JPS63160363A - Semiconductor device with multilayer interconnection structure - Google Patents

Semiconductor device with multilayer interconnection structure

Info

Publication number
JPS63160363A
JPS63160363A JP30982586A JP30982586A JPS63160363A JP S63160363 A JPS63160363 A JP S63160363A JP 30982586 A JP30982586 A JP 30982586A JP 30982586 A JP30982586 A JP 30982586A JP S63160363 A JPS63160363 A JP S63160363A
Authority
JP
Japan
Prior art keywords
metal wiring
wiring layer
layer
metal
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30982586A
Other languages
Japanese (ja)
Inventor
Hiroshi Takagi
洋 高木
Reiji Tamaki
礼二 玉城
Shigeru Harada
繁 原田
Junichi Arima
純一 有馬
Katsuhiro Hirata
勝弘 平田
Hidefumi Kuroki
黒木 秀文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP30982586A priority Critical patent/JPS63160363A/en
Publication of JPS63160363A publication Critical patent/JPS63160363A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To maintain the high integration density and, at the same time, to reduce the capacitance of a metal wiring part by a method wherein the cross-sectional shape of the metal wiring part inside a second wiring layer out of a first metal wiring layer and the second metal wiring layer which are arranged via an insulating film is shaped like a trapezoid whose one side facing the first wiring layer is shorter than its opposite side. CONSTITUTION:A first insulating layer 1, a first metal wiring layer 2 and a second insulating layer 3 are formed on a silicon substrate. A second metal wiring layer 4 is coated with aluminum by a vacuum evaporation method or the like; then, a desired resist pattern is formed on this aluminum film by using a photosensitive resist. A reactive ion etching process for this isotropic aluminum is executed by making use of this resist pattern as a mask by changing the etching conditions such as the degree of vacuum, the flow rate of a gas or the like with the passage of time. By this method, the cross-sectional shape of metal wiring parts 4a, 4b inside the metal wiring layer 4 is shaped like a trapezoid whose one side facing the metal wiring layer 2 is shorter than its opposite side. After that, a passivating film 5 is formed to protect the surface. As a result, it is possible to reduce the capacitance of the metal wiring part.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、半導体基板の上に絶縁膜を介して複数の金
属配線層が積層された多層配線構造を有する半導体装置
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a semiconductor device having a multilayer wiring structure in which a plurality of metal wiring layers are stacked on a semiconductor substrate with an insulating film interposed therebetween.

[従来の技術] 多層配線構造を有する半導体装置はコンピュータの部品
等によく用いられている。
[Prior Art] Semiconductor devices having a multilayer wiring structure are often used in computer components and the like.

第2図は従来の技術によって形成された多層配線構造を
有する半導体装置の断面形状を示した図である。
FIG. 2 is a diagram showing a cross-sectional shape of a semiconductor device having a multilayer wiring structure formed by a conventional technique.

シリコン基板の上に第1の絶縁膜層1が形成されている
。絶縁膜はシリコン窒化膜あるいはシリコン酸化膜で形
成される。第1の絶縁膜層1の上に第1の配線層2が形
成されている。第1の配線層2には金属2a2aが並ん
でいる。金属2$!2aはアルミニウム配線である。第
1の配線m2の上には第2の絶縁膜層3が形成されてい
る。第2の絶縁膜層3の上には第2の配線層4が形成さ
れている。第2の配ね層4には金属配線4a、4bが並
んでいる。第2図は金属配置1ir4aおよび4bが金
属配線2aと直交している部分の断面図である。最上層
である第2の配線層4は、パッジベージiンF35によ
り外界から保護すれている。
A first insulating film layer 1 is formed on a silicon substrate. The insulating film is formed of a silicon nitride film or a silicon oxide film. A first wiring layer 2 is formed on the first insulating film layer 1 . In the first wiring layer 2, metals 2a2a are lined up. Metal 2$! 2a is an aluminum wiring. A second insulating film layer 3 is formed on the first wiring m2. A second wiring layer 4 is formed on the second insulating film layer 3 . Metal wirings 4a and 4b are lined up in the second arrangement layer 4. FIG. 2 is a cross-sectional view of a portion where the metal arrangements 1ir4a and 4b are orthogonal to the metal wiring 2a. The second wiring layer 4, which is the uppermost layer, is protected from the outside world by a padding board F35.

ところで、多層配線構造を有する半導体装置では、各金
属配線2a、4a、4bに電流が流れると、絶縁膜3が
誘電体となり、各金属配線が電極となって、コンデンサ
が形成される。
By the way, in a semiconductor device having a multilayer wiring structure, when a current flows through each metal wiring 2a, 4a, 4b, the insulating film 3 becomes a dielectric, each metal wiring becomes an electrode, and a capacitor is formed.

このコンデンサの容量が大きくなると、配線の時定数(
容量×抵抗)が大きくなり、結果として信号伝達速度が
遅くなる。信号伝達速度の遅い半導体装置を、たとえば
、コンピュータの部品として使うと、コンピュータの8
1I算速度は遅くなる。
As the capacitance of this capacitor increases, the wiring time constant (
(capacitance×resistance) becomes large, resulting in a slow signal transmission speed. For example, if a semiconductor device with a slow signal transmission speed is used as a computer component, the computer's 8
1I calculation speed becomes slower.

それゆえ、コンピュータの高性能化を図るためには金属
配置間に生じるコンデンサの容量を少なくしてやる必要
がある。
Therefore, in order to improve the performance of computers, it is necessary to reduce the capacitance of capacitors that occur between metal locations.

第2図に示す半導体装置の場h、金属28!4aあるい
は4bの持つ単位長さあたりの?7ffiは次式%式% 上式において、ε。:真空中のtR電率ε′ :第2層
絶縁l1lI3の誘電率ε“:パッシベーション!11
5の 誘電率 込 :金属配線の幅 立′ 二金属配線間のスペース tl ;第2層絶縁膜3の厚さ く2 :金属配線の厚さ である。
In the case of the semiconductor device shown in FIG. 2, what is the per unit length of the metal 28!4a or 4b? 7ffi is the following formula % Formula % In the above formula, ε. : tR electric constant ε' in vacuum : Permittivity ε of second layer insulation l1lI3 : Passivation!11
Including dielectric constant of 5: Width of metal wiring 'Space tl between two metal wirings: Thickness of second layer insulating film 3 2: Thickness of metal wiring.

金属配線の容量を低減する方法としては、下記の4項目
が考えられる。
The following four methods can be considered as methods for reducing the capacitance of metal wiring.

(1) 絶縁膜3の111I厚く【、)を厚くする。(1) Increase the thickness of 111I of the insulating film 3 [,).

(2〉 誘電率(ε′、ε“)の低い絶縁膜を選ぶ。(2> Select an insulating film with a low dielectric constant (ε', ε'').

(3) 金属配線間の間隔(見′)を大きくする。(3) Increase the spacing (apparent distance) between metal wires.

(4) 金属配線間の膜厚(t2)を薄くする。(4) Reduce the film thickness (t2) between metal interconnects.

[発明が解決しようとする問題点] 前記(1)の第2の絶縁11!@3の絶縁膜3の膜厚(
t、)を厚くする方法を採用した場合、第2層配線層4
内にある金属配置!4a 、4bとシリコン基板を、お
よび第2層配線層4内にある金属配線4a、4bと第1
層配線層2内にある金属配線2aを、接続するために形
成されるコンタクト孔の深さが非常に深くなり、微細コ
ンタクトの形成が困難となる。
[Problems to be solved by the invention] The second insulation 11 of (1) above! Film thickness of insulating film 3 of @3 (
t,), the second wiring layer 4
Metal arrangement inside! 4a, 4b and the silicon substrate, and the metal wirings 4a, 4b in the second wiring layer 4 and the first
The depth of the contact hole formed to connect the metal wiring 2a in the wiring layer 2 becomes very deep, making it difficult to form fine contacts.

前記(2)の低M電率の絶縁膜を選ぶ方法では。In the method (2) of selecting an insulating film with a low M electric constant.

現在半導体装置で使用されかつ信頼性ある絶縁膜として
知られるシリコン窒化膜およびシリコン酸化膜以外の絶
縁膜を用いな(ブればならない。しかし、これら以外に
優れたものがないのが現状である。
It is necessary to use insulating films other than silicon nitride and silicon oxide, which are currently used in semiconductor devices and are known to be reliable insulating films. .

前記〈3)の金属配線容量の間隔(fL’ )を大きく
する手段には、金属配線4a 、4bの線幅〈庭)を細
くするか、あるいは線幅(庭)はそのままにしておいて
金属配線F5隔(見′)を大きくするか、の2通りが考
えられる。しかし、前者の方法では金属配線の断面積(
t2Xfl)が小さくなる結果、抵抗が大きくなったり
、Igi線等の問題が生じる。
Means for increasing the spacing (fL') between the metal wiring capacitances in <3) above include reducing the line width (field) of the metal wirings 4a and 4b, or leaving the line width (field) as it is and increasing the metal wiring capacitance (fL'). There are two possible ways to do this: increase the distance between the wiring F5 (see); However, in the former method, the cross-sectional area of the metal wiring (
t2Xfl) becomes smaller, resulting in increased resistance and problems such as Igi lines.

また、後者の方法は半導体装置の高aha化に反する方
向である。
Moreover, the latter method is against the trend of increasing the AHA of semiconductor devices.

前記(4)の金属配線の1111f(12)を薄くする
手段も、前記(3)で述べた線幅〈庭)を細くする場合
と同様に、金属配線の抵抗増加・断線等の問題を招来す
る。
The method of thinning the metal wiring 1111f (12) in (4) above also brings about problems such as increased resistance and disconnection of the metal wiring, similar to the case of thinning the line width described in (3) above. do.

以上のように従来の半導体装置では、金属配線の持つ容
量を低減するための良い方法がなかった。
As described above, in conventional semiconductor devices, there has been no good method for reducing the capacitance of metal wiring.

この発明は上記のような問題点を解決するためになされ
たもので、高集積度を保ちかつ金属配線の抵抗増大・断
線等の問題を発生させずに金属配線容量を減少すること
ができる、多層配線構造を有する半導体装置を提供する
ことを目的とする。
This invention was made in order to solve the above-mentioned problems, and it is possible to maintain a high degree of integration and reduce metal wiring capacitance without causing problems such as increased resistance or disconnection of metal wiring. An object of the present invention is to provide a semiconductor device having a multilayer wiring structure.

[問題点を解決するための手段] この発明は、半導体基板の上に絶縁膜を介して槽数の金
属配線層が4a層された、多層配線構造を有する半導体
装置に係るものである。
[Means for Solving the Problems] The present invention relates to a semiconductor device having a multilayer wiring structure in which 4a metal wiring layers are formed on a semiconductor substrate via an insulating film.

そして前記問題点を解決するために、該絶縁膜を介して
配置された第1の金属配線層と第2の金属配線層のうち
の、該第2の金属配線層内にある合成!i’i!線の断
面形状を、該第1の金属配線層に向き合う辺がそれに対
向する辺よりも矧くなった、台形形状にしている。
In order to solve the above-mentioned problem, a combination of the first metal wiring layer and the second metal wiring layer arranged in the second metal wiring layer with the insulating film interposed! i'i! The line has a trapezoidal cross-sectional shape in which the side facing the first metal wiring layer is more slender than the side facing the first metal wiring layer.

[作用] 絶縁膜を介して配置された第1の金腐配m層と第2の金
属配線層のうちの、該第2の金属配線層内にある金属配
線の断面形状は、該第1の金属配線層に向き合う辺がそ
れに対向する辺よりも短くなった台形形状であるので、
高集積度は保たれ、金属配線の抵抗増大・断線等の問題
を発生させずに、金属の配線の容量を減少させることが
できる。
[Function] The cross-sectional shape of the metal wiring in the second metal wiring layer of the first metal wiring layer and the second metal wiring layer arranged through an insulating film is the same as that of the first metal wiring layer. Since it has a trapezoidal shape with the side facing the metal wiring layer shorter than the side opposite it,
A high degree of integration is maintained, and the capacitance of the metal wiring can be reduced without causing problems such as increased resistance or disconnection of the metal wiring.

[実施例] 以下、図面に示した実施例に基づいて本発明の詳細な説
明する。
[Example] Hereinafter, the present invention will be described in detail based on the example shown in the drawings.

第1図はこの発明に係る多層配線構造を有する半導体装
置の断面図である。このような断面を有する多層配線構
造を有する半導体装置を作る方法を説明する。
FIG. 1 is a sectional view of a semiconductor device having a multilayer wiring structure according to the present invention. A method for manufacturing a semiconductor device having a multilayer wiring structure having such a cross section will be described.

まず、シリコン基板の上に第1の絶縁層1、第1の金属
配線層2、および第2の絶縁膜層3を順次形成する。
First, a first insulating layer 1, a first metal wiring layer 2, and a second insulating film layer 3 are sequentially formed on a silicon substrate.

引き続いて、第2の金属配線層4の材料であるアルミニ
ウムを表面全体に真空蒸着等により被覆する。
Subsequently, the entire surface is coated with aluminum, which is the material of the second metal wiring layer 4, by vacuum deposition or the like.

次いで、感光性レジストを用いて、写真製版技術により
、該アルミニウム膜の上に所望のレジストパターンを形
成する。
Next, a desired resist pattern is formed on the aluminum film by photolithography using a photosensitive resist.

そして、このレジストパターンをマスクとして、アルミ
ニウムの反応性イオンエツチングを行なう。
Then, using this resist pattern as a mask, reactive ion etching of aluminum is performed.

このエツチングの際、真空度、ガス流量比、反応性イオ
ン種等のエツチング条件を時間とともに徐々に変更する
ことにより1等方的なエツチング゛を行なうと、最終的
には第1図に示すように、第2の金属配線層2内にある
金属配線4a 、4bの断面形、状は、第1の金属配線
層2に向き合う辺がそれに対向する辺よりも短くなった
、台形形状となる。
During this etching, if one isotropic etching is performed by gradually changing the etching conditions such as the degree of vacuum, gas flow rate ratio, and reactive ion species over time, the final result will be as shown in Figure 1. In addition, the cross-sectional shape of the metal wirings 4a and 4b in the second metal wiring layer 2 is trapezoidal, with the side facing the first metal wiring layer 2 being shorter than the side facing it.

その後、パッシベーションlll5を形成し、表面を保
護する。
After that, passivation lll5 is formed to protect the surface.

このようにして得られた第2の金属配線層4にある金属
配線4a、4bの持つ単億長ざあたりの容ff1c (
NEW)は次式で表わされる。
Capacity ff1c (
NEW) is expressed by the following equation.

ε、t’ ・L+  ε。ε”tz C(N E W ) m−−−1−、己ゴーここで立−
痣、−Δ痣とすると、 上式は となる。
ε, t' ・L+ ε. ε”tz C(NEW) m---1-, I'm standing here-
Assuming birthmark and -Δ birthmark, the above equation becomes.

従来の半導体装置の金属配線の容量C(CONV)と本
発明に係る半導体装置の金属配線の容量C(NEW) 
を[2すると、C(CONV>>C(N E W )と
なる。
Capacitance C (CONV) of metal wiring of a conventional semiconductor device and capacitance C (NEW) of metal wiring of a semiconductor device according to the present invention
[2, then C(CONV>>C(NEW)).

すなわち、従来の装置に比べて、本発明に係る半導体装
置の金属配線の容量は低減する。
That is, the capacitance of the metal wiring of the semiconductor device according to the present invention is reduced compared to the conventional device.

−力木発明によると5i1!1Fjlの断面積に若干の
減少が見られが、この程度の減少なら半導体装置上の大
きな問題とはならない。すなわち、この程度の断面積の
減少ならば、金属配線の抵抗増大およV断線等の問題を
発tさぜない。
- According to Riki's invention, there is a slight decrease in the cross-sectional area of 5i1!1Fjl, but this level of decrease does not pose a major problem for the semiconductor device. That is, if the cross-sectional area is reduced to this extent, problems such as increased resistance of metal wiring and disconnection of V wires will not occur.

なお上記実施例では第2の金属配線層4内にある金属配
線4a 、4bの形状が、その下辺が上辺よりも短い、
逆台形形状である場合を示したが、本発明はこれに限ら
れない、、すなわち、第1の金属配線層2内にある金属
配線2aの形状が、その下辺が上辺よりも畏い、正台形
の形状であっても、実施例と同様の効果が実現する。
In the above embodiment, the shape of the metal wirings 4a and 4b in the second metal wiring layer 4 is such that the lower side thereof is shorter than the upper side.
Although the case is shown in which the shape is an inverted trapezoid, the present invention is not limited to this. That is, the shape of the metal wiring 2a in the first metal wiring layer 2 is such that the lower side thereof is larger than the upper side and the shape is correct. Even with a trapezoidal shape, the same effect as in the embodiment is achieved.

また、上記実施例では金属配線層が第1の金属配線層2
と第2の金属配線層4の2層からなる半導体装置を例に
挙げて説明したが、本発明はこれに限られず、ざらに多
くの金属配線層からなる半導体装置に応用しても、実施
例と同様の効果を実現する。
Further, in the above embodiment, the metal wiring layer is the first metal wiring layer 2.
Although the present invention has been described using an example of a semiconductor device consisting of two layers, ie, the second metal wiring layer 4, the present invention is not limited to this, and can be applied to a semiconductor device consisting of a large number of metal wiring layers. Achieve the same effect as the example.

さらに、上記実流例では、半導体基板にシリコン基板を
用いた場合を示したが、本発明はこれに限られず池の材
料からなる半導体基板を用いても実施例と同様の効果を
実現し得る。
Furthermore, although the above actual flow example shows a case where a silicon substrate is used as the semiconductor substrate, the present invention is not limited to this, and the same effects as in the embodiment can be achieved even when a semiconductor substrate made of a silicon material is used. .

[発明の効果] 以上のようにこの発明に係る多層配線構造を有する半導
体装置によれば、絶縁膜を介して配置された第1の金属
配線層内 の、該第2の金属配線層内にある金属配線の断面形状は
、該第1の金属配線層に向き合う辺がそれに対向する辺
よりも短くなった台形形状となっている。したがって、
半導体装置の高集積度を保ち、金属配線の抵抗増大・断
線等の半導体装置上の問題を発生させずに、金属配線の
容量を減少させることができる。
[Effects of the Invention] As described above, according to the semiconductor device having the multilayer wiring structure according to the present invention, in the second metal wiring layer in the first metal wiring layer arranged through the insulating film, The cross-sectional shape of a certain metal wiring is a trapezoid in which the side facing the first metal wiring layer is shorter than the side facing the first metal wiring layer. therefore,
It is possible to maintain a high degree of integration of the semiconductor device and reduce the capacitance of the metal wiring without causing problems with the semiconductor device such as increased resistance or disconnection of the metal wiring.

【図面の簡単な説明】[Brief explanation of the drawing]

第1因はこの発明の一実施例の部分断面図、第2図は従
来の多層配線構造を有する半導体装置の部分断面図であ
る。 図において、1は第1の絶縁膜層、2は第1の金属配線
層、2a、4a、4bは金属配線、3は第2の絶縁膜層
、4は第2の金属配Ia層である。 なお、各図中同一符号は同一または相当部分を示す。
The first factor is a partial sectional view of an embodiment of the present invention, and FIG. 2 is a partial sectional view of a semiconductor device having a conventional multilayer wiring structure. In the figure, 1 is a first insulating film layer, 2 is a first metal wiring layer, 2a, 4a, 4b are metal wirings, 3 is a second insulating film layer, and 4 is a second metal wiring layer. . Note that the same reference numerals in each figure indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】  半導体基板の上に絶縁膜を介して複数の金属配線層が
積層された多層配線構造を有する半導体装置において、 前記絶縁膜を介して配置された第1の金属配線層と第2
の金属配線層のうちの、該第2の金属配線層内にある金
属配線の断面形状は、該第1の金属配線層に向き合う辺
がそれに対向する辺よりも短くなった台形形状であるこ
とを特徴とする多層配線構造を有する半導体装置。
[Scope of Claims] A semiconductor device having a multilayer wiring structure in which a plurality of metal wiring layers are stacked on a semiconductor substrate with an insulating film interposed therebetween, comprising: a first metal wiring layer disposed with the insulating film interposed therebetween; Second
Of the metal wiring layers, the metal wiring in the second metal wiring layer has a trapezoidal cross-sectional shape in which the side facing the first metal wiring layer is shorter than the side facing the first metal wiring layer. A semiconductor device having a multilayer wiring structure characterized by:
JP30982586A 1986-12-24 1986-12-24 Semiconductor device with multilayer interconnection structure Pending JPS63160363A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30982586A JPS63160363A (en) 1986-12-24 1986-12-24 Semiconductor device with multilayer interconnection structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30982586A JPS63160363A (en) 1986-12-24 1986-12-24 Semiconductor device with multilayer interconnection structure

Publications (1)

Publication Number Publication Date
JPS63160363A true JPS63160363A (en) 1988-07-04

Family

ID=17997714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30982586A Pending JPS63160363A (en) 1986-12-24 1986-12-24 Semiconductor device with multilayer interconnection structure

Country Status (1)

Country Link
JP (1) JPS63160363A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7450397B2 (en) 2005-03-24 2008-11-11 Sanyo Electric Co., Ltd. Wiring board and circuit apparatus
JP2010221307A (en) * 2009-03-19 2010-10-07 Toyota Central R&D Labs Inc Electric device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7450397B2 (en) 2005-03-24 2008-11-11 Sanyo Electric Co., Ltd. Wiring board and circuit apparatus
JP2010221307A (en) * 2009-03-19 2010-10-07 Toyota Central R&D Labs Inc Electric device

Similar Documents

Publication Publication Date Title
KR100392900B1 (en) Multilayer Low Dielectric Constant Technology
US6552383B2 (en) Integrated decoupling capacitors
JP4002647B2 (en) Thin film capacitor manufacturing method for semiconductor device
KR920001036B1 (en) Planarization of metal pillars on uneven substrates
KR930011462B1 (en) Method of decreasing step coverage of multilayer wiring
JPH027544A (en) Process of matching and manufacture of column
JPH04206569A (en) Manufacture of semiconductor device
US7109090B1 (en) Pyramid-shaped capacitor structure
JPH04245665A (en) Semiconductor integrated circuit structure
JPS63160363A (en) Semiconductor device with multilayer interconnection structure
JP2809131B2 (en) Method for manufacturing semiconductor device
JPS62104067A (en) Semiconductor device
JPH05144809A (en) Semiconductor device
US6291864B1 (en) Gate structure having polysilicon layer with recessed side portions
JP2758729B2 (en) Semiconductor device
JPS6381842A (en) Manufature of semiconductor device
JPS63107141A (en) Manufacture of semiconductor device
JPH0226048A (en) Semiconductor device
JPH0254951A (en) Semiconductor device
KR20020031491A (en) A dummy capacity using dummy pattern and forming method thereof
JPH04239751A (en) Manufacture of semiconductor integrated circuit
JPH098036A (en) Wiring structure for semiconductor device and its manufacture
JPS6132555A (en) Formation of multilayer interconnection structure
JPH04373151A (en) Semiconductor device
JPH0321026A (en) Semiconductor device low in parasitic capacitance in wiring and its manufacture