JPS6316028A - Gas dryer - Google Patents

Gas dryer

Info

Publication number
JPS6316028A
JPS6316028A JP61158616A JP15861686A JPS6316028A JP S6316028 A JPS6316028 A JP S6316028A JP 61158616 A JP61158616 A JP 61158616A JP 15861686 A JP15861686 A JP 15861686A JP S6316028 A JPS6316028 A JP S6316028A
Authority
JP
Japan
Prior art keywords
tower
dew point
signal
gas
dehumidifying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61158616A
Other languages
Japanese (ja)
Inventor
Shigezo Yamane
山根 茂三
Yoshizo Asano
浅野 佳蔵
Yoshiaki Hori
堀 芳彰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Plant Industries Co Ltd
Original Assignee
Daido Plant Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Plant Industries Co Ltd filed Critical Daido Plant Industries Co Ltd
Priority to JP61158616A priority Critical patent/JPS6316028A/en
Publication of JPS6316028A publication Critical patent/JPS6316028A/en
Pending legal-status Critical Current

Links

Landscapes

  • Drying Of Gases (AREA)

Abstract

PURPOSE:To reduce regeneration energy, by a method wherein, operation is performed on the basis of the generation time of an operation signal synchronous to the operating load of a compressor and the dew point detected of inflow gas and, when an inflow moisture amount reaches a set value, a dehumidifying tower is changed over. CONSTITUTION:Compressed air from an air supply source 11 is supplied to a dehumidifying tower 2 through a receiver tank 15 and a pressure switch 16 emits an operation signal Sp corresponding to the air pressure of the receiver tank 15 and a compressor 13 is intermittently operated and the emitting flow rate thereof is operated by an operator 21. An inflow moisture amount signal Si is operated on the basis of the operation signal Sp and a dew point signal Sd by an operator 22 and, when said signal Si becomes the tolerant adsorbed moisture amount signal Sw or more emitted from a setting device 23, a tower change-over signal Sc is emitted by a comparator 24 and the dehumidifying tower 2 is changed over to regeneration mode while a dehumidifying tower 3 is changed over to adsorption mode.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明はガス中の水分を除去して乾燥ガスを得るガス
乾燥装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a gas drying device for removing moisture from gas to obtain dry gas.

(従来の技術) 一般に計装用や塗装用に用いられる乾燥空気その他の乾
燥ガスを得るには、被乾燥ガスを圧縮機で圧縮し、水冷
式のアフタークーラで冷却除湿したのち除湿装置へ供給
して除湿をおこなっている。
(Prior art) Generally, to obtain dry air or other dry gas used for instrumentation or painting, the gas to be dried is compressed using a compressor, cooled and dehumidified using a water-cooled aftercooler, and then supplied to a dehumidifier. dehumidification is performed.

そしてこの除湿装置としては、通常内部にシリカゲルや
活性アルミナなどの乾燥剤を充填した一対の除湿塔のう
ち交互に選定した一方の除湿塔においてガスの除湿をお
こない、他方の除湿塔において乾燥剤の再生をおこなう
構成のガス除湿装置が用いられ、除湿および乾燥をおこ
なう塔の切換はタイマー等で一定時間ごとにおこなって
いる。
This dehumidification equipment usually consists of a pair of dehumidification towers filled with a desiccant such as silica gel or activated alumina, one of which is selected alternately to dehumidify the gas, and the other dehumidification tower dehumidifies the desiccant. A gas dehumidifier configured to perform regeneration is used, and the towers used for dehumidification and drying are switched at regular intervals using a timer or the like.

ところが乾燥ガスの使用量はたとえば夜間や昼休みなど
に少なくなり、この間の除湿塔内の乾燥剤の吸着水分団
は少ないのであるが、このような実際の乾燥剤の吸着水
分団あるいはガスの流量とは無関係に一定時間ごとに再
生をおこなうのは、吸着水分量の少ない状態で乾燥剤を
ひんばんに加熱することになり、エネルギ浪費をしてい
ることになる。さらにアフタークーラ用の冷却水温の年
間の変化や圧縮前のガス温度の季節による変動により、
除湿塔に流入する圧縮ガスの露点が変動することになる
が、露点の高い状態のガスを除湿した乾燥剤を充分再生
できるように°再生用ヒータ容量および加熱時間を定め
ているので、露点の低い状態のガスを除湿した乾燥剤は
再生時に必要以上に加熱され、この点においても省エネ
ルギ上好ましくなかった。
However, the amount of drying gas used decreases, for example, at night or during lunch breaks, and the amount of water molecules adsorbed by the desiccant in the dehumidifying tower during this time is small. If the desiccant is regenerated at regular intervals, regardless of the amount of water absorbed, the desiccant will be heated frequently when the amount of adsorbed water is small, which wastes energy. Furthermore, due to annual changes in the cooling water temperature for the aftercooler and seasonal fluctuations in the gas temperature before compression,
The dew point of the compressed gas flowing into the dehumidification tower will fluctuate, but the regeneration heater capacity and heating time are determined so that the desiccant that dehumidified the gas with a high dew point can be sufficiently regenerated. The desiccant that dehumidifies the gas in a low state is heated more than necessary during regeneration, which is also not desirable from the point of view of energy saving.

そこで出願人はこれらの問題点を解決するために特開昭
59−136119号により、被乾燥ガスの露点の高低
および流量の大小に応じて除湿と再生をおこなう塔の切
換時間間隔を調節できるガス除湿装置を提案している。
Therefore, in order to solve these problems, the applicant proposed a gas system that can adjust the switching time interval of the dehumidifying and regenerating tower according to the dew point of the gas to be dried and the flow rate. We are proposing a dehumidifier.

この除湿装置においては、露点検出器による被乾燥ガス
の露点と、流量検出器による被乾燥ガスの流量をもとに
、除湿塔への流入水分量を求め、該水分量が設定値に達
したとき塔切換をおこなうようにしたものである。
In this dehumidifier, the amount of moisture flowing into the dehumidification tower is determined based on the dew point of the gas to be dried measured by the dew point detector and the flow rate of the gas to be dried determined by the flow rate detector, and when the amount of moisture reaches the set value. It is designed to perform time tower switching.

(発明が解決しようとする問題点) ところが上記公開公報に開示した除湿装@(よ、除湿塔
への流入水分量が正確に求められるという長所を有する
反面、積算流量計や瞬時流量計などの流量検出器が高価
であり装置全体の設備費のうちの比較的大きな割合を占
めるため、コストの点で問題があり、さらに流量検出器
の故障あるいは使用による精度低下等を発見しにくく、
その結果乾燥ガスの露点が異常に上昇する事故のおそれ
があった。
(Problem to be Solved by the Invention) However, while the dehumidifier disclosed in the above publication has the advantage of accurately determining the amount of water flowing into the dehumidifying tower, The flow rate detector is expensive and accounts for a relatively large proportion of the equipment cost of the entire device, which poses a problem in terms of cost.Furthermore, it is difficult to detect malfunctions of the flow rate detector or loss of accuracy due to use.
As a result, there was a risk of an accident in which the dew point of the drying gas increased abnormally.

この発明は上記従来の問題点を解決するもので、積算5
!日計などの高価な流量計を用いることなく、構成が簡
潔で経済的な装置により、除湿塔への流入水分量の大小
に応じて塔切換時間間隔を自動的に調節できるガス乾燥
装置を提供しようとするものである。
This invention solves the above-mentioned conventional problems, and has a total of 5
! Provides a gas drying device that can automatically adjust the tower switching time interval according to the amount of water flowing into the dehumidification tower using a simple and economical device without using an expensive flow meter such as a daily meter. This is what I am trying to do.

(問題点を解決するための手段) しかしてこの出願の第1発明の装置は、圧縮機と、この
圧縮閤のガス出口側に接続された水冷式のアフタークー
ラと、このアフタークーラのガス出口側に接続され、内
部に乾燥剤を充填した一対の除湿塔のうちの一方の除湿
塔においてガスの除湿をおこない、他方の除湿塔におい
て乾燥剤の再生をおこなう除湿装置とをそなえて成るガ
ス乾燥装置において、前記圧縮機の負荷運転と同期する
運転信号を発する運転信号発生器と、前記一方の除湿塔
へ流入するガスの露点を検出する露点検出器と、前記運
転信号の発生時間と前記露点検出器による検出露点をも
とに演算をおこなって前記一方の除湿塔への流入水分量
が設定値に達したとき塔切換信号を発する塔切換制御装
置とをそなえ、上記塔切換信号にもとづいて除湿および
再生をおこなう塔の切換をおこなうようにしたことを特
徴とするガス乾燥装置である。
(Means for Solving the Problems) However, the device of the first invention of this application includes a compressor, a water-cooled aftercooler connected to the gas outlet side of the compressor, and a gas outlet of the aftercooler. A dehumidifying device that is connected to the side of a pair of dehumidifying towers and filled with a desiccant, one dehumidifying tower dehumidifies the gas and the other dehumidifying tower regenerates the desiccant. In the apparatus, an operation signal generator that emits an operation signal that is synchronized with the load operation of the compressor, a dew point detector that detects the dew point of the gas flowing into the one dehumidification tower, and a generation time of the operation signal and the dew point. and a tower switching control device that performs calculations based on the dew point detected by the detector and issues a tower switching signal when the amount of water flowing into the one dehumidifying tower reaches a set value, and based on the tower switching signal, This gas drying apparatus is characterized in that the towers used for dehumidification and regeneration are switched.

またこの出願の第2発明の装置は、圧縮機と、この圧縮
機のガス出口側に接続された水冷式のアフタークーラと
、このアフタークーラのガス出口側に接続され、内部に
乾燥剤を充填した一対の除湿塔のうちの一方の除湿塔に
おいてガスの除湿をおこない、他方の除湿塔において乾
燥剤の再生をおこなう除湿装置とをそなえて成るガス乾
燥装置において、前記圧縮機の負荷運転と同期する運転
信号を発する運転信号発生器と、前記一方の除湿塔へ流
入するガスの露点を設定する露点設定部を具備し該設定
露点と前記運転信号の発生時間をもとに演算をおこなっ
て前記一方の除湿塔への流入水分量が設定値に達したと
き塔切換信号を発する塔切換制御装置とをそなえ、上記
塔切換信号にもとづいて除湿および再生をおこなう塔の
切換をおこなうようにしたことを特徴とするガス乾燥装
置である。
Further, the device of the second invention of this application includes a compressor, a water-cooled aftercooler connected to the gas outlet side of the compressor, and a water-cooled aftercooler connected to the gas outlet side of the aftercooler, the inside of which is filled with a desiccant. In a gas drying apparatus comprising a dehumidifying device which dehumidifies gas in one dehumidifying tower of a pair of dehumidifying towers and regenerates a desiccant in the other dehumidifying tower, synchronization with the load operation of the compressor is provided. a dew point setting unit that sets the dew point of the gas flowing into the one dehumidifying tower; A tower switching control device is provided which issues a tower switching signal when the amount of water flowing into one of the dehumidifying towers reaches a set value, and the towers for dehumidification and regeneration are switched based on the tower switching signal. This is a gas drying device characterized by:

(作用) この発明のガス乾燥装置においては、除湿塔に′  流
入する被乾燥ガスの流量は、運転信号発生器の発する運
転信号の発生時間と圧縮機の吐出量の積により算出され
る。第1発明においてはこの被乾燥ガス流量と、露点検
出器による検出ガス露点から除湿塔への流入水分量が演
算され、該水分量が乾燥剤の許容吸着水分量に達した時
点で塔切換信号が発せられ、除湿および再生をおこなう
塔が切換えられる。また第2発明においては、アフター
クーラの冷却水温や圧縮機の吸込ガス温度から予想され
るガス露点の設定値と、前記被乾燥ガスの流mから除湿
塔への流入水分量が演算される。
(Function) In the gas drying apparatus of the present invention, the flow rate of the gas to be dried flowing into the dehumidification tower is calculated by the product of the generation time of the operation signal issued by the operation signal generator and the discharge amount of the compressor. In the first invention, the amount of water flowing into the dehumidifying tower is calculated from the flow rate of the gas to be dried and the dew point of the gas detected by the dew point detector, and when the amount of water reaches the allowable amount of adsorbed water of the desiccant, a tower switching signal is sent. is emitted, and the tower that performs dehumidification and regeneration is switched. Further, in the second invention, the set value of the gas dew point expected from the cooling water temperature of the aftercooler and the suction gas temperature of the compressor and the amount of water flowing into the dehumidification tower from the flow m of the gas to be dried are calculated.

(実施例) 以下第1図および第2図によってこの発明の第1実施例
を説明する。
(Embodiment) A first embodiment of the present invention will be described below with reference to FIGS. 1 and 2.

図中、1は空気除湿用の除湿装置で、2.3はその主体
をなす除湿塔であり、ケーシング中にシリカゲル、活性
アルミナ、合成ゼオライトなどの乾燥剤が充填しである
。4は被乾燥空気入口、5および6は四方弁、7は再生
用空気の流量調節弁、8は開閉弁、9は再生用空気の放
出口、1oは乾燥空気出口で、乾燥空気の使用側に接続
されている。11は空気供給源で、モータ12により駆
動される圧縮機13と、そのガス出口側に接続した水冷
式のアフタークーラ14を主体とするもので、アフター
クーラ14のガス出口側はレシーバタンク15を介して
除湿装置1の被乾燥空気人口4に接続されている。16
は圧縮機13の運転信号発生器である圧力スイッチで、
レシーバタンク15内のガス圧が規定値以下になると運
転信号S を発し、圧縮機制御装置17はこの運転信号
を受けて空気供給源11のアンローダ(図示しない)を
動作させて圧縮l113を負荷運転に切換えるようにな
っている。また18は被乾燥空気入口4と四方弁5との
間の空気供給管路内の空気温度測定用の温度計である。
In the figure, 1 is a dehumidifying device for air dehumidification, 2.3 is a dehumidifying tower which is the main part of the dehumidifying device, and the casing is filled with a desiccant such as silica gel, activated alumina, or synthetic zeolite. 4 is an inlet for air to be dried, 5 and 6 are four-way valves, 7 is a flow rate adjustment valve for regeneration air, 8 is an on-off valve, 9 is a discharge port for regeneration air, and 1o is a dry air outlet, which is the dry air usage side. It is connected to the. Reference numeral 11 denotes an air supply source, which mainly consists of a compressor 13 driven by a motor 12 and a water-cooled aftercooler 14 connected to its gas outlet side.The gas outlet side of the aftercooler 14 is connected to a receiver tank 15. It is connected to the air to be dried 4 of the dehumidifier 1 via the dehumidifying device 1 . 16
is a pressure switch which is an operation signal generator for the compressor 13,
When the gas pressure in the receiver tank 15 falls below a specified value, an operation signal S is issued, and upon receiving this operation signal, the compressor control device 17 operates the unloader (not shown) of the air supply source 11 to operate the compressor 113 under load. It is now possible to switch to . Further, 18 is a thermometer for measuring the temperature of the air in the air supply pipe between the drying air inlet 4 and the four-way valve 5.

なお被乾燥空気はアフタークーラ14により冷却除湿さ
れほぼ飽和状態であるので、温度計18の検出する温度
は被乾燥空気の露点にほぼ等しい。20は塔切換制御装
置で、圧力スイッチ16の発する運転信@Spと温度計
18の発する露点信号S、から、除湿開始後除湿塔2へ
流入した空気中の水分量の演算をおこない、該水分量が
所定値に達したら塔切換信号S を発する切換制御装置
であり、運転信号S の発生時間を計測して空気流ff
1s、 (圧縮113の吐出空気量〉に変換する演算器
21と、この空気流量S。
Note that since the air to be dried is cooled and dehumidified by the aftercooler 14 and is in a substantially saturated state, the temperature detected by the thermometer 18 is approximately equal to the dew point of the air to be dried. 20 is a tower switching control device that calculates the amount of moisture in the air that has flowed into the dehumidification tower 2 after the start of dehumidification from the operating signal @Sp issued by the pressure switch 16 and the dew point signal S issued by the thermometer 18, and It is a switching control device that issues a tower switching signal S when the amount reaches a predetermined value, and measures the time when the operation signal S occurs and changes the air flow ff.
1s, an arithmetic unit 21 that converts the amount of air discharged from the compression unit 113, and this air flow rate S.

と露点信号S、から除湿塔2への流入水分量Siを演算
する演算器22と、除湿塔2内の乾燥剤の許容吸着水分
量信号Swを発する設定値23と、この信号S と演算
器22の発する流入水分量借号S・を比較し後者が前者
以上となったとき塔切・ 換信号S を発する比較器24とから成る。なお上記の
乾燥剤の許容吸着水分量とは、再生(再活性化)後乾燥
空気の露点が許容上限に達するまでに乾燥剤が吸着し得
る乾燥剤の有効吸湿容量に、除湿塔内の乾燥剤の重借を
乗じたもの、あるいはこれに対し多少の余裕分だけ低く
とった水分量である。
and a dew point signal S, a computing unit 22 that computes the amount of water flowing into the dehumidifying tower 2, Si, a set value 23 that generates a signal Sw of the allowable adsorption moisture content of the desiccant in the dehumidifying tower 2, and this signal S and the computing unit. 22 and a comparator 24 which compares the inflow water quantity signal S and outputs a tower switching signal S when the latter exceeds the former. The above-mentioned allowable adsorption amount of moisture for the desiccant means the effective moisture absorption capacity of the desiccant that can be adsorbed by the desiccant until the dew point of the dry air reaches the allowable upper limit after regeneration (reactivation), plus the drying capacity of the desiccant in the dehumidifying tower. This is the amount of water multiplied by the weight of the liquid, or the amount of water lowered by a certain amount of margin.

次に上記構成の空気乾燥装置により空気の乾燥および乾
燥剤の再生をおこなう方法について説明する。図面は除
湿塔2において空気の除湿を、除湿塔3において乾燥剤
の再生をおこなっている状態を示し、二重線図示部は除
湿経路を、単線図示部は再生経路を示している。空気供
給源11からレシーバタンク15を経て供給される圧縮
空気は、被乾燥空気人口4から除湿装置1に流入し、四
方弁5、除湿塔2、四方弁6を経て乾燥空気出口10か
ら使用側に供給される。除湿装置1への空気の供給によ
りレシーバタンク15内の空気圧が低下すると、圧力ス
イッチ16が運転信号Spを発し、アイドリンク(無負
荷運転)状態の圧縮機13は負荷運転状態に切換えられ
、レシーバタンク15内のガス圧が所定値に回復するま
でのこの負荷運転が続く。このようにして圧縮機13は
、使用側の乾燥空気使用量、すなわち被乾燥空気人口4
への空気流入量に相当する空気流量を吐出するように間
欠的に負荷運転され、その吐出流坦は演算器21により
演算される。除湿塔3においては、除湿塔2からの乾燥
空気の一部を流量調節弁7を経て除湿塔3に流入させ、
四方弁6、開閉弁8を経て放出口9から放出しつつ、内
蔵する電気ヒータにより乾燥剤の加熱を所定時間(たと
えば2時間)おこない、その後電気ヒータを断電して前
記乾燥空気の一部により乾燥剤の冷却を所定時間(たと
えば2時間)おこなって再生を完了し、開閉弁8を閉じ
て待機する。一方前回の塔切換後除湿塔2へ流入した被
乾燥空気中の水分量(総攬11)は、運転信号Spおよ
び露点信号S、をもとに演算器22により圧縮113の
各間欠運転ごとに演算されて流入水分m信号S、として
積算される。流入水分量信号S・が設定器23の発する
許容吸着水分m信号Sw以上の値となると、比較器24
が塔切換信号S。を発するので、四方弁5.6は破線の
状態に切換わり、除湿塔3で除湿が、除湿塔2で乾燥剤
の再生が上記と同様におこなわれ、以後これが交互に繰
返されるのである。
Next, a method of drying the air and regenerating the desiccant using the air drying device having the above configuration will be described. The drawing shows a state in which air is dehumidified in the dehumidification tower 2 and desiccant is regenerated in the dehumidification tower 3, with the double-lined portion showing the dehumidification path and the single-lined portion showing the regeneration path. Compressed air supplied from the air supply source 11 via the receiver tank 15 flows into the dehumidifier 1 from the air to be dried 4, passes through the four-way valve 5, the dehumidification tower 2, and the four-way valve 6, and then flows from the dry air outlet 10 to the use side. supplied to When the air pressure in the receiver tank 15 decreases due to the supply of air to the dehumidifier 1, the pressure switch 16 issues an operation signal Sp, the compressor 13 in the idle link (no load operation) state is switched to the load operation state, and the receiver This load operation continues until the gas pressure in the tank 15 recovers to a predetermined value. In this way, the compressor 13 calculates the amount of dry air used on the user side, that is, the air population to be dried 4
It is operated under load intermittently so as to discharge an air flow rate corresponding to the amount of air flowing into the pump, and the discharge flow rate is calculated by a computing unit 21. In the dehumidification tower 3, a part of the dry air from the dehumidification tower 2 is caused to flow into the dehumidification tower 3 via the flow rate control valve 7,
The desiccant is discharged from the discharge port 9 via the four-way valve 6 and the on-off valve 8, while the desiccant is heated by a built-in electric heater for a predetermined period of time (for example, 2 hours), and then the electric heater is turned off to release a portion of the dry air. The desiccant is cooled for a predetermined time (for example, 2 hours) to complete the regeneration, and the on-off valve 8 is closed to wait. On the other hand, the amount of moisture in the air to be dried (total 11) that has flowed into the dehumidifying tower 2 after the previous tower switching is determined by the calculator 22 for each intermittent operation of the compression 113 based on the operation signal Sp and the dew point signal S. It is calculated and integrated as an inflow moisture m signal S. When the inflow moisture amount signal S exceeds the allowable adsorption moisture m signal Sw issued by the setting device 23, the comparator 24
is the tower switching signal S. As a result, the four-way valve 5.6 switches to the state shown by the broken line, and the dehumidification tower 3 dehumidifies and the dehumidification tower 2 regenerates the desiccant in the same manner as described above, and thereafter this process is repeated alternately.

第2図は前記の塔切換制御装置20における演算手順を
示す。先ず圧縮!!1113の運転信号S、が発せられ
ると、演算器21は時間カウントをおこない、積算時間
h(秒)が時間設定値T1 (たとえば30分)以上と
なったら演算器22は空気露点S、が設定温度1.(た
とえば35℃)以上であるか調べ、t1以上であれば1
パルスのカウントをおこなう。また空気露点S、が設定
温度t1未満なら積算時間りが時間設定値T  (T1
<■  たとえばT2−40分)になるまで時間力ラン
トを続け、空気露点S、が設定値1.、(11〉t  
たとえばt2−30℃)以上であるか調゛ べ、t2以
上であれば1パルスのカウントをおこなう。また空気露
点S、が設定温度t2未満なら積算時間りが時間設定1
1T3  (T2 <T3 たとえばT3=50分)に
なるまで時間カウントを続けたのち1パルスのカウント
をおこなう。各カウント後積算時間りのリセットをおこ
ない、パルスのカウント積算値CNTが、設定器23の
発する許容吸着水分量Swに相当するカウント設定値1
00に等しくなったら、除湿塔3の再生完了を確認後、
比較器24により塔切換信号S、を発して塔切換をおこ
なう。この実施例においては空気露点S、を3段階に分
け、各段階の露点の水分量を含む空気が設定時間T −
T3にそれぞれ等mの水分を除湿塔2へ持込むとして流
入水分量をカウントするものであるが、上記設定露点お
よびこれに対応する時間設定値をざらにこまかく段階分
けすれば、流入水分量は一層正確に算出することができ
る。
FIG. 2 shows the calculation procedure in the tower switching control device 20 described above. Compress first! ! When the operation signal S of 1113 is issued, the computing unit 21 counts the time, and when the cumulative time h (seconds) exceeds the time setting value T1 (for example, 30 minutes), the computing unit 22 sets the air dew point S. Temperature 1. (for example, 35℃) or higher, and if it is t1 or higher, 1
Count the pulses. Also, if the air dew point S is less than the set temperature t1, the cumulative time is the time set value T (T1
<■ For example, T2-40 minutes), the air dew point S is set at 1. , (11>t
For example, it is checked whether the temperature is above t2-30°C), and if it is above t2, one pulse is counted. Also, if the air dew point S is less than the set temperature t2, the cumulative time is set to 1.
After continuing to count the time until 1T3 (T2 < T3, for example, T3 = 50 minutes), one pulse is counted. After each count, the cumulative time is reset, and the pulse count cumulative value CNT is a count set value 1 corresponding to the allowable adsorbed moisture amount Sw issued by the setting device 23.
When it becomes equal to 00, after confirming the completion of regeneration of the dehumidification tower 3,
A tower switching signal S is generated by the comparator 24 to perform tower switching. In this embodiment, the air dew point S is divided into three stages, and the air containing the moisture content at the dew point of each stage is maintained for a set time T -
The inflow moisture amount is counted by assuming that equal m of moisture is brought into the dehumidification tower 2 at each T3, but if the above set dew point and corresponding time setting value are roughly divided into stages, the inflow moisture amount can be calculated as follows. It is possible to calculate more accurately.

このように除湿をおこなう除湿塔では、はぼ乾燥剤の能
力いっばいまで除湿がおこなわれるので、流入する被乾
燥空気の露点および81算流聞に応じて許容し得る最長
時間の除湿がおこなわれ、従来被乾燥空気の露点や乾燥
空気の使用量に無関係に一定時間ごとに塔切換をおこな
っていた場合に比べ、被乾燥空気の露点が低い季節や乾
燥空気の使用量が減少する夜間においては塔切換時間間
隔が大巾に延び、乾燥剤の年間の再生回数が減り、乾燥
剤加熱用の電力などのエネルギ消費mが減少するのであ
る。また除湿塔への流入水分量の算出の基礎となる空気
流量の測定は、圧力スイッチ16の運転信号の発生時間
を積算することによりおこなっているので、高価な流量
計が不要であり、また圧力スイッチ16の故障は圧縮機
13の運転不調として容易に発見できるので、故障や精
度低下の発見が容易でない流量計を用いるのより好都合
で、常に精度よく空気流量を測定できる。またこの実施
例においては、除湿塔に流入する空気の露点を検出して
流入水分量を算出しているので、流入水分量が高精度で
求められ、塔切換時間間隔を特に乾燥剤の能力いっばい
まで延ばすことができるという長所を有する。
In a dehumidifying tower that dehumidifies in this way, dehumidification is carried out to the fullest capacity of the desiccant, so dehumidification is carried out for the longest allowable time depending on the dew point of the inflowing air to be dried and 81 calculations. Compared to the conventional case where the towers were switched at regular intervals regardless of the dew point of the air to be dried or the amount of drying air used, it is possible to The tower switching time interval is greatly extended, the number of desiccant regenerations per year is reduced, and the energy consumption m, such as electricity for heating the desiccant, is reduced. In addition, the air flow rate, which is the basis for calculating the amount of water flowing into the dehumidification tower, is measured by integrating the generation time of the operating signal of the pressure switch 16, so there is no need for an expensive flow meter, and the pressure Since a failure of the switch 16 can be easily detected as a malfunction of the compressor 13, it is more convenient to use a flow meter, in which failure or deterioration of accuracy is not easy to detect, and the air flow rate can always be measured with high accuracy. Furthermore, in this embodiment, the amount of inflowing moisture is calculated by detecting the dew point of the air flowing into the dehumidification tower, so the amount of inflowing moisture can be determined with high accuracy, and the tower switching time interval can be adjusted especially depending on the desiccant capacity. It has the advantage of being able to be postponed until the end.

第3図はこの発明の第2実施例を示し、第1実施例にお
ける温度計18のかわりに、塔切換制御装置30に露点
設定部31を設けた構成としたものであり、他の点は第
1実施例と同様な構成を有する。
FIG. 3 shows a second embodiment of the present invention, in which a tower switching control device 30 is provided with a dew point setting section 31 instead of the thermometer 18 in the first embodiment, and the other points are as follows. It has the same configuration as the first embodiment.

この実施例においては、除湿塔に流入する空気の露点を
アフタークーラー4の冷却水温や圧縮機13の吸込空気
温度から予想される一定露点S3に設定し、この設定露
点のもとで、前記実施例と同様に流入水分mの演算、許
容吸着水分量との比較等をおこなって塔切換をおこなう
。設定露点S として、たとえば春夏秋冬の各季節に応
じて異なる設定値を用いる等すれば、比較的良好な精度
で流入空気の露点が近似されるので、この近似露点と、
乾燥空気使用」に対応した空気流層により除湿塔への流
入水分量を算出することにより、従来の一定時間ごとの
塔切換に対して実際の水分流入層に充分対応した塔切換
時間間隔の延長化をはかることができる。なお乾燥剤の
許容吸着水分量は決まっているので、流入空気露点を一
定露点に設定することは、除湿塔への許容流入空気mあ
るいは圧縮機13の許容負荷運転時間を一定値に設定す
ることに他ならない。従って塔切換制御装置30の構成
は、実際の水分量の数値演算まではおこなわずに流入空
気」または負荷運転時間の演算により間接的に流入水分
量の演算をおこなう第4図あるいは第5図の構成とする
ことができ、これにより、さらに装置は簡潔化される。
In this embodiment, the dew point of the air flowing into the dehumidification tower is set to a constant dew point S3 predicted from the cooling water temperature of the aftercooler 4 and the suction air temperature of the compressor 13, and under this set dew point, the above-mentioned implementation is performed. As in the example, the inflow water m is calculated, compared with the allowable amount of adsorbed water, etc., and tower switching is performed. If different set values are used as the set dew point S depending on the seasons, for example, spring, summer, fall, and winter, the dew point of the incoming air can be approximated with relatively good accuracy, so this approximated dew point and
By calculating the amount of moisture flowing into the dehumidifying tower using an air flow layer compatible with "Using Dry Air," the tower switching time interval can be extended to fully correspond to the actual moisture inflow layer, compared to the conventional tower switching at fixed intervals. It is possible to make changes. Note that the allowable amount of moisture adsorbed by the desiccant is fixed, so setting the inflow air dew point to a constant dew point means setting the allowable inflow air m to the dehumidification tower or the allowable load operating time of the compressor 13 to a constant value. Nothing but. Therefore, the structure of the tower switching control device 30 is such that the inflow water content is indirectly calculated by calculating the inflow air or load operation time without actually numerically calculating the water content as shown in Fig. 4 or 5. configuration, which further simplifies the device.

第4図において21aは運転信号S の発生時間を計測
積算して積算空気流量信号S2.に変換する演算器、2
3aは上記設定露点S、と乾燥剤の許容吸着水分量から
定まる許容流入空気口信号Swlを発する設定器、24
aはこの信号Sw1と演算器21aの発する積算空気流
量信号Sflを比較し後者が前者以上となったとき塔切
換信号S、を発する比較器である。また第5図において
21bは運転信号Spの発生時間を計測して積算運転時
間Sr2を発する演算器、23bは上記設定露点S、と
乾燥剤の許容吸着水分量と圧縮機13の単位i間当りの
吐出量から定まる許容運転時間Sw2を発する設定器、
24bはこの信号Sw2と演算器21bの発する積算運
転時間信号S、2を比較し後者が前者以上となったとき
塔切換信号SCを発する比較器である。
In FIG. 4, reference numeral 21a measures and integrates the generation time of the operating signal S to produce an integrated air flow rate signal S2. Arithmetic unit that converts into 2
3a is a setting device 24 which generates an allowable inflow air port signal Swl determined from the set dew point S and the allowable amount of moisture adsorbed by the desiccant;
A is a comparator which compares this signal Sw1 with the integrated air flow rate signal Sfl issued by the computing unit 21a, and issues a tower switching signal S when the latter exceeds the former. Further, in FIG. 5, 21b is an arithmetic unit that measures the generation time of the operation signal Sp and outputs the cumulative operation time Sr2, and 23b is the set dew point S, the allowable adsorption moisture content of the desiccant, and the unit i interval of the compressor 13. a setting device that issues an allowable operating time Sw2 determined from the discharge amount;
Reference numeral 24b is a comparator that compares this signal Sw2 with the cumulative operating time signal S,2 issued by the calculator 21b, and issues a tower switching signal SC when the latter exceeds the former.

この発明は上記各実施例に限定されるものではなく、た
とえば上記実施例では被乾燥空気の露点を検出する検出
器として温度計を用いたので、装置が安価ですむという
利点を有するものであるが、この温度計18のかわりに
露点計を用いてもよい。
This invention is not limited to the above embodiments; for example, in the above embodiments, a thermometer is used as a detector for detecting the dew point of the air to be dried, so the device has the advantage of being inexpensive. However, a dew point meter may be used instead of this thermometer 18.

また上記実施例では圧縮−の負荷運転と同期する運転信
号を発する運転信号発生器として、圧縮機の間欠駆動指
令用の圧力スイッチ16を用いたが、このほかにたとえ
ばモータ12の電流を検出して負荷運転信号を発する専
用の運転信号発生器などを用いてもよい。また圧縮81
13として多シリンダ式、あるいは単動複動切換式の往
復式圧縮機を用い、レシーバタンク15の圧力低下の程
度に応じて圧縮機の吐出量を変える場合に、は、各負荷
運転時の吐出量に応じた空気流ms、の演算をおこなえ
ばよい。またこの発明はレシーバタンク15を有さない
ガス乾燥装置にも適用できる。
Further, in the above embodiment, the pressure switch 16 for commanding intermittent drive of the compressor is used as an operation signal generator that issues an operation signal synchronized with the load operation of the compressor. A dedicated operation signal generator or the like that generates a load operation signal may also be used. Also compression 81
When using a multi-cylinder type or single-acting double-acting switching type reciprocating compressor as 13, and changing the discharge amount of the compressor according to the degree of pressure drop in the receiver tank 15, the discharge amount at each load operation is It is sufficient to calculate the air flow ms according to the amount. Furthermore, the present invention can also be applied to a gas drying device that does not have the receiver tank 15.

以上はこの発明を空気乾燥装置に適用した場合について
説明したが、この発明はN2ガス、′H2N2ガス空気
以外の各種ガスの乾燥装置にも適用できるものである。
Although the present invention has been described above in the case where it is applied to an air drying device, the present invention can also be applied to drying devices for various gases other than N2 gas, H2N2 gas, and air.

(発明の効果) 以上説明したようにこの発明によれば、積算流量計など
の高価な流量計を用いることなく、構成がm潔で経済的
な装置により、除湿塔への流入水分量の大小に応じて除
湿と再生をおこなう塔の切換時間間隔を自動的に調節す
ることができ、二定時間ごとに塔切換をおこなう場合に
くらべて乾燥剤の年間の再生回数が減り、乾燥剤加熱用
エネルギの消IR日を減少させ省エネルギ化を達成でき
る。
(Effects of the Invention) As explained above, according to the present invention, the amount of water flowing into the dehumidification tower can be adjusted by using an economical device with a simple configuration without using an expensive flowmeter such as an integrating flowmeter. The switching time interval of the tower that performs dehumidification and regeneration can be automatically adjusted according to It is possible to achieve energy saving by reducing energy consumption IR days.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の第1実施例を示すガス乾燥装置の系
統図、第2図は第1図の塔切換制御装置における演算内
容を示すフローチャート、第3図はこの発明の第2実施
例を示す第1図相当図、第4図および第5図は第3図の
塔切換制御装置の実施態様を示す系統口である。 1・・・除湿装置、2.3・・・除湿塔、4・・・被乾
燥空気入口、5.6・・・四方弁、10・・・乾燥空気
出口、11・・・空気供給源、12・・・モータ、13
・・・圧縮機、14・・・アフタークーラ、15・・・
レシーバタンク、16・・・圧力スイッチ(運転信号発
生器)、17・・・圧縮機制御装置、18・・・温度計
(露点検出器)、20−・・塔切換制tm装置、21.
21a、21b−・・演算器、22 ・・・演算器、2
3.23a、23b・・・設定器、24.24a、24
b・・・比較器、30−・・塔切換制御装置、31・・
・露点設定部。
Fig. 1 is a system diagram of a gas drying device showing a first embodiment of the present invention, Fig. 2 is a flowchart showing calculation contents in the tower switching control device of Fig. 1, and Fig. 3 is a second embodiment of the invention. 1, FIG. 4, and FIG. 5 are system ports showing embodiments of the tower switching control device shown in FIG. 3. DESCRIPTION OF SYMBOLS 1... Dehumidification device, 2.3... Dehumidification tower, 4... Dry air inlet, 5.6... Four-way valve, 10... Dry air outlet, 11... Air supply source, 12...Motor, 13
...Compressor, 14...Aftercooler, 15...
Receiver tank, 16... Pressure switch (operation signal generator), 17... Compressor control device, 18... Thermometer (dew point detector), 20-... Tower switching control TM device, 21.
21a, 21b-- Arithmetic unit, 22... Arithmetic unit, 2
3.23a, 23b...setting device, 24.24a, 24
b...Comparator, 30-...Tower switching control device, 31...
・Dew point setting section.

Claims (1)

【特許請求の範囲】 1 圧縮機と、この圧縮機のガス出口側に接続された水
冷式のアフタークーラと、このアフタークーラのガス出
口側に接続され、内部に乾燥剤を充填した一対の除湿塔
のうちの一方の除湿塔においてガスの除湿をおこない、
他方の除湿塔において乾燥剤の再生をおこなう除湿装置
とをそなえて成るガス乾燥装置において、前記圧縮機の
負荷運転と同期する運転信号を発する運転信号発生器と
、前記一方の除湿塔へ流入するガスの露点を検出する露
点検出器と、前記運転信号の発生時間と前記露点検出器
による検出露点をもとに演算をおこなつて前記一方の除
湿塔への流入水分量が設定値に達したとき塔切換信号を
発する塔切換制御装置とをそなえ、上記塔切換信号にも
とづいて除湿および再生をおこなう塔の切換をおこなう
ようにしたことを特徴とするガス乾燥装置。 2 圧縮機と、この圧縮機のガス出口側に接続された水
冷式のアフタークーラと、このアフタークーラのガス出
口側に接続され、内部に乾燥剤を充填した一対の除湿塔
のうちの一方の除湿塔においてガスの除湿をおこない、
他方の除湿塔において乾燥剤の再生をおこなう除湿装置
とをそなえて成るガス乾燥装置において、前記圧縮機の
負荷運転と同期する運転信号を発する運転信号発生器と
、前記一方の除湿塔へ流入するガスの露点を設定する露
点設定部を具備し該設定露点と前記運転信号の発生時間
をもとに演算をおこなつて前記一方の除湿塔への流入水
分量が設定値に達したとき塔切換信号を発する塔切換制
御装置とをそなえ、上記塔切換信号にもとづいて除湿お
よび再生をおこなう塔の切換をおこなうようにしたこと
を特徴とするガス乾燥装置。
[Claims] 1. A compressor, a water-cooled aftercooler connected to the gas outlet side of the compressor, and a pair of dehumidifiers connected to the gas outlet side of the aftercooler and filled with a desiccant. The gas is dehumidified in one of the dehumidifying towers,
A gas drying device comprising a dehumidifying device that regenerates a desiccant in the other dehumidifying tower, and an operating signal generator that emits an operating signal synchronized with the load operation of the compressor, and a dehumidifying device that regenerates the desiccant into the one dehumidifying tower. A dew point detector detects the dew point of the gas, and a calculation is performed based on the generation time of the operation signal and the dew point detected by the dew point detector, and the amount of water flowing into the one dehumidification tower reaches a set value. 1. A gas drying apparatus comprising: a tower switching control device that issues a tower switching signal; and a tower that performs dehumidification and regeneration is switched based on the tower switching signal. 2 A compressor, a water-cooled aftercooler connected to the gas outlet side of this compressor, and one of a pair of dehumidification towers connected to the gas outlet side of this aftercooler and filled with a desiccant inside. Gas is dehumidified in a dehumidification tower,
A gas drying device comprising a dehumidifying device that regenerates a desiccant in the other dehumidifying tower, and an operating signal generator that emits an operating signal synchronized with the load operation of the compressor, and a dehumidifying device that regenerates the desiccant into the one dehumidifying tower. It is equipped with a dew point setting section that sets the dew point of the gas, and performs calculations based on the set dew point and the generation time of the operation signal, and switches the tower when the amount of water flowing into the one dehumidifying tower reaches the set value. 1. A gas drying device comprising: a tower switching control device that emits a signal, and switching between towers for dehumidification and regeneration is performed based on the tower switching signal.
JP61158616A 1986-07-04 1986-07-04 Gas dryer Pending JPS6316028A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61158616A JPS6316028A (en) 1986-07-04 1986-07-04 Gas dryer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61158616A JPS6316028A (en) 1986-07-04 1986-07-04 Gas dryer

Publications (1)

Publication Number Publication Date
JPS6316028A true JPS6316028A (en) 1988-01-23

Family

ID=15675601

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61158616A Pending JPS6316028A (en) 1986-07-04 1986-07-04 Gas dryer

Country Status (1)

Country Link
JP (1) JPS6316028A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56152725A (en) * 1980-04-28 1981-11-26 Ishikawajima Harima Heavy Ind Co Ltd Dryer device for compressor
JPS59136119A (en) * 1983-01-26 1984-08-04 Daido Plant Kogyo Kk Apparatus for dehumidifying gas
JPS59139916A (en) * 1983-01-31 1984-08-11 Daido Steel Co Ltd Change-over control of treating tower

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56152725A (en) * 1980-04-28 1981-11-26 Ishikawajima Harima Heavy Ind Co Ltd Dryer device for compressor
JPS59136119A (en) * 1983-01-26 1984-08-04 Daido Plant Kogyo Kk Apparatus for dehumidifying gas
JPS59139916A (en) * 1983-01-31 1984-08-11 Daido Steel Co Ltd Change-over control of treating tower

Similar Documents

Publication Publication Date Title
US4197095A (en) Heatless adsorbent fractionators with microprocessor cycle control and process
US3323291A (en) Emergency air dryer for cable pressurizing system
AU2016335133B2 (en) Air dryer control using humidity
KR100701218B1 (en) Regenerating/dehumidifying process converting device for absorption type air drying system
CN205815414U (en) A kind of compressed air heatless regeneration adsorption dehumifier based on variable working condition
KR20180022621A (en) Non-purge and adsorption type air dryer using a blower
CN115518497A (en) Blast regeneration compressed air dryer and use method thereof
KR101602380B1 (en) Absorption type compressed air drying system and method
CN204051394U (en) Zero gas damages absorbed type drying system
JPS59136119A (en) Apparatus for dehumidifying gas
JPS6316028A (en) Gas dryer
CN207203812U (en) A kind of novel adsorption dried-air drier
JPS63158116A (en) Selection of dehumidifying towers in gas dehumidifier
KR100377960B1 (en) temperature controlling method for compressed air drier
SU1397067A1 (en) Apparatus for automatic control of cleaning gas in adsorbers
CA2969614C (en) Air dryer system for a locomotive with optimized purge air control
KR100753190B1 (en) Regenerating process converting valve for absorption type air drying system
KR102456891B1 (en) Center control apparatus
CN209362177U (en) A kind of high-efficiency adsorption drying machine
JP2001004573A (en) Method and device for measuring dew point and method and device for dehumidifying gas
CN215782602U (en) Energy-saving heatless regenerative dryer
CN212915073U (en) Heatless regeneration adsorption dryer
JP3731052B2 (en) Dehumidifying device driving method and dehumidifying device system
KR200279228Y1 (en) Dry device for absorption type a combined of heater and heatless
JPH08178399A (en) Dehumidifying/humidifying apparatus