018524155A (en) * 2015-06-09 2018-08-30 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. An assembly comprising a wet compartment and at least one antifouling energy source
US10316732B2 (en) 2015-06-09 2019-06-11 Koninklijke Philips N.V. Assembly comprising a wet compartment and at least one anti-fouling energy source
TWI695796B (en) * 2015-06-09 2020-06-11 荷蘭商皇家飛利浦有限公司 Assembly comprising a wet compartment and at least one anti-fouling energy source
JP2018535089A (en) * 2015-10-27 2018-11-29 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Anti-fouling system and controller and method for controlling anti-fouling system

Similar Documents

Publication Publication Date Title
US5322569A (en) Ultraviolet marine anti-biofouling systems
JP6936738B2 (en) Methods and devices for preventing biofouling of ships, etc. by UV radiation and surface modification
RU2758176C2 (en) Cooling device for cooling fluid medium by means of water of surface layers
JP2018519204A (en) Improved safety for UV irradiation in underwater applications
JP6951359B2 (en) Integrated system for real-time antifouling and biofouling monitoring
JPS63162090A (en) Device for preventing sticking and contamination of aquatic organism
RU2717000C2 (en) Antifouling protection means for wet compartment assembly and vessel comprising such means
JPS63162089A (en) Method for preventing sticking of marine organism by using external ultraviolet light source
RU2719074C2 (en) Vessel having compartment for water content
JPH08164383A (en) Laser irradiation device for deposition preventive method of aquatic in water pipe
US20190047026A1 (en) Assembly of a buoyancy module and an anti-fouling system
JPS63162091A (en) Device for preventing sticking of aquatic living matter
JPH0718138B2 (en) Shellfish removal device
JPH0250089A (en) Preventing device for adhesion of aquatic organism
JPH0410396B2 (en)
JPH0410394B2 (en)
JPH08164382A (en) Laser irradiation device for deposition preventive method of aquatic in water pipe
WO2021055500A1 (en) Anti-biofouling in marine applications using uv light source
JPH0410395B2 (en)
TW201801778A (en) An assembly comprising at least two elements in a movable arrangement relative to each other and an anti-fouling system
JP4469968B2 (en) Laser irradiation method and apparatus for preventing attachment of aquatic organisms in tubes
Williams Using UVC Lights to Eliminate Biofouling in Pumped Cooling Systems
JP2000024655A (en) Water purification equipment