JPS63161882A - Drive circuit for oscillatory wave motor - Google Patents

Drive circuit for oscillatory wave motor

Info

Publication number
JPS63161882A
JPS63161882A JP61309444A JP30944486A JPS63161882A JP S63161882 A JPS63161882 A JP S63161882A JP 61309444 A JP61309444 A JP 61309444A JP 30944486 A JP30944486 A JP 30944486A JP S63161882 A JPS63161882 A JP S63161882A
Authority
JP
Japan
Prior art keywords
output
electrode
voltage
pulse
input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61309444A
Other languages
Japanese (ja)
Other versions
JP2692801B2 (en
Inventor
Kazuhiro Izukawa
和弘 伊豆川
Nobuyuki Suzuki
信行 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP61309444A priority Critical patent/JP2692801B2/en
Publication of JPS63161882A publication Critical patent/JPS63161882A/en
Application granted granted Critical
Publication of JP2692801B2 publication Critical patent/JP2692801B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/10Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors
    • H02N2/14Drive circuits; Control arrangements or methods
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/10Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors
    • H02N2/14Drive circuits; Control arrangements or methods
    • H02N2/142Small signal circuits; Means for controlling position or derived quantities, e.g. speed, torque, starting, stopping, reversing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/10Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors
    • H02N2/16Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors using travelling waves, i.e. Rayleigh surface waves
    • H02N2/163Motors with ring stator

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

PURPOSE:To reduce power consumption by connecting a capacitive element in parallel with a vibration detecting element. CONSTITUTION:An oscillatory wave motor has an electrostrictive element 2, and a driver circuit for the motor is constituted of a low-pass filter 4, a voltage controlled oscillator 5, a comparator 12, a frequency dividing circuit 19, shift registers 20, 25, a speed selecting switch 30, etc. An externally attached capacitor 32 as a capacitive element is connected in parallel with detecting electrodes 2-3 for the electrostrictive element 2 at that time. The capacitor 32 lowers voltage generated from the detecting electrodes 2-3. Consequently, voltage generated from the detecting electrodes 2-3 can be reduced apparently without changing the phase of output voltage from the detecting voltages 2-3, thus eliminating the need for a detector for a high input resistor by a high withstanding voltage part. When the switch 30 is connected to a contact 30-8, the motor is turned in maximum efficiency, the efficiency of revolution is lowered by changing over and connecting the switch 30 to contacts 30-7, 30-6, 30-5 in succession, thus decreasing the speed of revolution of the motor.

Description

【発明の詳細な説明】 [発明の利用分野] 本発明は振動波モータの駆動回路、特に進行性振動波に
より移動体を摩擦駆動する振動波モータの駆動回路に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a drive circuit for a vibration wave motor, and particularly to a drive circuit for a vibration wave motor that frictionally drives a moving body using progressive vibration waves.

[充用の背景] 駆動用の電気機械変換素子に周波電圧を印加することに
よって生じる進行性振動波によって駆動する振動波モー
タの駆動回路として振動検出用の電気機械変換素子を振
動波モータに設け、該検出用の電気機械変換素子のイン
ピーダンスの変化に応じて駆動用の電気機械変換素子に
印加する周波電圧の周波数を自動的に共振周波数として
、振動波モータを最も効率良く駆動する駆動回路か本件
出願人により特願昭59−276962号として提案さ
れている。
[Background of application] As a drive circuit for a vibration wave motor that is driven by progressive vibration waves generated by applying a frequency voltage to an electromechanical conversion element for driving, an electromechanical conversion element for vibration detection is provided in a vibration wave motor. A drive circuit that drives a vibration wave motor most efficiently by automatically setting the frequency of a frequency voltage applied to a drive electromechanical transducer as a resonance frequency in response to a change in impedance of the detection electromechanical transducer. It has been proposed by the applicant as Japanese Patent Application No. 59-276962.

しかしながら、かかる従来技術の場合ては検出用電気機
械変換素子より発生する電圧は駆動用電気機械変換素子
に印加する電圧とほぼ等しい高電圧である為振動検出回
路としては該高電圧に耐える回路を用意しなければなら
ない。また該高耐電圧検出回路は位相変化を生しさせる
可能性あるので、その位相変化を小さくする為に検出回
路としては高入力抵抗の回路を用いなければならない欠
点かあった。更に検出回路には検出用電気機械変換素子
からの周波数の゛電圧、即ち駆動用電気機械変換素子に
印加される周波数に相当する周波数の(一般的に50〜
100K+12)の電圧か印加されるか該検出回路はか
かる周波数の入力信号に応答できなければならない。そ
こて該検出回路には数mA程度の電流が流されている。
However, in the case of such conventional technology, since the voltage generated by the electromechanical transducer for detection is a high voltage that is almost equal to the voltage applied to the electromechanical transducer for drive, the vibration detection circuit must be a circuit that can withstand the high voltage. Must be prepared. Further, since the high withstand voltage detection circuit may cause a phase change, there is a drawback that a circuit with a high input resistance must be used as the detection circuit in order to reduce the phase change. Furthermore, the detection circuit has a voltage of a frequency from the electromechanical transducer for detection, that is, a voltage of a frequency corresponding to the frequency applied to the electromechanical transducer for drive (generally 50 to
If a voltage of 100K+12) is applied, the detection circuit must be able to respond to an input signal of such frequency. Therefore, a current of about several mA is passed through the detection circuit.

検出回路に流れる電流はこの様に小電流であるか、検出
回路に入力する電圧レベルは前述の様に高いレベルのた
めに該高耐電圧検出回路で消費される電力は大きな値と
なり、小容量の電池か使用されるカメラ等の小型携帯機
器に応用し難い欠点があった。
Because the current flowing through the detection circuit is such a small current, or because the voltage level input to the detection circuit is high as described above, the power consumed by the high withstand voltage detection circuit is large, and the capacitance is small. However, it has the disadvantage that it is difficult to apply it to small portable devices such as cameras that use batteries.

[発明の目的] 本発明の目的は上記従来装置の欠点を解決した、高耐圧
回路か不要て、低消費電力の振動波モータ用駆動回路を
提供せんとするもので、本発明の特徴とする処は振動検
出素子に並列に容量性素子を接続した点に存する。
[Object of the Invention] The object of the present invention is to provide a drive circuit for a vibration wave motor that solves the drawbacks of the above-mentioned conventional devices, does not require a high voltage circuit, and has low power consumption. The problem lies in that a capacitive element is connected in parallel to the vibration detection element.

[実施例コ 第2し1乃至第6図は本発明を適用した振動波モータの
構造を説明する図であり、第2図は振動波モータの断面
図、第3図は第2図に示した振動波モータを構成する振
動体lと、該振動体lに接着された電気機械変換素子と
しての電歪素子2からなるステータを斜め上方から見た
斜視図、第4図はステータの側面図、第5図は電極のパ
ターンを示す図の3つの図を縦に並べてわかりやすく示
した図である。第6図は電歪素子2の分極パターン及び
かかる電歪素子2の配線を示した平面図である。
[Example 2, 1 to 6 are diagrams explaining the structure of a vibration wave motor to which the present invention is applied, FIG. 2 is a sectional view of the vibration wave motor, and FIG. FIG. 4 is a perspective view of a stator consisting of a vibrating body l constituting a vibrating wave motor and an electrostrictive element 2 as an electromechanical conversion element bonded to the vibrating body l, as seen diagonally from above, and FIG. 4 is a side view of the stator. , FIG. 5 is a diagram in which three diagrams showing electrode patterns are arranged vertically for easy understanding. FIG. 6 is a plan view showing the polarization pattern of the electrostrictive element 2 and the wiring of the electrostrictive element 2.

第2図〜第5図において振動体1は例えは真ちゅうから
成る弾性体から構成されている。又電歪素子2は例えば
PZT (チタン酸ジルコン鉛)てあって、振動体lに
接着されている。かかる電歪素子2は第6図に平面を示
す様なパターンて分極処理された円環状の電歪素子、あ
るいは複数の電歪素子を円環状に配列して構成されるが
、該実施例ては分極処理された円環状の電歪素子か使用
される。また電歪素子2の分極パターンは第6図に示す
様に所定周波数の周波電圧か印加される電極2−1と電
極2−2及び振動検出素子を形成する振動検出用の電極
2−3に分けられるか、電極2−2は電極2−1に対し
て励起されるべき振動波の波長入の1/4たけずれたピ
ッチで配置される。第6図に示した+、−は分極処理の
方向を示す符号である。 第2図における60は振動体
lに摩擦接触する移動体、70はモータの固定体、80
は移動体を支持する中心軸、90は中心軸80と移動体
60との接触部に設けられたベアリンクである。100
は中心軸80に第2図において下方向に力を(動かせる
ことにより、移動体60と振動体lか所定の力で加圧接
触する様に設けられているハネである。
In FIGS. 2 to 5, the vibrating body 1 is composed of an elastic body made of brass, for example. Further, the electrostrictive element 2 is made of, for example, PZT (lead zirconium titanate) and is bonded to the vibrating body l. Such an electrostrictive element 2 is composed of an annular electrostrictive element polarized in a pattern as shown in the plane in FIG. 6, or a plurality of electrostrictive elements arranged in an annular shape. A polarized annular electrostrictive element is used. In addition, the polarization pattern of the electrostrictive element 2 is as shown in FIG. Alternatively, the electrodes 2-2 are arranged at a pitch shifted by 1/4 of the wavelength of the vibration wave to be excited with respect to the electrode 2-1. + and - shown in FIG. 6 are signs indicating the direction of polarization treatment. In FIG. 2, 60 is a moving body that comes into frictional contact with the vibrating body l, 70 is a fixed body of the motor, and 80
9 is a central shaft that supports the moving body, and 90 is a bear link provided at the contact portion between the central shaft 80 and the moving body 60. 100
is a spring provided on the center shaft 80 so that it can be moved downward in FIG. 2 so that the movable body 60 and the vibrating body 1 come into pressure contact with each other with a predetermined force.

第1図は第2図示振動波モータの駆動回路を示す回路図
である。
FIG. 1 is a circuit diagram showing a drive circuit of the second illustrated vibration wave motor.

第1図において、2は前述した電歪素子で、2−1.2
−2.2−3は第5図示の電極、10.11はコイル、
7,8はアンプである。
In FIG. 1, 2 is the electrostrictive element mentioned above, and 2-1.2
-2.2-3 is the electrode shown in the fifth figure, 10.11 is a coil,
7 and 8 are amplifiers.

17は電極2−1に接続され、該電極2−1の正弦波を
整形してロジックレベルのパルスに変換するコンパレー
タである。又2Aは検出電極2−3の出力波形(正弦波
)をロジックレベルのパルスに変換するコンパレータで
ある。
A comparator 17 is connected to the electrode 2-1 and shapes the sine wave of the electrode 2-1 to convert it into a logic level pulse. Further, 2A is a comparator that converts the output waveform (sine wave) of the detection electrode 2-3 into a logic level pulse.

12はその一方の入力端を前記コンパレータ2Aの出力
と接続すると共に、他方の入力端なインバータ18に接
続されたフェイズコンパレータ(位相比較回路)て、例
えばUS24.291,274号等にて周知てあり、そ
の詳細な説明は省略するか入力信号の位相差を検知して
位相差か存在する場合のみ出力を発生するものである。
12 is a phase comparator (phase comparison circuit) having one input terminal connected to the output of the comparator 2A and the other input terminal connected to the inverter 18, which is well known in, for example, US Pat. No. 24.291,274. The detailed explanation will be omitted, or the phase difference between the input signals is detected and an output is generated only when the phase difference exists.

該コンパレータ12のフロック構成及び入力出力特性は
第7図及び第8図に示す通ってあり、入力端Rへの入力
パルス(立上り信号)か入力端Sへの立上り信号より先
に入力された場合には立上り信号差の期間のみ出力は Vcc (ハイレベル信号以下Hと称す)となり、上記
入力端Sへの立上り信号の入力にて出力はオープン状態
(高インピーダンス状態)となる。
The flock configuration and input/output characteristics of the comparator 12 are as shown in FIGS. In this case, the output becomes Vcc (high level signal hereinafter referred to as H) only during the period of the rising signal difference, and when the rising signal is input to the input terminal S, the output becomes an open state (high impedance state).

又入力端Sへの入力パルス(立上り信号)が入力端Rへ
の立上り信号より先に入力された場合には立上り信号期
間出力はグランドレベル(ロウレベル以下りと称す)と
なる。
Further, when the input pulse (rising signal) to the input terminal S is inputted earlier than the rising signal to the input terminal R, the output during the rising signal period becomes the ground level (referred to as lower than the low level).

又、出力かH又りを示す場合以外はオープン状態となる
ものである。よって、位相差かゼロの時には出力はオー
プン状態のまま保持される。
Also, it is in an open state except when the output indicates an H-cross. Therefore, when the phase difference is zero, the output is held open.

4はローパスフィルタでコンパレータ12の出力を平滑
化している。5はデユティ比50%の信号を入力電圧に
応じた周波数で出力する電圧制御発振H(vco)て、
その入力はローパスフィルタ4の出力に接続されている
。該VCO5の入力電圧と出力周波数は1次rJJ数の
関係にあり電圧か高くなる程高周波出力となる。
4 is a low-pass filter that smoothes the output of the comparator 12. 5 is a voltage controlled oscillation H (vco) that outputs a signal with a duty ratio of 50% at a frequency according to the input voltage,
Its input is connected to the output of the low pass filter 4. The input voltage and output frequency of the VCO 5 are in the relationship of the first-order rJJ number, and the higher the voltage, the higher the frequency output.

19はVCO5の出力を32分周する分周回路て、該分
周回路の出力はアンプ7、コイルlOを介して電極2−
1に印加される。又分周回路19の出力は8段のシフト
レジスタ20のD入力端に接続されている。該レジスタ
20のクロック端子には上記VCO5の出力かクロック
パルスとして入力されている。分周回路19の出力パル
スに対するVC05の周波数は32倍となっているため
、レジスタ20に対するD入力とクロックパルスとの関
係も32倍となっている。そのため、シフトレジスタ2
0の出力Q、〜Q8はD入力信号に対して0°から90
’までの11.25°ずつずれた(遅れた)パルスか出
力されることとなる。尚VCO5の発振周波数は振動波
モータの共振周波数の32倍に設定している。該シフト
レジスタ20の出力Q、〜QAはそれぞれ速度選択スイ
ッチ30の端子30−1〜30−8に接続され、該スイ
ッチ30を介して選択されたレジスタ20の出力かアン
プ8.コイル11を介して電極2−2に印加される。
Reference numeral 19 denotes a frequency dividing circuit that divides the output of the VCO 5 by 32, and the output of the frequency dividing circuit is sent to the electrode 2 through the amplifier 7 and the coil IO.
1. Further, the output of the frequency dividing circuit 19 is connected to the D input terminal of an eight-stage shift register 20. The output of the VCO 5 is inputted to the clock terminal of the register 20 as a clock pulse. Since the frequency of VC05 is 32 times higher than the output pulse of the frequency dividing circuit 19, the relationship between the D input to the register 20 and the clock pulse is also 32 times higher. Therefore, shift register 2
0's output Q, ~Q8 is 0° to 90° with respect to the D input signal.
A pulse shifted (delayed) by 11.25 degrees up to ' is output. The oscillation frequency of the VCO 5 is set to 32 times the resonance frequency of the vibration wave motor. The outputs Q, -QA of the shift register 20 are respectively connected to terminals 30-1 to 30-8 of a speed selection switch 30, and the output of the register 20 selected via the switch 30 is connected to the amplifier 8. It is applied to the electrode 2-2 via the coil 11.

25は8段のシフトレジスタて、該レジスタのD入力端
には上記コンパレータ17の出力か入力され、又クロッ
ク入力には上記VCO5の出力が入力されているため、
出力端QoからはD入力端への入力信号に対して90″
遅れたパルスか出力される。即ち、分周回路19の出力
パルスとコンパレータ17の出力パルスは同一め位相関
係のパルスとなるため、該パルスをD入力として入力し
、VCO5の出力をクロックとして入力するシフトレジ
スタ25の8段目の出力Q8はD入力信号、即ち電極2
−1の信号に対して90°′lIれたパルスとなる。上
記シフトレジスタ25の出力Q8はインバータ18を介
してフェーズコンパレータ12のS入力に入力されてい
る。尚、電極1−1と電極1−3の配置関係としては9
0°ずれた位置関係にあるものとする。32は検出電極
2−3に並列接続された容量性素子としての外付けのコ
ンデンサて、該コンデンサ32は検出電極2−3から発
生する電圧を降下される機能を有する。
25 is an 8-stage shift register, and the output of the comparator 17 is input to the D input terminal of this register, and the output of the VCO 5 is input to the clock input.
90″ from the output terminal Qo to the input signal to the D input terminal
A delayed pulse is output. That is, since the output pulse of the frequency dividing circuit 19 and the output pulse of the comparator 17 have the same phase relationship, the pulse is inputted as the D input, and the output of the VCO 5 is inputted as the clock at the 8th stage of the shift register 25. The output Q8 of is the D input signal, i.e. electrode 2
The pulse is 90°'lI with respect to the -1 signal. The output Q8 of the shift register 25 is inputted to the S input of the phase comparator 12 via the inverter 18. The arrangement relationship between electrode 1-1 and electrode 1-3 is 9.
It is assumed that the positions are shifted by 0°. Reference numeral 32 denotes an external capacitor as a capacitive element connected in parallel to the detection electrode 2-3, and the capacitor 32 has the function of dropping the voltage generated from the detection electrode 2-3.

次いで、第1図乃至第8図示実施例の動作について説明
する。
Next, the operation of the embodiment shown in FIGS. 1 to 8 will be explained.

不図示の電源スィッチを投入すると回路への給電かなさ
れVCO5はある周波数て発振を開始する。該vcos
の出力(第9図(a))はシフトレジスタ20.25の
シフトクロックとなると同時に分周回路19に伝わるた
め32分周したパルス(第9図(b)が分周回路19の
出力としてアンプ7に入力する。該パルスはコイルlO
1電極2−1等から成る共振回路にて正弦波となり駆動
電極2−1に印加されることとなり、その結果電極2−
1には第9図(b))に示したパルスと同位相て、かつ
同周波数の正弦波か印加される。
When a power switch (not shown) is turned on, power is supplied to the circuit and the VCO 5 starts oscillating at a certain frequency. The vcos
The output (FIG. 9(a)) serves as the shift clock for the shift register 20.25 and is simultaneously transmitted to the frequency dividing circuit 19, so the pulse whose frequency is divided by 32 (FIG. 9(b)) is the output of the frequency dividing circuit 19 and is transmitted to the frequency dividing circuit 19. 7. The pulse is input to the coil lO
A sine wave is applied to the drive electrode 2-1 in the resonant circuit consisting of one electrode 2-1, etc., and as a result, the electrode 2-1 is applied to the drive electrode 2-1.
1, a sine wave having the same phase and frequency as the pulse shown in FIG. 9(b)) is applied.

一方、分周回路19の出力はシフトレジスタ20のD入
力端に伝わり、かつ該レジスタ20のシフトクロックと
してはVCO5の出力パルスか印加されているのて、シ
フトレジスタ20のQ、〜Q8出力は第9図(c)〜(
j)の如く分周回路19の出力をそれぞれvCO出力l
パルス分遅らせたパルスとなる。上記の如く分周回路1
9はvCO出力に対して32分周しているので、レジス
タ20の各出力は前段の出力に対して360°/32=
I+、25°どれることとなり、出力Q8からは−1−
配分周回路出力も第9図(b)に対して11.25 x
 8−90’遅れたパルスとなる。
On the other hand, the output of the frequency dividing circuit 19 is transmitted to the D input terminal of the shift register 20, and since the output pulse of the VCO 5 is applied as the shift clock of the register 20, the Q, to Q8 outputs of the shift register 20 are Figure 9(c)-(
j), the outputs of the frequency dividing circuit 19 are respectively vCO output l.
The pulse is delayed by the pulse amount. As mentioned above, frequency divider circuit 1
9 is divided by 32 for the vCO output, so each output of the register 20 is 360°/32=360°/32 for the output of the previous stage.
I+, will move by 25 degrees, and -1- will be output from output Q8.
The distribution circuit output is also 11.25 x for Fig. 9(b).
The pulse is delayed by 8-90'.

今、スイッチ3oを接点3o−8と選択的に接続してい
るとすると、レジスタ20の出力Q Oのパルスかアン
プ8、コイル11を介して′Ju極2−2に正弦波とし
て印加される。よって、この状態ては゛北極2−1と電
極2−2間には90°位相の異なる周波電圧が印加され
ることとなる。
Now, assuming that the switch 3o is selectively connected to the contact 3o-8, the pulse of the output QO of the resistor 20 is applied as a sine wave to the 'Ju pole 2-2 via the amplifier 8 and the coil 11. . Therefore, in this state, frequency voltages having a phase difference of 90° are applied between the north pole 2-1 and the electrode 2-2.

一方振動波モータにおいては、第1群(電極2−1)の
電歪素子への印加電圧と第2群(′准極2−2)の電歪
素子への印加電圧間の位相角か900の詩にその電気一
回転変換効率か最も高く、位相角か狭くなればなるほど
効率が低下し、0°の時には効率か0、即ち振動波モー
タ(以下SSMと称す)は停止する。
On the other hand, in a vibration wave motor, the phase angle between the voltage applied to the electrostrictive elements of the first group (electrode 2-1) and the voltage applied to the electrostrictive elements of the second group (quasi-pole 2-2) is 900°. In other words, the electrical one-rotation conversion efficiency is the highest, and the narrower the phase angle, the lower the efficiency is, and when it is 0°, the efficiency is 0, that is, the vibration wave motor (hereinafter referred to as SSM) stops.

従って、上記の如くスイッチ30を接点30−8と接続
した時には最大効率てSSMは回転し、スイッチ30を
接点30−7.30−6.30−5.30−4.30−
3.30−2.30−1に切換え接続することにより回
転効率か低くなりSSMの回転スピードが低下する。本
発明てはスイッチ30と接点30−1〜30−8の任意
の接点とを接続することにてSSMの回転スピードを可
変している。
Therefore, when the switch 30 is connected to the contact 30-8 as described above, the SSM rotates with maximum efficiency, and the switch 30 is connected to the contact 30-7.30-6.30-5.30-4.30-
By switching connection to 3.30-2.30-1, the rotational efficiency becomes low and the rotational speed of the SSM decreases. In the present invention, the rotation speed of the SSM is varied by connecting the switch 30 to any one of the contacts 30-1 to 30-8.

以上の動作にてSSMの回転スピード調定かなされると
共に本実施例にあっては常にSSMか共振周波数にて駆
動される様周波数制御がなされる。
The rotational speed of the SSM is adjusted through the above operations, and in this embodiment, frequency control is performed so that the SSM is always driven at the resonant frequency.

以下に該周波数制御動作について説明する。The frequency control operation will be explained below.

一般にSSMにおいては、その共振状態ては駆動電極2
−1又は2−2と検出電極2−3の位置関係に応じて電
極2−1又は2−2への駆動信号の位相と検出電極2−
3からの信号の位相か特定の関係、即ち電極間の位置的
位相関係と電極における信号の位相関係か同一位相差関
係を示すものであり、SSMを共振駆動するためには上
記位相関係を保持させれば常に共振駆動することが出来
る。該実施例にあっては電極2−1と電極2−3とは9
0°ずれて配設されているため該実施例にあっては電極
2−1の波形と電極2−3の出力の波形も90’ずれる
様制御すれば共振駆動とすることか出来る。
Generally, in SSM, the resonance state of the drive electrode 2
The phase of the drive signal to electrode 2-1 or 2-2 and the detection electrode 2- according to the positional relationship between -1 or 2-2 and the detection electrode 2-3.
This indicates a specific relationship between the phases of the signals from 3, that is, the positional phase relationship between the electrodes and the phase relationship or the same phase difference relationship between the signals at the electrodes, and in order to drive the SSM resonantly, the above phase relationship must be maintained. If you do this, you can always drive it resonantly. In this embodiment, electrode 2-1 and electrode 2-3 are 9
Since they are arranged with a 0° deviation, in this embodiment, resonance driving can be achieved by controlling the waveform of the electrode 2-1 and the waveform of the output of the electrode 2-3 to be deviated by 90'.

該実施例にあっては、コンパレータ12にて電極2−3
と、電極2−1における波形の位相を検知して常にこの
位相か90°ずれる様制御している。
In this embodiment, in the comparator 12, the electrode 2-3
The phase of the waveform at the electrode 2-1 is detected and controlled so that this phase is always shifted by 90 degrees.

以下、その動作につき詳細に説明する。電極2−3の出
力はコンパレータ2Aにてパルスに変換した上コンパレ
ータI2のR入力に伝えられる。この時、外付けのコン
デンサ32か設けられていないものとすると、電歪素子
2上の電極部分の構成は第11図となり、検出電極2−
3から電圧V、か発生ずる。尚この第11図における検
出電極2−3の等価回路は第12図で示すことかてきる
。ここて2−3Aは振動体lの振動に応じた電流i (
t)を発生する電流源で、cdは制動容量である。そこ
で、核等価回路を用いて出力電圧v1を表わすと、 ■角周波数。
The operation will be explained in detail below. The output of the electrode 2-3 is converted into a pulse by the comparator 2A and is transmitted to the R input of the upper comparator I2. At this time, if the external capacitor 32 is not provided, the configuration of the electrode portion on the electrostrictive element 2 will be as shown in FIG. 11, and the detection electrode 2-
3, a voltage V is generated. Incidentally, the equivalent circuit of the detection electrode 2-3 in FIG. 11 can be shown in FIG. 12. Here, 2-3A is the current i (
t), and cd is the braking capacitance. Therefore, if the output voltage v1 is expressed using a nuclear equivalent circuit, then: ■ Angular frequency.

どなる。bawl.

一方該実施例ては前述の様に検出電極2−3に外付けの
コンデンサ32が並列接続されている。従って該実施例
における検出電極2−3の部分の等価回路は第13図の
ようになる。
On the other hand, in this embodiment, as described above, an external capacitor 32 is connected in parallel to the detection electrode 2-3. Therefore, the equivalent circuit of the detection electrode 2-3 portion in this embodiment is as shown in FIG.

ここでCは外付はコンデンサの容量である。そこで該実
施例における出力電圧、即ち検出回路を形成するコンパ
レータ2Aの入力に印加される電圧V2は、 7・−−j’(cl (Cd −1−0戸”1t)−+
21となる。
Here, C is the capacitance of the external capacitor. Therefore, the output voltage in this embodiment, that is, the voltage V2 applied to the input of the comparator 2A forming the detection circuit, is 7.
It will be 21.

の比て分圧された低出力電圧となる。This results in a low output voltage that is divided compared to .

論理回路の電圧レベル(例えば5V)に検出素子2−3
の出力電圧を見かけ上下げることが出来るものである。
The detection element 2-3 is connected to the voltage level of the logic circuit (for example, 5V).
It is possible to apparently lower the output voltage of the

更に第1図の説明を続ける。Further, the explanation of FIG. 1 will be continued.

一方電極2−1の波形はコンパレータ17にてパルスに
変換し、レジスタ25のD入力に伝えられる。該レジス
タ25のシフトクロックパルスは上記VCO5の出力で
あるため、シフトレジスタ25の出力Q8からは電極2
−1の波形に対して90°位相の遅れたパルスとなる。
On the other hand, the waveform of the electrode 2-1 is converted into a pulse by the comparator 17 and transmitted to the D input of the register 25. Since the shift clock pulse of the register 25 is the output of the VCO 5, the output Q8 of the shift register 25 is connected to the electrode 2.
The pulse is delayed in phase by 90° with respect to the −1 waveform.

該レジスタ25の出力Q8からのパルスはインバータ1
8にて反転されフェーズコンパレータ12のS入力に伝
わる。上記の如くレジスタ25の出力Q8のパルス2は
アンプ7への印加パルスを第1O図(a)とすると第1
O図(b)の如く906遅れたパルスとなり、該パルス
かインバータ18にて反転の上コンパレータ12のS入
力に伝わるので該コンパレータ12のS入力へのパルス
は第1O図(C)の如く第1O図(a)のパルスに対し
て90°進んだパルスとなる。
The pulse from the output Q8 of the register 25 is sent to the inverter 1.
8 and transmitted to the S input of the phase comparator 12. As mentioned above, if the pulse 2 of the output Q8 of the register 25 is the pulse applied to the amplifier 7 as shown in FIG.
As shown in Figure 1 (b), the pulse is delayed by 906 seconds, and the pulse is inverted by the inverter 18 and transmitted to the S input of the comparator 12, so the pulse to the S input of the comparator 12 is delayed by 906 as shown in Figure 1 (C). The pulse is advanced by 90° with respect to the pulse in Figure 1O (a).

よって、該コンパレータ12のS入力へのパルスとコン
パレータ12のR入力へのパルスとの位相が一致すれば
電極2−3と電極2−1間に90°位相差が生じている
こととなり、共振状態であることが検知さ戟ることとな
る。又、コンパレータ12はその入力端RとSへの入力
信号位相か一致していればその出力をオーブン状態に保
持しているのてVCO5はその発振状態を保持し続ける
こととなり、共振周波数で駆動され続ける。
Therefore, if the phase of the pulse to the S input of the comparator 12 and the pulse to the R input of the comparator 12 match, it means that a 90° phase difference has occurred between the electrode 2-3 and the electrode 2-1, and resonance occurs. The condition will be detected and detected. Also, if the input signal phases to the input terminals R and S of the comparator 12 match, the output is held in the open state, so the VCO 5 continues to maintain its oscillation state, and is driven at the resonant frequency. continues to be.

又、SSMか共振状態にない場合には電極2−3からの
信号か電極2−1の信号に対して90°位相づれした状
態から前後にづれることとなる。よって、この場合には
コンパレータ12のR及びS入力端へのパルス位相は一
致しなくなり、例えば第8図に示す如くコンパレータ1
2のR入力端へのパルスの立ち上り信号がS入力端への
パルスの立ち上り信号よりも先に発生している場合は上
記立ち上り信号差分コンパレータ12の出力はHとなり
、又逆にS入力端への立ち上り信号がR入力端への立ち
上り信号よりも先に発生している場合は立ち上り信号差
分コンパレータ12の出力はLどなる。よって、コンパ
レータ2のパルス、即ち電極2−3からの波形の位相が
インバータ18からのパルスの位相に対して進んだ状態
となると、即ち、電極2−1と2−3の波形の位相差が
90°以上となるとその位相差期間分コンパレータ12
の出力はHとなり該Hはローパスフィルタ4を介してv
cosに入力され。
Further, if the SSM is not in a resonant state, the signal from the electrode 2-3 will be shifted back and forth from the state where the signal is out of phase by 90 degrees with respect to the signal from the electrode 2-1. Therefore, in this case, the pulse phases to the R and S input terminals of the comparator 12 do not match, and for example, as shown in FIG.
If the pulse rising signal to the R input terminal of 2 is generated before the pulse rising signal to the S input terminal, the output of the rising signal difference comparator 12 becomes H, and conversely to the S input terminal. If the rising signal is generated before the rising signal to the R input terminal, the output of the rising signal difference comparator 12 becomes L. Therefore, when the pulse of the comparator 2, that is, the phase of the waveform from the electrode 2-3 leads the phase of the pulse from the inverter 18, that is, the phase difference between the waveforms of the electrodes 2-1 and 2-3 becomes When the phase difference is 90° or more, the comparator 12
The output of is H, and this H is passed through the low-pass filter 4 to v
input to cos.

VCO5への入力電圧増加し、その分 vcosの発振周波数か高くなる。vcosの発振周波
数、即ち、電極2−1.2−2への駆動周波数か高くな
る程電極2−1に入力される信号は電極2−3に発生す
る信号よりも位相が進む方向に変化する特性を有してい
るため、上記電極2−1と2−3との位相差か90’方
向へ制御される。
The input voltage to the VCO 5 increases, and the oscillation frequency of vcos increases accordingly. The higher the oscillation frequency of vcos, that is, the drive frequency to electrodes 2-1 and 2-2, the more the signal input to electrode 2-1 changes in phase to advance the signal generated at electrode 2-3. Because of this characteristic, the phase difference between the electrodes 2-1 and 2-3 is controlled in the 90' direction.

又、逆に電極2−1と2−3の位相差か90°以内とな
るとコンパレータ12のS入力端への立ち上り信号の方
がR入力端への立ち上り信号に比して先に発生するため
、その位相差分コンパレータ12の出力はLとなりVC
O5の発振周波数か低下するため電極2−1.2−2へ
の駆動周波数も低くなり、電極2−1と2−3の波形の
位相か増大し電極2−1と2−3との位相差が90”方
向へ移行する。
Conversely, if the phase difference between electrodes 2-1 and 2-3 is within 90 degrees, the rising signal to the S input terminal of the comparator 12 is generated earlier than the rising signal to the R input terminal. , the output of the phase difference comparator 12 becomes L and VC
Since the oscillation frequency of O5 decreases, the driving frequency to electrodes 2-1 and 2-2 also decreases, the phase of the waveforms of electrodes 2-1 and 2-3 increases, and the position of electrodes 2-1 and 2-3 increases. The phase difference shifts toward 90''.

この様に電極2−1と2−3の波形の位相差検知がなさ
れ、この位相差が常に90°となる様SSMの駆動周波
数か制御され、SSMは常に共振状態にて駆動制御され
ることとなる。
In this way, the phase difference between the waveforms of electrodes 2-1 and 2-3 is detected, and the drive frequency of the SSM is controlled so that this phase difference is always 90°, so that the SSM is always driven and controlled in a resonant state. becomes.

第15図乃至第17図は第1図示第1実施例における外
付はコンデンサ32の容量を小さくすることのてきる他
の実施例で第14図は第1図示検出電極2−3、駆動用
電極2−1の部分拡大図である。通常、SSMては振動
波の波長、位相検出感度、信号対雑音比、又他の振動モ
ートに移らない為の条件から周方向長さ文、半径方向長
さωは決定される。この父とωの関係から第14図の様
な検出電極を構成した時には低い出力電圧v2を得よう
とする時に外付はコンデンサ32の容量Cは大きくなる
可能性がある。
15 to 17 are other embodiments in which the capacitance of the external capacitor 32 in the first embodiment shown in the first embodiment can be reduced, and FIG. It is a partially enlarged view of electrode 2-1. Normally, in SSM, the circumferential length and radial length ω are determined from the wavelength of the vibration wave, phase detection sensitivity, signal-to-noise ratio, and conditions to prevent transfer to other vibration modes. When a detection electrode is configured as shown in FIG. 14 based on the relationship between this value and ω, there is a possibility that the capacitance C of the external capacitor 32 becomes large when trying to obtain a low output voltage v2.

第15図乃至第17図はかかる問題を解決し、小容量の
外付はコンデンサ32で尚かつ低出力レベルの検出電圧
か得られる様にした実施例である。
FIGS. 15 to 17 show embodiments in which this problem is solved by using a small external capacitor 32, and a detection voltage of a low output level can be obtained.

第15図、第16図は第1図示駆動例と同等の機能(文
、ωによる)を持ったまま検出電極2−33.2−34
の面積を減らした例であり、第17図は検出電極2−3
5を複数の部分に分けた例である。尚、第15図乃至第
17図における実施例の検出電極以外の部分は第1実施
例と同様であるので、その説明を省略する。
Figures 15 and 16 show the detection electrode 2-33.
Fig. 17 shows an example in which the area of the detection electrode 2-3 is reduced.
5 is divided into multiple parts. Note that the parts other than the detection electrodes in the embodiment shown in FIGS. 15 to 17 are the same as in the first embodiment, so their explanation will be omitted.

[効果] 以上の様に本発明によれば検出素子に並列に容量性素子
を接続したので、出力電圧の位相を変えることなく検出
素子出力電圧を見かけ」二減しることかできるものであ
り、その結果、高耐電圧部品による高入力抵抗の検出回
路か不要となり駆動回路を安価に提供てきると共に、検
出素子出力電圧が低下したので消費電力も小さくなる利
点が生しるものである。
[Effects] As described above, according to the present invention, since the capacitive element is connected in parallel to the detection element, the detection element output voltage can be reduced by 2 (apparently) without changing the phase of the output voltage. As a result, there is no need for a detection circuit with a high input resistance using high withstand voltage components, making it possible to provide a drive circuit at a low cost, and since the output voltage of the detection element is lowered, there are advantages in that power consumption is also reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を適用した振動波モータの駆動回路1凹
、 第2図は第1図示振動波モータの構造の要部の断面図、 第3図は第2図示振動波モータのステータの斜視図、 第4図は第3図示ステータの側面図、 第5図は第2図示モータにおけるスタータ下部に設けら
れた電極のパターンを示す図、第6図は第2図示モータ
の電歪素子の配線を示す平面図、 第7図は第1図示コンパレータ12のフロック図、 第8図は第7図示コンパレータの入出力特性図、 第9図、第10図は第1図示駆動回路の各部の出力波形
図、 第11図は第2図示駆動回路の要部回路図、第12図、
第13図は第11図示回路の等価回路図、 おける電極部分の拡大図である。 図において 2・・・電気機械変換素子としての電歪素子、2−1.
2−2・・・駆動用電極、 2−3・・・検出電極 2A・・・コンパレータ
Fig. 1 shows a drive circuit 1 of a vibration wave motor to which the present invention is applied, Fig. 2 is a sectional view of a main part of the structure of the vibration wave motor shown in the first drawing, and Fig. 3 shows a stator of the vibration wave motor shown in the second drawing. FIG. 4 is a side view of the stator shown in the third drawing; FIG. 5 is a diagram showing the pattern of electrodes provided at the bottom of the starter in the motor shown in the second drawing; FIG. 6 is a diagram showing the electrostrictive element of the motor shown in the second drawing. A plan view showing wiring, FIG. 7 is a block diagram of the first illustrated comparator 12, FIG. 8 is an input/output characteristic diagram of the seventh illustrated comparator, and FIGS. 9 and 10 are outputs of each part of the first illustrated drive circuit. Waveform diagram, Figure 11 is a circuit diagram of the main part of the drive circuit shown in the second diagram, Figure 12,
FIG. 13 is an equivalent circuit diagram of the circuit shown in FIG. 11, and an enlarged view of the electrode portion. In the figure, 2... an electrostrictive element as an electromechanical conversion element, 2-1.
2-2... Drive electrode, 2-3... Detection electrode 2A... Comparator

Claims (1)

【特許請求の範囲】[Claims] (1) 印加される周波電圧に応じて伸縮運動する駆動
用電気機械変換素子と、該素子の伸 縮運動によって振動体に生じる振動波によ り移動される移動体と、前記周波電圧の周 波数を前記振動体の共振周波数に調整すべ く設けられた振動検出素子とを有する振動 波モータの駆動回路において、前記振動検 出素子に並列に容量性素子を接続したこと を特徴とする振動波モータの駆動回路。
(1) A drive electromechanical transducer that expands and contracts in response to an applied frequency voltage; a movable body that is moved by vibration waves generated in a vibrating body by the expansion and contraction of the element; 1. A vibration wave motor drive circuit comprising a vibration detection element provided to adjust to the resonant frequency of a body, characterized in that a capacitive element is connected in parallel to the vibration detection element.
JP61309444A 1986-12-24 1986-12-24 Vibration type actuator device Expired - Fee Related JP2692801B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61309444A JP2692801B2 (en) 1986-12-24 1986-12-24 Vibration type actuator device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61309444A JP2692801B2 (en) 1986-12-24 1986-12-24 Vibration type actuator device

Publications (2)

Publication Number Publication Date
JPS63161882A true JPS63161882A (en) 1988-07-05
JP2692801B2 JP2692801B2 (en) 1997-12-17

Family

ID=17993071

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61309444A Expired - Fee Related JP2692801B2 (en) 1986-12-24 1986-12-24 Vibration type actuator device

Country Status (1)

Country Link
JP (1) JP2692801B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104885244A (en) * 2012-12-26 2015-09-02 佳能株式会社 Piezoelectric element, stator for oscillatory wave motor, oscillatory wave motor, driving control system, optical apparatus, and method for making stator for oscillatory wave motor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61203873A (en) * 1985-03-01 1986-09-09 Canon Inc Drive circuit of vibration wave motor
JPS61244281A (en) * 1985-04-19 1986-10-30 Toyota Motor Corp Drive device for motor utilizing supersonic vibration
JPS61289682A (en) * 1985-06-18 1986-12-19 Nippon Denso Co Ltd Piezoelectric element driving apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61203873A (en) * 1985-03-01 1986-09-09 Canon Inc Drive circuit of vibration wave motor
JPS61244281A (en) * 1985-04-19 1986-10-30 Toyota Motor Corp Drive device for motor utilizing supersonic vibration
JPS61289682A (en) * 1985-06-18 1986-12-19 Nippon Denso Co Ltd Piezoelectric element driving apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104885244A (en) * 2012-12-26 2015-09-02 佳能株式会社 Piezoelectric element, stator for oscillatory wave motor, oscillatory wave motor, driving control system, optical apparatus, and method for making stator for oscillatory wave motor
US9893269B2 (en) 2012-12-26 2018-02-13 Canon Kabushiki Kaisha Piezoelectric element, stator for oscillatory wave motor, oscillatory wave motor, driving control system, optical apparatus, and method for making stator for oscillatory wave motor

Also Published As

Publication number Publication date
JP2692801B2 (en) 1997-12-17

Similar Documents

Publication Publication Date Title
US4794294A (en) Vibration wave motor
JP2637467B2 (en) Vibration type actuator device
WO2001069266A1 (en) Method of driving mems sensor with balanced four-phase comb drive
EP0395298A2 (en) Standing-wave type ultrasonic motor
KR20170058978A (en) Compound spring mems resonators for frequency and timing generation
JPS63178774A (en) Driving circuit for oscillatory wave motor
JPH09140168A (en) Driver for oscillation motor
US5136215A (en) Driving circuit for vibration wave motor
US6058027A (en) Micromachined circuit elements driven by micromachined DC-to-DC converter on a common substrate
KR20170056008A (en) Multiple coil spring mems resonator for oscillators and real-time clock applications
US5780955A (en) Ultrasonic motor device
US5159223A (en) Driving apparatus for ultrasonic motor
US7298066B2 (en) Drive apparatus for piezoelectric actuator, drive method for piezoelectric actuator, electronic device, control program for drive apparatus for piezoelectric actuator, and recording medium
JPS63161882A (en) Drive circuit for oscillatory wave motor
US5093606A (en) Ultrasonic motor driving circuit
JP2879220B2 (en) Ultrasonic motor drive circuit
JPH03112378A (en) Drive circuit for ultrasonic motor
JP2509310B2 (en) Control method of ultrasonic motor
JPS62166787A (en) Driving circuit for ultrasonic motor
CN220670552U (en) MEMS sensor
JPH078154B2 (en) Vibration wave motor device
JPH03112379A (en) Drive circuit for ultrasonic motor
JP3006042B2 (en) Ultrasonic motor and its driving method
JPS62247771A (en) Oscillatory-wave motor
JPS633663A (en) Drive circuit of oscillation wave motor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees