JPS63161672A - Organic thin film element - Google Patents

Organic thin film element

Info

Publication number
JPS63161672A
JPS63161672A JP61307662A JP30766286A JPS63161672A JP S63161672 A JPS63161672 A JP S63161672A JP 61307662 A JP61307662 A JP 61307662A JP 30766286 A JP30766286 A JP 30766286A JP S63161672 A JPS63161672 A JP S63161672A
Authority
JP
Japan
Prior art keywords
thin film
gate insulating
insulating film
film
approximately
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61307662A
Other languages
Japanese (ja)
Inventor
Koichi Mizushima
公一 水島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP61307662A priority Critical patent/JPS63161672A/en
Publication of JPS63161672A publication Critical patent/JPS63161672A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/511Insulating materials associated therewith with a compositional variation, e.g. multilayer structures
    • H01L29/513Insulating materials associated therewith with a compositional variation, e.g. multilayer structures the variation being perpendicular to the channel plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4966Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a composite material, e.g. organic material, TiN, MoSi2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PURPOSE:To improve the dielectric strength of a gate insulating film composed of extra-thin films by inserting a semiconductor thin film between the gate insulating film and a gate electrode. CONSTITUTION:Five layers of PMMA polymer films are built up on a substrate between N-type layers 2 and 3 by an LB method to form a gate insulating film 4 of an approximately 10 Angstrom thickness. Five layers of phthalocyanine dielectric films are built up on the gate insulating film 4 by the LB method so as to have an approximately 30 Angstrom thickness as an organic semiconductor thin film 5. A gate electrode 6 is composed of an evaporated Au film of an approximately 1,000 Angstrom thickness. With this constitution, the pinning of a Fermi-level is eliminated and the normal operation of a MOS transistor can be provided. With the embodiment employing an SiO2 film of an approximately 20 Angstrom thickness as the gate insulating film 4 and polydiacetylene dielectric thin films are built up by the LB method so as to have an approximately 100 Angstrom thickness, the inversion in the surface of the GaAs substrate 1 can be realized and the normal operation of the MOS transistor can be provided.

Description

【発明の詳細な説明】 [発明の目的] (産業1′、の利用分野) 本発明は、超薄膜をゲート絶縁膜として用いた角°機薄
膜素子である絶縁ゲート型電界効果トランジスタ(MI
Sトランジスタ)に関する。
Detailed Description of the Invention [Objective of the Invention] (Field of Application in Industry 1') The present invention relates to an insulated gate field effect transistor (MI
(S transistor).

(従来の技術) MISトランジスタのうち、特に化合物半導体を用いた
ものには、siのMOS)ランジスタにない種々の問題
がある。例えば、界面準位が高密度に荏在するため、半
導体の表面電位がゲート電圧を印加しても殆ど変化しな
いことが起こる。
(Prior Art) Among MIS transistors, those using compound semiconductors in particular have various problems that Si MOS transistors do not have. For example, because interface states are densely distributed, the surface potential of a semiconductor hardly changes even when a gate voltage is applied.

所謂フェルミ・レベルのピン止めと呼ばれる現象である
。またGaAsや1nPでは、siに比べてキャリア移
動度が高いため高速動作が期待されているが、Siに対
する5i02111のような欠陥の少ない酸化膜が得φ
れない。これらの化合物半導体に熱酸化や陽極酸化によ
り形成した酸化膜は界面準位密度が極めて高い。このた
め、これらの化合物半導体を用い、その酸化膜或いは5
i02やAl1 o3などの無機酸化物をゲート絶縁膜
としてLl I S )ランジスタを形成しても、半導
体表面は反転せず、トランジスタ動作しない。
This is a phenomenon called Fermi level pinning. In addition, GaAs and 1nP have higher carrier mobility than Si, so high-speed operation is expected, but oxide films with fewer defects such as 5i02111 for Si can be
Not possible. Oxide films formed on these compound semiconductors by thermal oxidation or anodic oxidation have extremely high interface state density. For this reason, these compound semiconductors are used, and their oxide films or
Even if a Ll I S ) transistor is formed using an inorganic oxide such as i02 or Al1 o3 as a gate insulating film, the semiconductor surface will not be inverted and the transistor will not operate.

界面状態密度の高い化合物半導体を用いてMIS)ラン
ジスタを実現するためには、数人〜数10人という極め
て薄い薄膜、いわゆる超薄膜であってしかも欠陥の少な
いものが必要である。
In order to realize an MIS (MIS) transistor using a compound semiconductor with a high density of interfacial states, an extremely thin film of several to several dozen members, a so-called ultra-thin film, with few defects is required.

この様な超薄膜の形成技術として近年、ラングミュア・
ブロジェット(L B)法に代表される有機分子の薄膜
形成技術が注口され、その各種素子への応用技術開発が
活発化している。実際、ダーラム(D urhai)大
学のロバーツ(G 、  G 、  Robcrts)
はLB法による有機薄膜(LB膜)をゲート絶縁膜とし
て用いたMISトランジスタの研究を発表している。し
かし化合物半導体では、界面準位の比較的少ないInP
を除いて半導体表面の反転現象は観測されていない。ま
たLB膜では数10人程度或いはそれ以下の超薄膜が得
られるか、この様な超薄膜では欠陥が多く、これをゲー
ト絶縁膜としてこのLに金属電極を形成した場合、電極
金属が超薄膜内の欠陥に入り込むため、電極と半導体が
簡単に短絡してしまう、という問題があった。
In recent years, as a technology for forming such ultra-thin films, Langmuir
Techniques for forming thin films of organic molecules, typified by the Blodgett (LB) method, have been widely used, and the development of technology for its application to various devices is becoming more active. In fact, Roberts (G, G, Robcrts) of Durham University
have published research on MIS transistors using an organic thin film (LB film) produced by the LB method as a gate insulating film. However, in compound semiconductors, InP has relatively few interface states.
No inversion phenomenon on the semiconductor surface has been observed except for. In addition, with the LB film, it is possible to obtain an ultra-thin film of several tens of layers or less, but such an ultra-thin film has many defects, and when a metal electrode is formed on this L using this as a gate insulating film, the electrode metal is There was a problem in that the electrode and the semiconductor could easily short-circuit because the electrode penetrated into defects within the semiconductor.

(発明が解決しようとする問題点) 以上のように化合物半導体を用いたMISトランジスタ
は、高性能が期待されながら、ゲート絶縁膜として欠陥
のない超薄膜が得られないこと、界面準位密度が高いこ
と、等の理由で実現されていない。
(Problems to be Solved by the Invention) As described above, MIS transistors using compound semiconductors are expected to have high performance, but there are problems such as the inability to obtain defect-free ultra-thin films as gate insulating films and the problem of interface state density. This has not been realized due to high cost and other reasons.

本発明はこの様な問題を解決した、超薄膜からなるゲー
ト絶縁膜を用いたM I S )ランジスタを提供する
ことを目的とする。
An object of the present invention is to provide an M I S transistor using an ultra-thin gate insulating film that solves these problems.

[発明の構成] (問題点を解決するための手段) 本発明は、超薄膜をゲート絶縁膜として用いるMISト
ランジスタにおいて、ゲート絶縁膜とゲート電極の間に
半導体薄膜を介在させたことを特徴とする。
[Structure of the Invention] (Means for Solving the Problems) The present invention is characterized in that, in a MIS transistor using an ultra-thin film as a gate insulating film, a semiconductor thin film is interposed between the gate insulating film and the gate electrode. do.

(作用) ゲート絶縁膜とゲート電極の間に半導体薄膜を挿入する
と、欠陥が多い超薄膜からなるゲート絶縁膜に電極金属
が入り込んでゲート電極と半導体が短絡する事態が防雨
される。しかもゲート電極に電圧を印加した時、ゲート
電極から半導体薄膜に注入された電子または正孔等のキ
ャリアは半導体薄膜とゲート絶縁膜の界面に輸送される
から、実効的にゲート絶縁膜に直接電圧を印加したのと
等価になる。つまり半導体薄膜は超薄膜からなるゲート
絶縁膜の耐圧を実効的に向」ニさせる働きをするが、ゲ
ート電極から半導体表面に所定の電位を与える妨げには
ならない。従って界面準位密度の高い化合物半導体を用
いたMISトランジスタが実現できる。
(Function) Inserting a semiconductor thin film between the gate insulating film and the gate electrode prevents the electrode metal from entering the gate insulating film, which is an ultra-thin film with many defects, and causing a short circuit between the gate electrode and the semiconductor. Moreover, when a voltage is applied to the gate electrode, carriers such as electrons or holes injected from the gate electrode into the semiconductor thin film are transported to the interface between the semiconductor thin film and the gate insulating film, so the voltage is effectively applied directly to the gate insulating film. This is equivalent to applying . In other words, the semiconductor thin film functions to effectively improve the withstand voltage of the ultra-thin gate insulating film, but does not prevent a predetermined potential from being applied from the gate electrode to the semiconductor surface. Therefore, a MIS transistor using a compound semiconductor with high interface state density can be realized.

本発明において用いる半導体薄膜は、キャリア走行時間
を十分短いものとするため、短絡防上に必要な最小限の
厚さ、好ましくは数100人程度量下にする。またこの
半導体薄膜は、ゲート電極金属からのキャリア注入効率
を上げるために、そ7、のイオン化エネルギーまたは電
子親和力がゲート電極金属の仕事関数に近いもの、即ち
オーミックコンタクト或いはそれに近い条件を満たすこ
と、更にもれ電流を少なくするためにゲート電極から注
入されるキャリア以外のキャリアはできるだけ少ないこ
と、が望ましい。
In order to make the carrier traveling time sufficiently short, the semiconductor thin film used in the present invention has a minimum thickness necessary for preventing short circuits, preferably several hundred thicknesses. In addition, in order to increase the efficiency of carrier injection from the gate electrode metal, this semiconductor thin film must satisfy the following conditions: (7) the ionization energy or electron affinity is close to the work function of the gate electrode metal, that is, ohmic contact or a condition close to it; Furthermore, in order to reduce leakage current, it is desirable that carriers other than carriers injected from the gate electrode be as small as possible.

(実施例) 以下、本発明の実施例を図面を参照して説明する。(Example) Embodiments of the present invention will be described below with reference to the drawings.

図は一実施例のnチャネルM I S トランジスタで
ある・。1はp型GaAS基板てあり、2,3はソース
、ドレインとなるn型層である。これらn型層2.3間
の基板1.にPMMA高分子膜をLB法により5層累積
して約10人のゲート絶縁膜4を形成し、この」二に有
機半導体薄膜5として、フタロシアニン誘導体膜をLB
法により5層累積して約30人の厚みに形成している。
The figure shows an example of an n-channel M I S transistor. 1 is a p-type GaAS substrate, and 2 and 3 are n-type layers that become a source and a drain. The substrate 1. between these n-type layers 2.3. 5 layers of PMMA polymer film are accumulated using the LB method to form a gate insulating film 4 of approximately 10 layers, and then a phthalocyanine derivative film is deposited as an organic semiconductor thin film 5 using the LB method.
Using the method, five layers are accumulated to a thickness of about 30 people.

ゲート電極6は約1000人のAu蒸着膜である。The gate electrode 6 is made of approximately 1000 Au evaporated films.

このような構成により、フェルミ・レベルのピン止めが
なく、正常なMOSトランジスタ動作を示した。
With this configuration, there was no pinning at the Fermi level, and normal MOS transistor operation was exhibited.

図の構成において、ゲート絶縁膜4として厚さ約20人
の5i02膜を用い、有機半導体薄膜5としてポリジア
セチレン誘導体薄膜をLB法により約100人累積形成
した。この実施例においてもGaAs基板1の表面の反
転が実現し、正常なMOS)ランジスタ動作が観測され
た。
In the configuration shown in the figure, a 5i02 film with a thickness of about 20 layers was used as the gate insulating film 4, and a polydiacetylene derivative thin film was deposited by about 100 layers as the organic semiconductor thin film 5 by the LB method. In this example as well, the surface of the GaAs substrate 1 was inverted, and normal MOS transistor operation was observed.

本発明におけるゲート絶縁膜としては、無機絶縁膜では
5i02膜の他例えばAl103等が用いられる。9機
絶縁膜では以下に示すような種々の化合物か用いられる
As the gate insulating film in the present invention, inorganic insulating films such as Al103 or the like are used in addition to 5i02 film. Various compounds as shown below are used in the 9-layer insulating film.

(1) 下記一般式で表わされる置換可能な飽和および
不飽和炭化水素誘導体 −X ここで、Rは置換+1J能なCH3(CH2→−或いは
、 CH3−(−CH2→f CH2−CH2→杜CH2−
’9璽(但し、nおよびp+q+]は8以上)からなる
疎水基である。また、Xは親水基を表わし、−COOH
,−OH,−8031(、−COOR’ 。
(1) Substitutable saturated and unsaturated hydrocarbon derivatives -X represented by the following general formula, where R is CH3(CH2→-) or CH3-(-CH2→f CH2-CH2→Du CH2 −
It is a hydrophobic group consisting of '9 (where n and p+q+] are 8 or more). Moreover, X represents a hydrophilic group, -COOH
, -OH, -8031(, -COOR'.

N H2、N ” (R’ ) 3Y −(Y ハ” 
口’f ン)などが挙げられる。
N H2, N"(R') 3Y - (Y H"
Examples include 口'f ん).

(2)種々の重合性分子 例えば、置換可能なアクリレート、メタクリレート、ビ
ニルエーテル、スチレン、ビニルアルコール、アクリル
アミド、アクリル等のビニル重合体。アラニン、グルタ
メート、アスパルテートなどのα−アミノ酸。ε−アミ
ノカプロン酸等のα−アミノ酸以外のアミノ酸。ヘキサ
メチレンジアミンなどのジアミンとへキサメチレンジカ
ルボン酸等のジカルボン酸1:1混合物よりなるポリイ
ミド重合体。
(2) Various polymerizable molecules, such as vinyl polymers such as substitutable acrylates, methacrylates, vinyl ethers, styrene, vinyl alcohols, acrylamides, and acrylics. Alpha-amino acids such as alanine, glutamate, and aspartate. Amino acids other than α-amino acids such as ε-aminocaproic acid. A polyimide polymer consisting of a 1:1 mixture of a diamine such as hexamethylene diamine and a dicarboxylic acid such as hexamethylene dicarboxylic acid.

これらの分子はそれ自身LB法による累積が可能な場合
は単独で用いることができる。単独で製膜できない場合
は(1)で示したような単独で製膜できる絶縁性分子と
混合して用いる。
These molecules can be used alone if they can be accumulated by the LB method. If it cannot be used alone to form a film, it is used in combination with an insulating molecule that can be used alone to form a film, such as shown in (1).

本発明で用いる甲導体薄膜としては、実施例で示したも
のの他、アルバレン化合物、含S ?jL索環型化合物
、アミン型化合物、金属錯体化合物、含N複索環型化合
物、共役系を多く含むポリマーなどが利用できる。また
有機半導体薄膜の他、St。
In addition to those shown in the examples, examples of the thin conductor film used in the present invention include albarene compounds, S-containing compounds, etc. jL-ring type compounds, amine-type compounds, metal complex compounds, N-containing polycyclic compounds, polymers containing many conjugated systems, etc. can be used. In addition to organic semiconductor thin films, St.

GaAs、InPなどの無機半導体薄膜を用いることも
できる。
Inorganic semiconductor thin films such as GaAs and InP can also be used.

[発明の効果] 以り述べたように本発明によれば、ゲート絶縁膜とゲー
ト電極の間に半導体薄膜を挿入することにより、超薄膜
からなるゲート絶縁膜の耐圧を実質的に向上し、従来困
難であった化合物′P−導体を用いたMISトランジス
タが実現できる。
[Effects of the Invention] As described above, according to the present invention, by inserting a semiconductor thin film between the gate insulating film and the gate electrode, the breakdown voltage of the gate insulating film made of an ultra-thin film can be substantially improved; A MIS transistor using a compound 'P-conductor, which has been difficult in the past, can be realized.

【図面の簡単な説明】 図は本発明の一実施例によるMOSトランジスタを示す
図である。 1・・・p型GaAs基板、2,3・・・n型層、4・
・・ゲート絶縁膜(P FvI M A高分子膜)、5
・・・半導体薄膜(フタロシアニンLB膜)、6・・・
ゲート電極(Au膜)。
BRIEF DESCRIPTION OF THE DRAWINGS The figure is a diagram showing a MOS transistor according to an embodiment of the present invention. 1... p-type GaAs substrate, 2, 3... n-type layer, 4...
・・Gate insulating film (PFvI MA polymer film), 5
...Semiconductor thin film (phthalocyanine LB film), 6...
Gate electrode (Au film).

Claims (5)

【特許請求の範囲】[Claims] (1)超薄膜からなるゲート絶縁膜を有する有機薄膜素
子において、ゲート電極とゲート絶縁膜の間に半導体薄
膜を介在させたことを特徴とする有機薄膜素子。
(1) An organic thin film element having an ultra-thin gate insulating film, characterized in that a semiconductor thin film is interposed between the gate electrode and the gate insulating film.
(2)前記ゲート絶縁膜は、ラングミュア・ブロジェッ
ト法により形成された有機薄膜である特許請求の範囲第
1項記載の有機薄膜素子。
(2) The organic thin film device according to claim 1, wherein the gate insulating film is an organic thin film formed by the Langmuir-Blodgett method.
(3)前記半導体薄膜は、ラングミュア・ブロジェット
法により形成された有機薄膜である特許請求の範囲第1
項記載の有機薄膜素子。
(3) The semiconductor thin film is an organic thin film formed by the Langmuir-Blodgett method.
The organic thin film device described in .
(4)前記ゲート絶縁膜は、無機絶縁膜である特許請求
の範囲第1項記載の有機薄膜素子。
(4) The organic thin film device according to claim 1, wherein the gate insulating film is an inorganic insulating film.
(5)前記半導体薄膜は、無機半導体薄膜である特許請
求の範囲第1項記載の有機薄膜素子。
(5) The organic thin film element according to claim 1, wherein the semiconductor thin film is an inorganic semiconductor thin film.
JP61307662A 1986-12-25 1986-12-25 Organic thin film element Pending JPS63161672A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61307662A JPS63161672A (en) 1986-12-25 1986-12-25 Organic thin film element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61307662A JPS63161672A (en) 1986-12-25 1986-12-25 Organic thin film element

Publications (1)

Publication Number Publication Date
JPS63161672A true JPS63161672A (en) 1988-07-05

Family

ID=17971737

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61307662A Pending JPS63161672A (en) 1986-12-25 1986-12-25 Organic thin film element

Country Status (1)

Country Link
JP (1) JPS63161672A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002005349A1 (en) * 2000-07-12 2002-01-17 California Institute Of Technology Electrical passivation of silicon-containing surfaces using organic layers
EP2068368A2 (en) * 2007-12-06 2009-06-10 Electronics and Telecommunications Research Institute Method for manufacturing n-type and p-type chalcogenide material, doped homojunction chalcogenide thin film transistor and method of fabricating the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002005349A1 (en) * 2000-07-12 2002-01-17 California Institute Of Technology Electrical passivation of silicon-containing surfaces using organic layers
US7491642B2 (en) 2000-07-12 2009-02-17 The California Institute Of Technology Electrical passivation of silicon-containing surfaces using organic layers
US7564120B2 (en) 2000-07-12 2009-07-21 California Institute Of Technology Electrical passivation of silicon-containing surfaces using organic layers
US8114785B2 (en) 2000-07-12 2012-02-14 California Institute Of Technology Electrical passivation of silicon-containing surfaces using organic layers
EP2068368A2 (en) * 2007-12-06 2009-06-10 Electronics and Telecommunications Research Institute Method for manufacturing n-type and p-type chalcogenide material, doped homojunction chalcogenide thin film transistor and method of fabricating the same
US8039926B2 (en) 2007-12-06 2011-10-18 Electronics And Telecommunications Research Institute Method for manufacturing N-type and P-type chalcogenide material, doped homojunction chalcogenide thin film transistor and method of fabricating the same
EP2068368B1 (en) * 2007-12-06 2012-10-10 Electronics and Telecommunications Research Institute Method for manufacturing n-type and p-type chalcogenide thin film transistor

Similar Documents

Publication Publication Date Title
Kymissis et al. High-performance bottom electrode organic thin-film transistors
US8895417B2 (en) Reducing contact resistance for field-effect transistor devices
Ernst et al. Ultimately thin double-gate SOI MOSFETs
JP5455518B2 (en) Method for reducing Fermi level pinning in non-silicon channel MOS devices
Moselund et al. Silicon nanowire tunnel FETs: Low-temperature operation and influence of high-$ k $ gate dielectric
US20060088875A1 (en) Means for electrical contacting or isolation of organic or inorganic semiconductors and a method for its fabrication
KR900008663A (en) Semiconductor device and manufacturing method thereof
CA1242287A (en) Semiconductor device exhibiting negative transconductance
EP0239368A2 (en) Field-effect transistor
Ghosh et al. Investigation of electrical characteristics in a ferroelectric L-patterned gate dual tunnel diode TFET
Saeidi et al. Near Hysteresis-Free Negative Capacitance InGaAs Tunnel FETs with Enhanced Digital and Analog Figures of Merit below $\mathrm {V} _ {\text {DD}}= 400\text {mV} $
Yum et al. Epitaxial ALD BeO: efficient oxygen diffusion barrier for EOT scaling and reliability improvement
JPH10135481A (en) Device consisting of thin film transistor
JPS6265472A (en) Mis type semiconductor element
JPS63161672A (en) Organic thin film element
Sekiguchi et al. Subthreshold swing in silicon gate-all-around nanowire MOSFET at cryogenic temperature
Cai et al. Understanding HZO Thickness Scaling in Si FeFETs: Low Operating Voltage, Fast Wake-Up, and Suppressed Charge Trapping
Kato et al. The characteristic improvement of Si (111) metal–oxide–semiconductor field-effect transistor by long-time hydrogen annealing
Al-Shadeedi Lateral and vertical organic transistors
Kawanago et al. Adhesion lithography to fabricate MoS 2 FETs with self-assembled monolayer-based gate dielectrics
Kamaei et al. Fully integrated Si: HfO2 Negative Capacitance 2D-2D WSe2/SnSe2 Subthermionic Tunnel FETs
JPS63140576A (en) Field-effect transistor
Zan et al. Vertical-channel organic thin-film transistors with meshed electrode and low leakage current
Sasa et al. A single-electron transistor produced by nanoscale oxidation of InAs
Perera Optimization of transition-metal dichalcogenides based field-effecttransistors via contact engineering