JPS63161030A - Heat-shrinkable polyester film - Google Patents

Heat-shrinkable polyester film

Info

Publication number
JPS63161030A
JPS63161030A JP30997286A JP30997286A JPS63161030A JP S63161030 A JPS63161030 A JP S63161030A JP 30997286 A JP30997286 A JP 30997286A JP 30997286 A JP30997286 A JP 30997286A JP S63161030 A JPS63161030 A JP S63161030A
Authority
JP
Japan
Prior art keywords
heat
film
shrinkage
dicarboxylic acid
stretching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30997286A
Other languages
Japanese (ja)
Other versions
JPH0618903B2 (en
Inventor
Yasuo Yoshinaka
吉中 安生
Katsuro Kuze
勝朗 久世
Yujiro Matsuyama
松山 雄二郎
Koichiro Nakamura
中村 鋼一郎
Osamu Makimura
牧村 修
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP61309972A priority Critical patent/JPH0618903B2/en
Publication of JPS63161030A publication Critical patent/JPS63161030A/en
Publication of JPH0618903B2 publication Critical patent/JPH0618903B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Wrappers (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

PURPOSE:To provide the titled film composed of a copolymerized polyester produced by the copolymerization of terephthalic acid, ethylene glycol and a naphthalenedicarboxylic acid derivative, and having a specific heat-shrinkage and excellent impact resistance, durability, heat-resistance and printability. CONSTITUTION:A polymerized polyester produced by using terephthalic acid and ethylene glycol as main components and copolymerizing a naphthalenedicarboxylic acid derivative (preferably 1,5-naphthalenedicarboxylic acid) (preferably at a ratio of 5-40mol%) is drawn preferably 3.0-6.0 times along a direction and 1.1-1.8 times perpendicular to the first direction to obtain the objective film having longitudinal and/or transversal heat-shrinkages of >=30% in hot air of 100 deg.C, suitable as a packaging material and giving a beautiful and durable package.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は被覆用或は結束用等の包装材料分野において特
に好適な特性を発揮する熱収縮性ポリエステル系フィル
ム(シートを含む。以下同じ)に関するものである。
Detailed Description of the Invention (Field of Industrial Application) The present invention provides a heat-shrinkable polyester film (including sheets; the same applies hereinafter) that exhibits particularly suitable properties in the field of packaging materials such as covering and bundling. It is related to.

(従来の技術) 熱収縮性プラスチックフィルムを素材トして形成される
チューブ状体は1例えば容器、瓶(プラスチックポ)/
&を含む)1缶棒状物(パイプ、棒。
(Prior art) A tube-shaped body made of heat-shrinkable plastic film is 1, for example, a container, a bottle (plastic pot)/
&) 1 can rod-shaped objects (pipes, rods.

木材、各種棒状体)等(以下容器類と略す)の被覆用或
は結束用として、特に、これ等のキャップ、肩部、胴部
等の一部又は全面を被覆し、標示、保護、結束、商品価
値向上等を目的として用いられる他1箱、瓶、板、棒、
ノート等のような集積包装或はスキンバックのように被
包装物にW着させて包装する分野等において広く使用さ
れており。
For covering or bundling wood, various rod-shaped bodies), etc. (hereinafter referred to as containers), especially for covering part or all of their caps, shoulders, bodies, etc., for marking, protecting, and bundling. , boxes, bottles, boards, rods, etc. used for the purpose of improving product value, etc.
It is widely used in the fields of integrated packaging such as notebooks and wrapping of items such as skin bags.

収縮性及び収酪応力を利用した用途展開が期待される。It is expected that it will be used in applications that take advantage of its shrinkage and retention stress.

従来上記用途にはポリ塩化ビニ/L/、ポリスチレン、
ポリエチレン、塩酸ゴム等の熱収備性フイpムを用い、
これをチューブ状体にしてから前記容器類にかぶせたり
、集積包装して熱収縮させていた。
Traditionally, polyvinyl chloride/L/, polystyrene,
Using heat absorbing film such as polyethylene or hydrochloric acid rubber,
This was made into a tube-shaped body, which was then placed over the containers or packaged and heat-shrinked.

しかしこれらのフィルムは耐熱性が乏しく、ボイル処理
やレトルト処理をすると溶融又は破裂してフィルム状体
を維持することができないという欠点があった。
However, these films have poor heat resistance and have the disadvantage that they melt or burst when subjected to boiling or retort processing, making it impossible to maintain the film-like structure.

更に印刷の必要な用途ではインクの転移不良による印刷
ピンホー〃(フィルム内の添加剤やポリマーのゲル状物
によるフィッシュアイに基ツく微小凹凸)の発生が見ら
れたり、仮にうまく印刷できたとしてもその後にフィル
ムが収i(常温状H)を起こして印刷ピッチに寸法変化
をきたすという問題もあった。これに対しポリエステル
系熱収稲フィルムを用いるチューブは、これまでKも試
行的には作られたことはあるが、希望方向への熱収縮率
を十分に高くすることができなかったり、又上記方向と
直交する方向への熱収縮を小さくすることができないと
いう問題があり、前記用途への展開は困離であった。
Furthermore, in applications that require printing, printing pinholes (fine irregularities based on fish eyes caused by additives and polymer gels in the film) may occur due to poor ink transfer, and even if printing is successful, However, there was also a problem in that the film subsequently suffered from condensation (at room temperature H), resulting in a dimensional change in the printing pitch. On the other hand, tubes using polyester heat harvesting films have been made on a trial basis, but they have not been able to achieve a sufficiently high heat shrinkage rate in the desired direction, or There is a problem in that it is not possible to reduce the thermal contraction in the direction orthogonal to the direction, and it has been difficult to develop the above-mentioned applications.

(発明が解決しようとする問題点) ポリ塩化ビニル、ポリスチレン、ポリエチレン等の汎用
熱収a性フィルムを使う上記従来技術には、以下述べる
様な問題点がある。
(Problems to be Solved by the Invention) The above-mentioned conventional technology using a general-purpose heat-absorbing film made of polyvinyl chloride, polystyrene, polyethylene, etc. has the following problems.

(a)完全に近い一軸収縮陣の欠除 一方向に大きい収N性を有する一方、これと直角方向に
は全く収縮しないことが理想とされる様な用途において
は上記従来フィルムは全く不向きである。例えば横方向
に収縮させてボトル表面に収縮ラペ/I/をっける場合
を考えると。
(a) Absence of near-perfect uniaxial shrinkage band The conventional film described above is completely unsuitable for applications where it is ideal to have large N-accommodating properties in one direction, but no shrinkage at all in the direction perpendicular to this. be. For example, let's consider a case where the bottle is shrunk in the horizontal direction and a shrink lape/I/ is placed on the surface of the bottle.

ラペyの縦方向即ちボ)/l/の上下方向に収縮するこ
とは、所定の位置にフベルが来ずにラベ〃が稲み上がる
ことを意味し外観不良を招く。これを防止するKは縦方
向の収縮を小さくしなけれはならないが、この目的の為
に単純にフィルムを横方向にのみ配向させたとすると、
高分子化学物質の性質上の常識から直ちに理解される様
に引裂は易く、またフィグvyv化しやすくなる為強度
も弱くなる。特にボ)/l/が落下する場合は縦方向の
強度が破瓶防止上重要であることを考え合わせると単純
な一方向延伸は良い方法とは言えない。又その他の用途
でもr#衝撃性がないと使用できない場合が多く存在す
る。
Shrinking in the vertical direction of the lapay, ie, in the vertical direction of /l/, means that the flap does not come to a predetermined position and the label rises up, resulting in poor appearance. To prevent this, K must reduce shrinkage in the vertical direction, but if the film is simply oriented only in the horizontal direction for this purpose, then
As can be easily understood from the common knowledge of the properties of polymeric chemical substances, it is easy to tear, and the strength is also weakened because it is easy to become figgy. Considering that strength in the longitudinal direction is important for preventing bottle breakage, particularly when B)/l/ falls, simple unidirectional stretching cannot be said to be a good method. Furthermore, there are many cases in which the material cannot be used in other applications unless it has r# impact resistance.

この様なところから、ある特定の温度領域で極めて小さ
い収縮性を有する反面、その直角方向には充分大きい収
縮性を有する様なフィルムの開発が望まれるのである。
From this point of view, it is desired to develop a film that has an extremely small shrinkage in a certain temperature range, but a sufficiently large shrinkage in the direction perpendicular to the temperature range.

(b)耐熱性の不足 前記従来フィルムはいずれも高温のボイル処理やレトル
ト処理に耐えることができず、殺菌処理には不適当なフ
ィルムである。例えばレトルト処理を行なうと、前記従
来フィルムは処理中に破壊、破裂し、全ての機能が失な
われる。
(b) Insufficient heat resistance None of the conventional films described above can withstand high-temperature boiling or retort processing, making them unsuitable for sterilization. For example, when retort processing is performed, the conventional film breaks or ruptures during processing and loses all functionality.

従ってボイル処理やし)/7)処理に耐え得る熱収縮性
フィルムの提供が望まれている。
Therefore, it is desired to provide a heat-shrinkable film that can withstand boiling treatment.

(C)印刷性の不良 ハーフトーン印刷によるピンホー〃の発生、広範囲な各
種インクとの′!&着性等に関し、上記従来フィルムは
それぞれ固有の欠点を有する。
(C) Poor printability, occurrence of pinholes due to halftone printing, and compatibility with a wide variety of inks! & Regarding adhesion, each of the above conventional films has its own drawbacks.

例えばポリ塩化ビニルではゲル状物によるインクピンホ
ーμが発生し易く、連続的なチューブ加工では、長尺フ
ィルムの途中にピンホールが存在することKなる。これ
を自動ヲペリングマシンに供給した場合ピンホー/I/
を残したまま製品化されてしまうので、最終的に全品検
査を行なわなければならず、その労力と抜取りによる再
加工等により、実稼動率が著しく低下する。
For example, in polyvinyl chloride, ink pinholes are likely to occur due to gel-like substances, and in continuous tube processing, pinholes may exist in the middle of a long film. If this is supplied to an automatic lapping machine, pinho/I/
Since the product is manufactured with some parts remaining, all products must be inspected at the end, and the labor and reprocessing by sampling, etc., significantly reduce the actual operating rate.

このピンホール欠陥を印刷終了後の段階で検査して除去
しようとすれば、カット後再び連続フィルム状に戻すこ
とになV接着テープで継ぐ必要が生じる。その為継目が
入り、その部分及び前後は継目の影響によって不良品が
生じ、工程中に欠陥包装体を取除かなければならない。
If this pinhole defect were to be inspected and removed after printing, it would be necessary to return the film to a continuous film after cutting and to connect it with V-adhesive tape. As a result, there are seams, and defective products occur due to the effects of the seams in that area and before and after, and defective packages must be removed during the process.

更に高精度の印刷では、印刷後にフィルムの収縮による
印刷ピッチの敵少(経時収縮)を生じ。
Furthermore, in high-precision printing, the printing pitch decreases due to shrinkage of the film after printing (shrinkage over time).

しかも流通温度条件下で絶えず変化するという管理の難
しさに遭遇する。従ってポリ塩化ビニ〃収描フィルム等
では保冷車や低温倉庫等が必要となる。この様なところ
から、ピンホール欠陥のない印刷が可能であり、また印
刷後の経時変化がない様な熱収催姓フィルムの提供が望
まれる。
Moreover, it is difficult to manage as it constantly changes under the distribution temperature conditions. Therefore, refrigerated trucks, low-temperature warehouses, etc. are required for polyvinyl chloride-containing films. For this reason, it is desired to provide a heat-containing film that can be printed without pinhole defects and that does not change over time after printing.

(d)クレーズの発生 ポリスチレンはクレーズが生じib<、 ##薬品性が
悪い。従って使用中に薬液による損傷を受は易く印刷面
も汚れる。従って耐薬品性、耐久性の優れたフィルムが
望まれている。
(d) Generation of crazes Crazes occur in polystyrene. ib<, ##Poor chemical properties. Therefore, during use, it is easily damaged by chemicals and the printed surface becomes dirty. Therefore, a film with excellent chemical resistance and durability is desired.

(e)産業廃棄物の問題 近年プラスチックホト〃の使用量は急激に伸長している
。このホト〃の回収を考えた場合。
(e) Problems with industrial waste In recent years, the amount of plastic photovoltaic used has been rapidly increasing. When considering the recovery of this photo.

特にポリエステルボトルの被1!にポリ塩化ビニルやポ
リスチレン等の異種フィルムが使用されていると回収再
利用に付すことができないという問題がある。
Especially the polyester bottle cover 1! If a different type of film such as polyvinyl chloride or polystyrene is used, there is a problem that it cannot be recovered and reused.

その上ポリ塩化ビニルでは塩素ガスによる腐食の間融も
あり、廃棄物公害を招かない様な熱収FeJ性フィルム
が望まれる。
Furthermore, polyvinyl chloride is susceptible to corrosion due to chlorine gas, so a heat-absorbing FeJ film that does not cause waste pollution is desired.

(f)収縮斑 上記従来フィルムの熱収N曲は均質性に欠けるきらいが
あり、いつ次ん熱をかけて収縮の十分なところと不十分
なところが別々に形成されると1次にもう一度熱を与え
てもそれ以上の再収縮がおこらず1表面の不均一な凹凸
のあるものになる。従って収縮斑を生じない様な熱収縮
性フィルムの提供が望まれている。一方ポリエチレンテ
レフタレートフイルムは高い配向結晶性が災いして低温
収縮性が阻害され、収催性が不十分になり、そのため収
縮斑が発生する。
(f) Shrinkage spots The heat absorption curve of the conventional film described above tends to lack homogeneity, and if heat is applied one after another to form separate areas with sufficient shrinkage and areas with insufficient shrinkage, heat may be applied once again. Even if given a certain amount, no further re-shrinkage occurs and one surface becomes uneven. Therefore, it is desired to provide a heat-shrinkable film that does not cause shrinkage spots. On the other hand, polyethylene terephthalate film suffers from high oriented crystallinity, which inhibits its low-temperature shrinkability, resulting in insufficient elasticity, resulting in shrinkage spots.

本発明はこの様な事情に着目してなされたものであって
、上記(a)〜(f)で述べた様な欠陥を伴なわないポ
リエステル系フィルムの提供を目的とするものである。
The present invention was made in view of these circumstances, and aims to provide a polyester film that is free from the defects described in (a) to (f) above.

(問題を解決するための手段) 本発明はテレフタμ酸およびエチレングリコ−/I/金
主たる成分とし、ナフタレンジカルボン酸誘導体を共重
合成分とした共重合ポリエステルからなるフィルムであ
って、該ポリエステル系フィルムにおいて100℃の熱
風中での熱収縮率がフィルム長手方向および幅方向の少
なくともいずれか一方向くおいて30%以上である事を
特徴とする熱収縮性ポリエスデ〃系フイ〃ムである。
(Means for Solving the Problems) The present invention is a film consisting of a copolyester containing terephthalic acid and ethylene glycol/I/gold as main components, and a naphthalene dicarboxylic acid derivative as a copolymerization component, which This is a heat-shrinkable polyester resin film characterized in that the film has a heat shrinkage rate in hot air of 100°C of 30% or more in at least one of the longitudinal direction and the width direction of the film.

本発明の熱収縮ポリエステルはテレフタμ酸およびエチ
レングリコ−〃を主成分とレナフタレンジカルボン酸誘
導体を共重合成分とするものであり、ナフタレンジカル
ボン酸誘導体が1〜50モ/I’%の範囲が好ましい。
The heat-shrinkable polyester of the present invention has terephthalic acid and ethylene glycol as main components and a lenaphthalene dicarboxylic acid derivative as a copolymerized component, and the naphthalene dicarboxylic acid derivative is in the range of 1 to 50 mo/I'%. preferable.

特に好ましくは5〜40モ/L’%である。ナフタレン
ジカルボン酸が1七〃チ未満の場合は100℃にて熱処
理した時の残留応力の保持時間が短かくなり1例えば瓶
に被覆した場合、殺菌処理により肩部がゆるみを生ずる
等の好ましくない現象を引き起す。逆に50モ/I’%
を超えると熱処理した時の残留応力保持時間を改良する
効果が飽和し、かつ非晶性が進み、+を熱特性が失なわ
れる。
Particularly preferably 5 to 40 mo/L'%. If the naphthalene dicarboxylic acid content is less than 17%, the retention time of residual stress will be shortened when heat treated at 100°C.1 For example, when coating a bottle, the shoulders may become loose due to sterilization, which is undesirable. cause a phenomenon. On the contrary, 50mo/I'%
If the value exceeds 100%, the effect of improving the residual stress holding time during heat treatment becomes saturated, and the amorphous property progresses, resulting in loss of thermal properties.

ナフタレンジカルボン酸誘導体としては以下のものが挙
げられる。1,2ナフタレンシカ〃ボン酸。
Examples of naphthalene dicarboxylic acid derivatives include the following. 1,2 naphthalene dicarboxylic acid.

1.3ナフタレンジカルボン酸、1,4ナフタレンシカ
〃ポン酸、1,5す7タレンジカルボン酸、  1,6
ナフタレンジカ〃ボン酸、l、7ナフタレンジカμボン
酸、1,8ナフタレンジカルボン酸、2,3ナフタレン
シカyボン酸、2,4ナフタレンシカ〃ボン酸、2,5
ナフタレンジカルボン酸、2.6す7タレンジカ〃ボン
酸、2,7ナフタレンジカルボン酸。
1.3 naphthalene dicarboxylic acid, 1,4 naphthalene dicarboxylic acid, 1,5su7thalene dicarboxylic acid, 1,6
naphthalene dicarboxylic acid, l, 7 naphthalene dicarboxylic acid, 1,8 naphthalene dicarboxylic acid, 2,3 naphthalene dicarboxylic acid, 2,4 naphthalene dicarboxylic acid, 2,5
Naphthalenedicarboxylic acid, 2.6-7thalene dicarboxylic acid, 2,7-naphthalene dicarboxylic acid.

2.8ナフタレンジカルボン酸、又はその低級アルキル
エステルを例示出来る。1,5ナフタレンシカ〜ポン酸
および2,6ナフタレンジカルボン酸が特に好ましい。
2.8 Naphthalene dicarboxylic acid or its lower alkyl ester can be exemplified. Particularly preferred are 1,5 naphthalene dicarboxylic acid and 2,6 naphthalene dicarboxylic acid.

本発明に2けるポリエステル共重合体は従来から一般的
に行なわれているポリエステルの製造方法によって製造
することが出来る。例えはテレフタyv酸とナフタレン
ジカルボン酸とエチレングリコールによる@接エステル
化法による方法であってもよく、又ジメチルテレフタレ
ートとナフタレンジカルボン酸のジメチルエステルとエ
チレングリコールとのエステル交換法によって製造する
方法であってもよい。
The polyester copolymer according to the second invention can be produced by a conventional polyester production method. For example, it may be a method of esterification using terephthalic acid, naphthalene dicarboxylic acid, and ethylene glycol, or a method of transesterification using dimethyl ester of dimethyl terephthalate, naphthalene dicarboxylic acid, and ethylene glycol. You can.

更に本発明におけるポリエステル共重合体は本発明の範
囲内および範囲外の共重合体とホモポリエステルあるい
は他の共重合ポリエステルとのブレンドにより製造した
ものであってもよく、ナフタレンジカルボン酸が1〜5
0モ/に%o範囲であればいかなる方法で製造したもの
であってもかまわない。
Furthermore, the polyester copolymer in the present invention may be produced by blending copolymers within and outside the scope of the present invention with homopolyester or other copolyester, and the polyester copolymer may contain 1 to 5 naphthalene dicarboxylic acids.
It may be manufactured by any method as long as the %o range is 0%.

本発明におけるポリエステρ共重合体は酸成分としてテ
レフタμ酸を主成分とし、ナフタレンシカ〃ポン酸を共
重合成分とするがそれらの性質を大きく変えない範囲で
他の酸成分を共重合してもよい。例えばアジピン酸、セ
パチン酸の様な脂肪族の二塩基酸やイソフタ〃酸、ジフ
ェニルシカ〃ボン酸、5−ターシャリ−ブチルイソフタ
ル酸、1.1.3 )リメチ/I/3−7二二μインダ
ン4,5ジカルボン酸の如き芳査族の二塩基酸を例示出
来る。
The polyester ρ copolymer of the present invention has terephthalic acid as the main acid component and naphthalene sica acid as a copolymerized component, but other acid components may be copolymerized within the range that does not significantly change their properties. Good too. For example, aliphatic dibasic acids such as adipic acid and sepacic acid, isophthalic acid, diphenyl cicabonic acid, 5-tert-butyl isophthalic acid, 1.1.3) Rimethy/I/3-722μ Examples include aromatic dibasic acids such as indane-4,5-dicarboxylic acid.

同様にグリコ−〃成分はエチレングリコ−/l/i主成
分とするが、それらの性質を変えない範囲で共重合して
もよい。例えばジエチレングリコ−/L/。
Similarly, the glyco component is mainly ethylene glyco/l/i, but it may be copolymerized as long as the properties thereof are not changed. For example, diethylene glycol/L/.

プロピレングリコ−〜、ブタンジオール、ヘキサンジオ
−μの如き脂肪族系のジオ−μや1,4シクロヘキサン
ジメタノ−/L/、キシリレングリコ−/L/。
Propylene glyco-, butanediol, aliphatic di-μ such as hexane di-μ, 1,4 cyclohexanedimethanol-/L/, xylylene glyco-/L/.

ビス(4−ペーターヒドロキシフェニー/L/)ス〃ホ
ン、2,2(4−ヒドロオキシフエニー/L/)フロパ
ン誘導体等のジオールを例示出来る。
Examples include diols such as bis(4-hydroxypheny/L/)sulfone and 2,2(4-hydroxypheny/L/)furopane derivatives.

また必要に応じて2酸化チタン、微粒子シリカ、カオリ
ン、炭酸カルシウム等の滑剤を添加してもよく、更に帯
電防止剤、老化防止剤、紫外線防止剤や着色剤として染
料等を添加することも出来る。
Furthermore, lubricants such as titanium dioxide, particulate silica, kaolin, calcium carbonate, etc. may be added as necessary, and furthermore, antistatic agents, anti-aging agents, ultraviolet ray inhibitors, dyes, etc. may be added as coloring agents. .

なおフィルム基材としての好ましい固有粘度は0.50
〜1.3 dll?である。
The preferable intrinsic viscosity of the film base material is 0.50.
~1.3 dll? It is.

かかる重合体を用いて押出法やカレンダー法等任意の方
法で得たフィルムは一方向に2.5倍から7.0倍、好
ましくは3.0倍から6.0倍に延伸し。
A film obtained by any method such as an extrusion method or a calendar method using such a polymer is stretched in one direction by 2.5 times to 7.0 times, preferably 3.0 times to 6.0 times.

該方向と直角方向に1.0倍から2.0倍以下、好まし
くは1.1倍から1.8倍延伸される。最初の方向への
延伸は高い熱収縮率を得るために行なわれるものであり
、最初の方向と直角方向への延伸は。
It is stretched 1.0 times to 2.0 times or less, preferably 1.1 times to 1.8 times in a direction perpendicular to the above direction. Stretching in the first direction is performed to obtain a high heat shrinkage rate, and stretching in a direction perpendicular to the first direction is performed.

最初の一方向に延伸されたフィルムの耐衝撃性や引裂抵
抗性の悪さを解決するのに極めて有効である。
This method is extremely effective in solving the problems of poor impact resistance and tear resistance of films initially stretched in one direction.

しかしながら2.0倍を超えて延伸すると、主収縮方向
と直角方向の熱収猫も大きくなり過ぎ、仕上がりが波打
ち状となる。この波打ちを抑えるには、熱収縮率を15
%以下、好ましくは8乃至9チ以下、更に好ましくは7
%以下とすることが推奨される。延伸手段についても特
段の制限はなく。
However, when stretched more than 2.0 times, the heat absorption coefficient in the direction perpendicular to the main shrinkage direction becomes too large, resulting in a wavy finish. To suppress this waving, increase the heat shrinkage rate to 15.
% or less, preferably 8 to 9 inches or less, more preferably 7
% or less is recommended. There are no particular restrictions on the stretching method.

ローμ延伸、長間隙延伸、テンター延伸等の方法が適用
され、又形状面においてもフラット状、チューブ状等の
如何は問わない。
Methods such as low μ stretching, long gap stretching, and tenter stretching are applied, and the shape does not matter whether it is flat or tubular.

又延伸は逐次2軸延伸、同時2軸延伸、1軸延坤或はこ
れらの組合せ等で行なわれる。又本発明フィルムに対し
ては例えば縦1軸、横1軸、縦横2軸等の延伸を行なう
が、特に2軸砥伸では縦横方向の延伸は、どちらか一方
を先に行なう遂次2軸延伸が有効であり%その順序はど
ちらが先でもよい。尚同時2軸延伸法を行なうときはそ
の延伸順序が、縦横同時、縦先行、横先行のどちらでも
よい。又これら延伸におけるヒートセットは目的に応じ
て実施されるが、夏季高温下の寸法変化を防止する為に
は30〜150℃の加熱ゾーンを。
The stretching may be carried out by sequential biaxial stretching, simultaneous biaxial stretching, uniaxial stretching, or a combination thereof. In addition, the film of the present invention is stretched in, for example, one axis in the longitudinal direction, one axis in the transverse direction, and two axes in the longitudinal and transverse directions. In particular, in biaxial abrasive stretching, stretching in the longitudinal and transverse directions is carried out sequentially in one direction and then in the other direction. Stretching is effective and the order of stretching may be either first. When carrying out the simultaneous biaxial stretching method, the stretching order may be either simultaneous in the longitudinal and lateral directions, first in the longitudinal direction, or first in the transverse direction. Heat setting in these stretching processes is carried out depending on the purpose, but in order to prevent dimensional changes under high temperatures in summer, a heating zone of 30 to 150°C is used.

約1秒から30秒間通すことが推奨される。又かかる処
理の前後どちらか一方又は両方で最高70チ迄の伸張を
かけてもよい。特に主方向に伸張し。
It is recommended to run for about 1 second to 30 seconds. Further, the image may be expanded by up to 70 inches either before or after such processing, or both. especially stretching in the main direction.

非収縮方向(主収縮方向に対して直角方向)には緩和さ
せるのが良く、該直角方向への伸張は行なわない方が良
い。
It is better to relax in the non-contraction direction (perpendicular to the main contraction direction) and not to stretch in the perpendicular direction.

本発明の好適特性を発揮させる為には、上記延伸倍率だ
けでなく1重合体組成物が有する平均ガラス転移温度(
Tg)以上の温度1例えばTg+80℃程度の下で予熱
、延伸することも有効な手段として挙げられる。特に主
方向延伸(主収縮方向)における上記処理温度は該方向
と直角方向の熱収縮率を抑制し、且つ前記の如く80±
25℃の温度範囲に、その最小値を持ってくる上で極め
て重要である。更に延伸後、伸張或は緊張状態に保って
フィルムにストレスをかけながら冷却するか或は更に引
続いて冷却することにより、前後収縮特性はより艮好且
つ安定したものとなる。
In order to exhibit the preferable characteristics of the present invention, it is necessary not only to adjust the above-mentioned stretching ratio but also to adjust the average glass transition temperature (
Preheating and stretching at a temperature higher than Tg (Tg), for example about Tg + 80° C., can also be cited as an effective means. In particular, the above-mentioned processing temperature in the main direction stretching (main shrinkage direction) suppresses the heat shrinkage rate in the direction perpendicular to the direction, and as mentioned above, the processing temperature is 80±
It is extremely important to bring the minimum value to the temperature range of 25°C. Further, after stretching, by cooling the film while maintaining it in a stretched or tensioned state and applying stress to the film, or by cooling the film successively, the back and forth shrinkage characteristics become more beautiful and stable.

このようにして得たフィルムの面配向係数は100XI
O−3以下のものが好ましい。面配向係数が100xl
O−3f:超えると、衝撃的外力に対して破壊しやすく
なり、少しの外傷によっても破れ易くなるからである。
The plane orientation coefficient of the film thus obtained was 100XI
Those of O-3 or less are preferable. Planar orientation coefficient is 100xl
This is because if it exceeds O-3f, it becomes easy to break due to an impactful external force and becomes easy to tear even with the slightest external trauma.

一方複屈折率は15X10−3〜160x10−aが好
ましく、複屈折率が15X10−3未満では縦方向の熱
収縮率や収縮応力が不足し、又160XIQ−3を超え
ると引っかき抵抗力や衝撃強度の低下を生じ、フィルム
にはなりても実用状は有用性が低下する。
On the other hand, the birefringence is preferably between 15X10-3 and 160x10-a.If the birefringence is less than 15X10-3, the thermal shrinkage rate and shrinkage stress in the longitudinal direction will be insufficient, and if it exceeds 160XIQ-3, the scratch resistance and impact strength will be insufficient. However, even if it is made into a film, its usefulness in practical use is reduced.

本発明のフィルムの厚さは6〜250μmの範囲が実用
的である。
The practical thickness of the film of the present invention is in the range of 6 to 250 μm.

本発明のフィルムは50%緩和させて100℃にて熱風
中で熱処理した時に2分以上残留応力を保持する必要が
ある。4分以上保持されることがより好ましい。該残留
応力の保持時間が短いと2次りμミが発生し1例えば瓶
に被覆した場合、殺菌処理により肩部のゆるみが生ずる
等の現象が発生するので好ましくない。
The film of the present invention must maintain residual stress for 2 minutes or more when it is relaxed by 50% and heat treated in hot air at 100°C. It is more preferable to hold the temperature for 4 minutes or more. If the retention time of the residual stress is short, secondary microscopic distortion occurs, and for example, when a bottle is coated, phenomena such as loosening of the shoulders due to sterilization treatment occur, which is not preferable.

以下本発明フィルムを用途面から説明する。包装用途、
特に食品、飲料の包装においてはボイル処理やレトルト
処理が行なわれている。現存する熱収縮フィルムではこ
れらの処理に十分耐え得るものはない。本発明のフィル
ムはボイル処理やレトルト処理による加熱殺菌に耐え得
ることができ、しかも元々のフィルム外観、更には熱収
縮による仕上がりも良好であり、又PVCよりも高い熱
収縮応力を有し、結束性も優れている。
The film of the present invention will be explained below from the viewpoint of its use. packaging applications,
In particular, boiling and retort processing are used for food and beverage packaging. None of the existing heat-shrinkable films can withstand these treatments sufficiently. The film of the present invention can withstand heat sterilization by boiling and retort processing, has a good original film appearance, and also has a good finish due to heat shrinkage, and has a higher heat shrinkage stress than PVC, and can be bound The quality is also excellent.

従って重量物や変形成形物に対しても荷くずれしない強
固な被覆乃至結束包装が可能である。又包装上必要とさ
れる50〜70%の熱収縮率レペ〃において、主収縮方
向に対し直角方向の熱収縮率が最低値を示すというブロ
ードな熱収縮性を有する為、熱収縮初期から収縮包装完
了迄のプロセスは前記最小収a量を示す温度領域(80
±25℃)で熱収縮させることになる。その結果、仕上
がり寸法の誤差が小さくなるという特徴が得られたO 尚熱収縮性を利用する包装においては、熱収縮完了(被
包装物に密着し、更に帰む能力を有していても、それ以
上は縮めない状態になること)後。
Therefore, it is possible to strongly cover or bind and package heavy items or deformed molded items without causing them to collapse. In addition, in the heat shrinkage rate of 50 to 70% required for packaging, the heat shrinkage rate in the direction perpendicular to the main shrinkage direction shows the lowest value. The process up to completion of shrink wrapping is carried out in the temperature range (80°C) showing the minimum yield a.
It will be heat-shrinked at ±25°C). As a result, we were able to obtain the characteristic that the error in finished dimensions was reduced. After that, it becomes impossible to shorten it any further).

引続き加熱するのが一般的手順罠なっており、これは数
多い製品のばらつきに対応し完全な収縮を達成する上で
重要な役割Vを果たしている。このとき、もしフィルム
の収縮能が飽和に達していると、引続いて行なっている
加熱によってフィルムが逆に線膨張し、折角きっちり収
縮させておいたKも拘らず、かえって緩みが生じてくる
という問題がある。本発明ではその様な事暢になるのを
防止する意味で、収縮応力を高め、且つ先に記載した如
く、延伸後に更に伸張を行なうことを推奨するのである
。又この点に本発明でいう配向性の意味が存在する。
Subsequent heating has become a common procedure and plays an important role in accommodating numerous product variations and achieving complete shrinkage. At this time, if the shrinkage ability of the film has reached saturation, the film will undergo linear expansion due to the subsequent heating, and even though K has been carefully contracted, it will instead become loose. There is a problem. In order to prevent such problems, the present invention recommends increasing the shrinkage stress and further stretching after stretching as described above. Moreover, in this point, the meaning of orientation as used in the present invention exists.

以下更に具体的に述べる。This will be described in more detail below.

(a)一方向収a性 収縮フィルムの役割りの1つは被包装物の破壊や荷くず
れ等を防止する点にあるが、その為には高い耐衝撃性を
有し且つ主方向に大きい収縮率を得ることが必要である
。その点本発明のフィルムは高い収縮率と高い耐衝撃性
を有するので美しい包装が得られ、しかも被包装物の保
護という面で優れた耐久性を示す。この傾向は落袋テス
トによって証明される。又完全に近い一方向収権注によ
って収縮包装後の仕上り寸法安定性が艮い。
(a) One of the roles of a unidirectional astringent shrink film is to prevent the packaged items from being destroyed or deformed, and for this purpose, it must have high impact resistance and be large in the main direction. It is necessary to obtain the shrinkage rate. In this respect, the film of the present invention has a high shrinkage rate and high impact resistance, so that beautiful packaging can be obtained, and moreover, it exhibits excellent durability in terms of protecting the packaged items. This trend is confirmed by the drop bag test. Also, the nearly perfect one-way convergence guarantees excellent dimensional stability after shrink wrapping.

(b)耐熱性 従来の汎用フィルムはいずれも高温のボイル処理やし)
/L’)処理には耐えることが出来ず殺菌処理は不適当
なフィルムであり、処理中に破壊し、a!能が失われる
が本発明のフィルムはボイμやレトルト処理が出来る熱
収縮フィルムとして優れた有用性を示す。
(b) Heat resistance All conventional general-purpose films are boiled at high temperatures)
/L') The film is unsuitable for sterilization because it cannot withstand treatment, and it breaks during treatment, resulting in a! However, the film of the present invention exhibits excellent utility as a heat-shrinkable film that can be subjected to boiling and retort processing.

(C)印刷性 ハーフトーン印刷によりビンホー〃の発生やインクとの
接着性等に関し従来フィルムは固有の欠点を有するが該
ポリエステルフィルムは耐薬品性を有する点と共重合体
にすることにより接着性が向上することから印刷性は改
善された。
(C) Printability Conventional films have inherent drawbacks such as generation of binho due to halftone printing and adhesion with ink, but this polyester film has chemical resistance and adhesive properties due to copolymerization. The printability was improved due to the improvement.

(d)産業廃棄物の問題 近年プラスチックホトμの利用が急速く広まっている。(d) Industrial waste issues In recent years, the use of plastic photoμ has spread rapidly.

この様なホト〃の回収を考えた場合は同質物で形成され
ることが好ましく1本発明フィルムをポリエステ〃系ボ
トμの包装に適用することはこの点有利である。
When considering the recovery of such photos, it is preferable to use a homogeneous material.It is advantageous in this respect to apply the film of the present invention to the packaging of polyester bottoms.

Ce)収a斑 本発明フィルムは大きな収縮率と高い収縮応力を有し、
2次加熱でも引続き加熱すれば収縮傾向を示すので収縮
斑は発生しない。
Ce) Yield spots The film of the present invention has a large shrinkage rate and high shrinkage stress,
Even in the secondary heating, if the material is heated continuously, it will show a tendency to shrink, so no shrinkage spots will occur.

(実施例〕 以下に実施例を説明するが実施例で用いた測定方法は次
の通りである。
(Example) Examples will be described below, and the measurement methods used in the examples are as follows.

1、  ヘ  イ  ズ JIS −K 6714 K基づいて測定した。1. Heads Measured based on JIS-K 6714K.

2、熱収縮率 サンプ/I/標線間を200絹にとり、フィルムを幅1
5flに切断して、各温度で測定した。加熱には100
℃の熱風を用い1分間加熱した。
2. Heat shrinkage rate Sump/I/Between the marked lines is 200 silk, and the film has a width of 1
It was cut into 5fl pieces and measured at each temperature. 100 for heating
It was heated for 1 minute using hot air at ℃.

3、熱収縮応力(kf/−) テンシロンを使用し幅20wII、長さ150ffの試
料片を採取し、そのフィルムに100鱈の標線を記し、
100+wに設定した上下チャックに試料片を装着し、
100℃の熱風中で処理し。
3. Heat shrinkage stress (kf/-) Using Tensilon, take a sample piece with a width of 20 wII and a length of 150 ff, mark the 100 cod mark on the film,
Attach the sample piece to the upper and lower chucks set at 100+W,
Treated in hot air at 100°C.

その間の最大収鼎応力をもとめ次式にしたがって収縮応
力を算出した。
The maximum condensation stress during that period was determined, and the contraction stress was calculated according to the following formula.

最大収縮力/断面積=熱収縮応力 4、熱収縮残留応力保持時間(50%緩和時)デンジロ
ンを使用し、熱収縮応力と同様に試料片を作成し、試料
片のフィルムに100鰭の標線を記し50ffに設定し
た上下チャックに正確に10On+の標線を合せて装着
し、100’Cの熱風中で処理し、収縮応力が0になる
までの時間又は10分の残留応力をもとめる。1o分後
応力を保持する場合は熱収縮応力と同様に算出する。
Maximum shrinkage force/cross-sectional area = heat shrinkage stress 4, heat shrinkage residual stress retention time (at 50% relaxation) Using Denjiron, prepare a sample piece in the same manner as for heat shrinkage stress, and mark the film of the sample piece with 100 fin marks. Mark the line and attach it to the upper and lower chucks set at 50ff, accurately aligning the 10On+ marked line, process in hot air at 100'C, and determine the time until the shrinkage stress becomes 0 or the residual stress in 10 minutes. If the stress is to be maintained after 10 minutes, it is calculated in the same way as the heat shrinkage stress.

実施例1 ステンレス製オートクレーブを使用し、二塩基酸成分と
してテレフタル酸60モ〃チと2,6ナフタレンジカル
ボン酸40モi’ % * グリコ−μ成分としてエチ
レングリコ−1v1に210モlv%ヲ用イ。
Example 1 Using a stainless steel autoclave, 60 mol% of terephthalic acid and 40 mol% of 2,6 naphthalene dicarboxylic acid were used as the dibasic acid component. *210 mol% of ethylene glyco-1v1 was used as the glyco-μ component. stomach.

触媒として二酸化アンチモン0.025モ/v <m成
分に対し)t−用いて直接エステル化法により重縮合し
た。この共重合体は固有粘度0.71 dl/fであり
九。このポリエステ、/I/を290”Cで溶融押出し
、厚さ180μmの未延伸フィルムを得た。該フィルム
を縦方向に1.2倍延伸し1次いで横方向に4・1倍延
伸し1次いで約20%横方向に伸長下で冷却させ厚さ4
0μmの熱収lIJ性フィ〃ムを得た。得られたフィル
ムの複屈折率および面配向係数はそれぞれ75X10−
3および52xlO−8であった。このフィルムの物性
値を第1表に示した。第1表に示した様に高収縮率を示
し、熱収縮残留応力保持時間も十分長い結果が得られ、
実用テストでも良好な結果が得られた。
Polycondensation was carried out by a direct esterification method using 0.025 mo/v of antimony dioxide (for m components) as a catalyst. This copolymer has an intrinsic viscosity of 0.71 dl/f. This polyester /I/ was melt-extruded at 290"C to obtain an unstretched film with a thickness of 180 μm. The film was stretched 1.2 times in the machine direction, then 4.1 times in the transverse direction, and then Cooled under about 20% lateral elongation to a thickness of 4
A heat-absorbing lIJ film of 0 μm was obtained. The birefringence and planar orientation coefficient of the obtained film were 75X10-
3 and 52xlO-8. The physical properties of this film are shown in Table 1. As shown in Table 1, the results showed a high shrinkage rate and a sufficiently long heat shrinkage residual stress retention time.
Good results were also obtained in practical tests.

実施例2〜5 実施例1と同様にし、第1表に示した組成のポリエステ
ルよりなる熱収縮性フィルムを得た。得られた熱収縮性
フィルムの特性値を第1表に示す。
Examples 2 to 5 In the same manner as in Example 1, heat-shrinkable films made of polyester having the compositions shown in Table 1 were obtained. Table 1 shows the characteristic values of the heat-shrinkable film obtained.

いずれの熱収縮性フィルムも熱収縮率、熱収権残留応力
保持時間共十分満足する結果であり、実用テストでも艮
好な結果を得た。
All of the heat-shrinkable films had sufficiently satisfactory results in terms of heat shrinkage rate and heat yielding residual stress holding time, and excellent results were obtained in practical tests.

比較例1〜3 実施例と同様に第1表に示した組成のポリエステルフィ
ルムを得た。比較例1は通常のポリエチレンテレフタレ
ートより得たフィルムである。比較例2は二塩基酸成分
としてイソフタμ酸を10モρチ共重合した共重合ポリ
エステルである。比較例3は二塩基酸成分としてナフタ
レンシカyポン酸を80モl′v%共重合した共重合ポ
リエステ〃である。これらの比較例1.2で得られた熱
収縮性フィルムは横方向の収縮率は高く、十分実用的で
あるが残留応力の保持時間が短かく、ボイル処理やレト
μト処理によりニ次タルミが発生するため実用に供する
ことが出来なかった。また縦方向の熱収縮率も高く実用
テストでは仕上りも悪かったO 比較例3の熱収縮性フィルムは十分な熱収縮率を得るこ
とは出来なかった。
Comparative Examples 1 to 3 Polyester films having the compositions shown in Table 1 were obtained in the same manner as in Examples. Comparative Example 1 is a film obtained from ordinary polyethylene terephthalate. Comparative Example 2 is a copolymerized polyester obtained by copolymerizing 10 moles of isophthalic acid as a dibasic acid component. Comparative Example 3 is a copolymerized polyester obtained by copolymerizing 80 mol'v% of naphthalene cyponic acid as a dibasic acid component. The heat-shrinkable films obtained in Comparative Examples 1 and 2 have a high shrinkage rate in the transverse direction and are sufficiently practical, but the residual stress retention time is short and secondary talumining is difficult to achieve through boiling or retro-μ treatment. could not be put to practical use because of the occurrence of In addition, the heat shrinkage rate in the longitudinal direction was high and the finish was poor in the practical test.The heat shrinkable film of Comparative Example 3 could not obtain a sufficient heat shrinkage rate.

以下余白 (発明の効果) 本発明フィルムは上記の様に構成されているので、特定
方向に対する安定した熱収縮性が発揮され被覆包装にお
いては美麗で且つ強固な包装状態を与えることができ、
印刷ピッチの安定性、耐熱性向上等の諸効果を有し広範
な分野において優れた利用価値を発揮することができる
Margins below (Effects of the Invention) Since the film of the present invention is constructed as described above, it exhibits stable heat shrinkability in a specific direction, and can provide a beautiful and strong packaging state in covered packaging.
It has various effects such as improving printing pitch stability and heat resistance, and can exhibit excellent utility value in a wide range of fields.

Claims (2)

【特許請求の範囲】[Claims] (1)テレフタル酸およびエチレングリコールを主たる
成分とし、ナフタレンジカルボン酸誘導体を共重合成分
とした共重合ポリエステルからなるフィルムであって、
該ポリエステル系フィルムにおいて100℃の熱風中で
の熱収縮率がフィルム長手方向および幅方向の少なくと
もいずれか一方向において30%以上である事を特徴と
する熱収縮性ポリエステル系フィルム。
(1) A film made of a copolyester containing terephthalic acid and ethylene glycol as main components and a naphthalene dicarboxylic acid derivative as a copolymer component,
A heat-shrinkable polyester film, characterized in that the polyester film has a heat shrinkage rate of 30% or more in at least one of the longitudinal direction and the width direction of the film in hot air at 100°C.
(2)ナフタレンジカルボン酸誘導体が1〜50モル%
からなる共重合ポリエステルである特許請求の範囲第1
項記載の熱収縮性ポリエステル系フィルム。
(2) 1 to 50 mol% of naphthalene dicarboxylic acid derivatives
Claim 1, which is a copolymerized polyester consisting of
The heat-shrinkable polyester film described in Section 1.
JP61309972A 1986-12-25 1986-12-25 Heat-shrinkable polyester film Expired - Fee Related JPH0618903B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61309972A JPH0618903B2 (en) 1986-12-25 1986-12-25 Heat-shrinkable polyester film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61309972A JPH0618903B2 (en) 1986-12-25 1986-12-25 Heat-shrinkable polyester film

Publications (2)

Publication Number Publication Date
JPS63161030A true JPS63161030A (en) 1988-07-04
JPH0618903B2 JPH0618903B2 (en) 1994-03-16

Family

ID=17999581

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61309972A Expired - Fee Related JPH0618903B2 (en) 1986-12-25 1986-12-25 Heat-shrinkable polyester film

Country Status (1)

Country Link
JP (1) JPH0618903B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63222845A (en) * 1987-03-11 1988-09-16 Diafoil Co Ltd Shrink film excellent in color tone
JPH09239834A (en) * 1996-03-05 1997-09-16 Toyobo Co Ltd Heat-shrinkable polyester type film and production thereof
JPH11240966A (en) * 1998-12-16 1999-09-07 Toyobo Co Ltd Thermally shrinkable polyester-based film and its production
KR20010084816A (en) * 2000-02-29 2001-09-06 양갑석 Low crystalline PET resin manufacturing method for large packaging and big bottle
WO2001051450A3 (en) * 2000-01-14 2003-07-10 Bp Corp North America Inc Synthesis and use of dimethyl-1,5-naphthalenedicarboxylates and intermediates therefrom
JP2007331607A (en) * 2006-06-15 2007-12-27 Inoac Corp Vehicle air intake duct
US7862107B2 (en) 2006-08-04 2011-01-04 Toyota Jidosha Kabushiki Kaisha Cover for vehicle

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW459275B (en) 1999-07-06 2001-10-11 Semiconductor Energy Lab Semiconductor device and method of fabricating the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57194950A (en) * 1981-04-28 1982-11-30 Teijin Ltd Polyester vessel and its manufacture
JPS6327235A (en) * 1986-07-18 1988-02-04 Diafoil Co Ltd Polyester shrinkable packing film

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57194950A (en) * 1981-04-28 1982-11-30 Teijin Ltd Polyester vessel and its manufacture
JPS6327235A (en) * 1986-07-18 1988-02-04 Diafoil Co Ltd Polyester shrinkable packing film

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63222845A (en) * 1987-03-11 1988-09-16 Diafoil Co Ltd Shrink film excellent in color tone
JPH09239834A (en) * 1996-03-05 1997-09-16 Toyobo Co Ltd Heat-shrinkable polyester type film and production thereof
JPH11240966A (en) * 1998-12-16 1999-09-07 Toyobo Co Ltd Thermally shrinkable polyester-based film and its production
WO2001051450A3 (en) * 2000-01-14 2003-07-10 Bp Corp North America Inc Synthesis and use of dimethyl-1,5-naphthalenedicarboxylates and intermediates therefrom
KR20010084816A (en) * 2000-02-29 2001-09-06 양갑석 Low crystalline PET resin manufacturing method for large packaging and big bottle
JP2007331607A (en) * 2006-06-15 2007-12-27 Inoac Corp Vehicle air intake duct
US7862107B2 (en) 2006-08-04 2011-01-04 Toyota Jidosha Kabushiki Kaisha Cover for vehicle

Also Published As

Publication number Publication date
JPH0618903B2 (en) 1994-03-16

Similar Documents

Publication Publication Date Title
JP2943178B2 (en) Heat-shrinkable polyester film
JPH0651353B2 (en) Heat-shrinkable polyester tube
JPH0533895B2 (en)
JPH0753756A (en) Thermally shrinkable porous polyester film
JPS63161030A (en) Heat-shrinkable polyester film
JP3006001B2 (en) Heat-shrinkable polyester film
JP2629370B2 (en) Heat shrinkable polyester film
JPH07216107A (en) Heat-shrinkable polyester film
JPS63156833A (en) Heat-shrinkable polyester based film
JPH01136723A (en) Heat shrinkable polyester film
JP2932596B2 (en) Heat shrinkable polyester film
JP2517995B2 (en) Heat-shrinkable polyester film
JPH08423B2 (en) Method for producing heat-shrinkable polyester film
JPH0533894B2 (en)
JPS63236623A (en) Heat shrinkable polyester film
JPH01136722A (en) Heat shrinkable polyester film
JP3896604B2 (en) Heat-shrinkable polyester film
JPH09272150A (en) Heat-shrinkable polyester film
JP3605695B2 (en) Heat-shrinkable polyester film
JPH01136721A (en) Heat shrinkable polyester film
JPS63168329A (en) Heat-shrinkable polyester-based film
JP3635717B2 (en) Heat-shrinkable polyester film and method for producing the same
JPH0729376B2 (en) Low temperature shrinkable polyester film
KR920007711B1 (en) Thermo-shrinkable polyester film
JPH0649785B2 (en) Heat shrinkable polyester film

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees