JPS63160201A - Current limiting device - Google Patents
Current limiting deviceInfo
- Publication number
- JPS63160201A JPS63160201A JP30985486A JP30985486A JPS63160201A JP S63160201 A JPS63160201 A JP S63160201A JP 30985486 A JP30985486 A JP 30985486A JP 30985486 A JP30985486 A JP 30985486A JP S63160201 A JPS63160201 A JP S63160201A
- Authority
- JP
- Japan
- Prior art keywords
- shape memory
- current
- memory alloy
- limiting element
- current limiting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000000670 limiting effect Effects 0.000 title claims description 21
- 229910001285 shape-memory alloy Inorganic materials 0.000 claims description 27
- 229910000734 martensite Inorganic materials 0.000 claims description 4
- 239000010970 precious metal Substances 0.000 claims description 3
- 230000009466 transformation Effects 0.000 claims description 3
- 230000008602 contraction Effects 0.000 claims 1
- 229910000510 noble metal Inorganic materials 0.000 description 6
- 230000000694 effects Effects 0.000 description 3
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 229910002535 CuZn Inorganic materials 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 238000007747 plating Methods 0.000 description 2
- 229910000640 Fe alloy Inorganic materials 0.000 description 1
- 229910015136 FeMn Inorganic materials 0.000 description 1
- 229910052770 Uranium Inorganic materials 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 229910001566 austenite Inorganic materials 0.000 description 1
- 239000010953 base metal Substances 0.000 description 1
- 238000005253 cladding Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910001092 metal group alloy Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229910001000 nickel titanium Inorganic materials 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
Landscapes
- Thermistors And Varistors (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
(技術分野)
本発明は、過電流遮断器等において短絡時に流れる電流
笠を限流する限流素子に関するものであり、更に詳しく
は、形状記憶合金を用いた限流素子に関するものである
。Detailed Description of the Invention (Technical Field) The present invention relates to a current limiting element that limits the current flow during a short circuit in an overcurrent circuit breaker, etc., and more specifically relates to a current limiting element using a shape memory alloy. It is related to the element.
(背景技術)
従来、過電流遮断器等において短絡時に流れる電流等を
限流する限流素子としては、限流線が使用されてきた。(Background Art) Conventionally, current-limiting wires have been used as current-limiting elements that limit the current flowing during short circuits in overcurrent circuit breakers and the like.
限流線は短絡時に流れる電流により発熱し、このときの
温度上昇による限流線の比抵抗の上昇を利用して、短絡
時の電流を限流するものである。一般に、限流線の材料
としては、Fe合金系、例えば、FeMnやF eN
iCoなどが使用される。The current-limiting wire generates heat due to the current flowing during a short circuit, and the rise in specific resistance of the current-limiting wire due to the temperature rise at this time is utilized to limit the current during the short circuit. Generally, the current limiting wire material is Fe alloy type, for example, FeMn or FeN.
iCo etc. are used.
しかし、この限流線を用いた場合における電気抵抗の変
化率はlO倍程度であり、限流作用が小さく、また、限
流素子の温度は約1000℃まで上昇するため、耐熱性
や耐酸fヒ性が聞届となり、縁り遅し寿命が短い笠の欠
点がある。However, when using this current-limiting wire, the rate of change in electrical resistance is about 1O times, so the current-limiting effect is small, and the temperature of the current-limiting element rises to about 1000°C, so it has poor heat resistance and acid resistance. The disadvantage of a hat is that it has a short lifespan and is slow to develop.
(発明の目的)
本発明は上述のような点に鑑みてなされたものであり、
その目的とするところは、形状記憶か金を用いて、電気
抵抗の変化率が大きく、また、繰り返しff If;1
の長い限流素子を提供するにある。(Object of the invention) The present invention has been made in view of the above points, and
The purpose of this is to use shape memory or gold to have a large rate of change in electrical resistance, and to repeat ff If;
To provide a long current limiting element.
(発明の開示)
本発明に係る限流素子にあっては、第1図に示すように
、マルテンサイト2態点温度を挟む温度変化で形状を可
逆的に伸縮変化させる形状記憶合金1から形成されて伸
縮によって抵抗値が変化する形状記憶が施された限流素
子において、形状記憶合金1の表面を貴金属2で被覆し
て成るものである。(Disclosure of the Invention) As shown in FIG. 1, the current limiting element according to the present invention is formed from a shape memory alloy 1 whose shape reversibly expands and contracts with temperature changes that sandwich the martensite two-state temperature. In this current limiting element, the shape memory alloy 1 is coated with a precious metal 2, and the surface of the shape memory alloy 1 is coated with a noble metal 2.
第1図は本発明の構成を示す図である。線状の形状記憶
合金1はコイル状に巻回されており、その両端部には上
部電極3、及び、下部電極4が取り付けられている。各
t[!3.4はリードi15,6を介して外部回路に接
続されている。第1図(a)は正常時、同[] (1,
)は過電流が電極間に流れたときの素子の状態を示し、
同図(c)はコイル状に巻回された線状の形状記憶自余
1の断面構造を示しているにの第1図(e)に示すよう
に、形状記憶合金1の表面には貴金属2が被覆されてい
る。FIG. 1 is a diagram showing the configuration of the present invention. A linear shape memory alloy 1 is wound into a coil, and an upper electrode 3 and a lower electrode 4 are attached to both ends thereof. Each t[! 3.4 is connected to an external circuit via leads i15 and i6. Figure 1(a) shows the same [] (1,
) indicates the state of the element when an overcurrent flows between the electrodes,
Figure 1(c) shows the cross-sectional structure of the linear shape memory alloy 1 wound into a coil.As shown in Figure 1(e), the surface of the shape memory alloy 1 is made of noble metal. 2 is coated.
本発明の限流素子は、負荷電力回路に直列に挿入され、
短絡電流や異常電流、・つまりは、過電流が流れた際に
、その電流の作用で自己の抵抗値を増大させて過電流の
制限を行うものである。まず、正常時すなわち過電流が
流れていない状態では、第1図(a)に示すように、線
状の形状記憶合金1は低温相(マルテンサイト相)であ
り、コイル状に折り畳まれて、相互の線は密着している
。ところが、31!S電流が流れたときには、温度上昇
により変態が始まり、高温和(オーステナイ[・相)と
なって、同図(1,)に示すように、形状記Irp!合
金1が伸びた状態となる。この第1図(a)に示す状態
から第1図(b)に示す状態への形状変化に伴う電極3
.4間の抵抗変化により、電流を制限するものである。The current limiting element of the present invention is inserted in series in a load power circuit,
When a short-circuit current or an abnormal current, that is, an overcurrent flows, the current increases its own resistance value to limit the overcurrent. First, under normal conditions, that is, when no overcurrent is flowing, the linear shape memory alloy 1 is in a low-temperature phase (martensite phase) and is folded into a coil shape, as shown in FIG. 1(a). The lines are close to each other. However, 31! When the S current flows, transformation begins due to temperature rise, resulting in a high-temperature summation (austenite phase), and as shown in the figure (1,), the shape Irp! Alloy 1 is in an elongated state. The electrode 3 undergoes a shape change from the state shown in FIG. 1(a) to the state shown in FIG. 1(b).
.. The current is limited by the resistance change between the two.
電気抵抗の変化量は、第2図に示すような断面形状を持
つ線状の形状記憶合金1をコイル状に巻いたときに、密
着時の抵抗をR1、伸びたときの抵抗をR2とすれば、
次式で計算できる。The amount of change in electrical resistance is determined by the following equation: When a linear shape memory alloy 1 having a cross-sectional shape as shown in Figure 2 is wound into a coil, the resistance when it is in close contact is R1, and the resistance when it is stretched is R2. Ba,
It can be calculated using the following formula.
RI= p nb/ a D yr =−■R2
=ρπD n、/ ab −・■R之/R1=(
πD/b)2 ・・・■ここで、ρは形状記+1
金1の固有抵抗であり、nは巻数、a、bは第2[2I
に示すように形状記憶6金線の断面寸法(aが接触面寸
法)、Dはコイル直径である。R,/R,は0式で示さ
れ、b= 1 m+s、D =10mmとすると、R2
/R,=987となり、非常に大きな抵抗比となる。RI= p nb/a D yr =-■R2
=ρπD n, /ab −・■R之/R1=(
πD/b)2...■Here, ρ is the shape description +1
is the specific resistance of gold 1, n is the number of turns, a, b are the second [2I
As shown, the cross-sectional dimension of the shape memory 6 gold wire (a is the contact surface dimension), and D is the coil diameter. R, /R, is shown by the formula 0, and if b = 1 m + s and D = 10 mm, then R2
/R,=987, which is a very large resistance ratio.
ところが、第2図に示すような表面被覆がないi¥iで
は、第1図(a)に示す状態のときに、線間の接触抵抗
が存在し、この接触抵抗は、■式で示される抵抗R1よ
りも桁違いに大きいため、電気抵抗の変化率に大きな影
響を与える。However, in the case of i\i without surface coating as shown in Fig. 2, there is contact resistance between the lines in the state shown in Fig. 1 (a), and this contact resistance is expressed by the formula Since it is an order of magnitude larger than the resistance R1, it has a large effect on the rate of change in electrical resistance.
形状記憶合金は実用材料として、Cu Z n系、Ni
Ti系があるが、これらはいずれも卑金属であり、接触
抵抗はかなり高い、そこで、本発明にあっては、第1図
(c)に示すように、形状金属合金1の表面を貴金属2
で被覆し、線間の接触抵抗を低下さeるようにしたもの
である。貴金属は、@化しに<<、又、耐雰囲気性にも
優れることから、線間の接触抵抗を低下させる用途には
最適である。Shape memory alloys are practical materials such as CuZn-based, Ni
Although Ti-based metals are base metals, their contact resistance is quite high. Therefore, in the present invention, as shown in FIG. 1(c), the surface of shaped metal alloy 1 is coated with noble metal 2
The contact resistance between the wires is reduced. Precious metals are suitable for use in reducing contact resistance between wires because they are resistant to @<< and also have excellent atmospheric resistance.
貴金属には、AuJ’d等を用いることができ、又、被
覆方法については、メッキ及びクラッド等を用いること
ができる。AuJ'd or the like can be used as the noble metal, and plating, cladding, or the like can be used as the coating method.
なお、マルテンサイト変態点温度を挟む温度変化で形状
が可逆的に伸縮変化することを利用して抵抗変化を生じ
させる形状としては、特に限定するものではなく、第1
図に示すように、線状の形状記憶合金1をコイル状に巻
回した形状でも良いし、第3図に示すように、板状の形
状記憶合金1をつづら折りにした形状でも良い。Note that there are no particular limitations on the shape that causes a resistance change by utilizing the fact that the shape reversibly expands and contracts with temperature changes that sandwich the martensitic transformation point temperature.
As shown in the figure, a linear shape memory alloy 1 may be wound into a coil, or as shown in FIG. 3, a plate shape memory alloy 1 may be folded in a zigzag manner.
また、第4図に示すように、前記接触抵抗の低下及び安
定化のなめに、形状記憶合金1のpllびる方向とは逆
方向に形状記憶合金を(f勢するバイアスばね7を併用
しても良い、バイアスばね7は、ばね固定部8と上部電
極3との間に介在し、上部電1f+3を矢印Pに示す方
向に引っ張ることにより、形状記憶合金1に圧縮力を掛
けて、接触抵抗の安定化を図るものである。下部電極3
は絶縁ボット9内にて上下動自在とされている。また、
リード線5は下部電極3と共に動くので、可撓性に富む
一材質が用いられ、その端部は中継端子板10を介して
リードtallに接続されている。なお、過電流発生時
には、バイアスばね7の付勢力に打ち勝つて、形状記憶
合金1が伸び、第1図(b)に示すような状態となるこ
とは言うまでもない。In addition, as shown in FIG. 4, in order to reduce and stabilize the contact resistance, a shape memory alloy is applied in the opposite direction to the pll direction of the shape memory alloy 1 (in combination with a bias spring 7 that biases the shape memory alloy 1). The bias spring 7 is interposed between the spring fixing part 8 and the upper electrode 3, and by pulling the upper electrode 1f+3 in the direction shown by the arrow P, compressive force is applied to the shape memory alloy 1, thereby reducing the contact resistance. This is intended to stabilize the lower electrode 3.
is vertically movable within the insulating bot 9. Also,
Since the lead wire 5 moves together with the lower electrode 3, a highly flexible material is used, and its end is connected to the lead tall via a relay terminal plate 10. It goes without saying that when an overcurrent occurs, the shape memory alloy 1 overcomes the biasing force of the bias spring 7 and expands, resulting in a state as shown in FIG. 1(b).
え1涯
NiTi及びCuZn系の形状記f!!!合金を使用し
。E1: Shape description of NiTi and CuZn series f! ! ! Uses alloy.
丸型及び角型の2種類の断面形状を持つ線状の形状記憶
合金よりなるコイルばねを作った。このコイルばねにA
u又はPdのメッキを施し、限流素子とした。この限流
素子について、メッキの有無、及び、バイアスばねの有
無による特性比較を行った。試作した限流素子の詳細及
び電気抵抗測定結果を第1表に示す。なお、試作した限
流素子の作動温度は45〜55℃であった。電気抵抗は
、限流素子が密着した時の抵抗R1及び限流素子が伸び
たときの抵抗R2を測定し、その抵抗変化R3/R1を
評価した。なお、バイアスばねの引張力は80gであっ
た。We made coil springs made of linear shape memory alloys with two types of cross-sectional shapes: round and square. A to this coil spring
It was plated with U or Pd to make a current limiting element. Characteristics of this current limiting element were compared with and without plating and with and without a bias spring. Table 1 shows the details of the prototype current-limiting element and the electrical resistance measurement results. Note that the operating temperature of the prototype current-limiting element was 45 to 55°C. The electrical resistance was determined by measuring the resistance R1 when the current limiting element was in close contact with the current limiting element and the resistance R2 when the current limiting element was stretched, and evaluating the resistance change R3/R1. Note that the tensile force of the bias spring was 80 g.
(以下余白)
第1表
上表において、
* 1: 1.O×0.6 (1,01面が接触面)
* 2 : 0.6×0.4 (0,hm面が接触面
)(発明の効果)
本発明は上述のように、貴金属により被覆された形状記
憶合金で限流素子を形成することにより、形状記憶合金
が密着状態となった時の電気抵抗を低くすることができ
、したがって、高温時の電気抵抗の増加率が大きくなり
、その結果、過電流が流れたときの限流効果が大きく、
また、低温で動作するので、繰り返し寿命に優れるとい
う効果がある。(Left below) In the upper table of Table 1, * 1: 1. O×0.6 (1 and 01 surfaces are contact surfaces)
*2: 0.6×0.4 (0, hm surface is the contact surface) (Effects of the invention) As described above, the present invention provides a current limiting element by forming a shape memory alloy coated with a noble metal. The electrical resistance when the shape memory alloy is in close contact can be lowered, and therefore the rate of increase in electrical resistance at high temperatures increases, resulting in a greater current limiting effect when an overcurrent flows.
Furthermore, since it operates at low temperatures, it has the advantage of having an excellent repeat life.
なお、実施例の説明において述べたように、形状記憶合
金を、その抵抗値が小さくなる形状変化方向に付勢する
バイアスばねを併用することによって、形状記憶合金の
密着時の電気抵抗をさらに低くすることができ、良好な
限流特性を持つ限流素子を得ることができるものである
。As mentioned in the explanation of the examples, by using a bias spring that biases the shape memory alloy in the shape change direction where the resistance value becomes smaller, the electrical resistance of the shape memory alloy when it is in close contact can be further lowered. This makes it possible to obtain a current limiting element with good current limiting characteristics.
第1図(a)は本発明の一実施例に係る限流素子の正常
時の要部破断正面図、同図(b)は同上の過電流通電時
の要部破断正面図、同図(e)は同上に゛ 用いる形状
記憶合金の断面図、第2図は従来例に用いる形状記憶合
金の断面図、第3図(a)は本発明の他の実施例に係る
限流素子の正常時の正面図、同図(b)は同上の過電流
通電時の正面図、第4図は本発明の別の実施例に係る限
流素子の断面図である。
1は形状記憶合金、2は貴金属である。FIG. 1(a) is a front view of a current-limiting element according to an embodiment of the present invention, with a main part broken away during normal operation, and FIG. e) is the same as above. Figure 2 is a cross-sectional view of the shape memory alloy used in the conventional example. Figure 3 (a) is a normal current limiting element according to another embodiment of the present invention. FIG. 4 is a front view of the current limiting element according to another embodiment of the present invention. FIG. 1 is a shape memory alloy, and 2 is a noble metal.
Claims (2)
を可逆的に伸縮変化させる形状記憶合金から形成されて
伸縮によって抵抗値が変化する形状記憶が施された限流
素子において、形状記憶合金の表面を貴金属で被覆して
成ることを特徴とする限流素子。(1) In a current limiting element that is formed from a shape memory alloy that reversibly expands and contracts its shape with temperature changes around the martensitic transformation temperature, and has a shape memory that changes its resistance value due to expansion and contraction, the shape memory alloy A current limiting element characterized by having a surface coated with a precious metal.
化方向に、バイアスばねによって付勢されていることを
特徴とする特許請求の範囲第1項記載の限流素子。(2) The current-limiting element according to claim 1, wherein the shape memory alloy is biased by a bias spring in a direction of shape change in which the resistance value thereof becomes smaller.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30985486A JPS63160201A (en) | 1986-12-23 | 1986-12-23 | Current limiting device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30985486A JPS63160201A (en) | 1986-12-23 | 1986-12-23 | Current limiting device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63160201A true JPS63160201A (en) | 1988-07-04 |
Family
ID=17998086
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP30985486A Pending JPS63160201A (en) | 1986-12-23 | 1986-12-23 | Current limiting device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63160201A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002274106A (en) * | 2001-03-16 | 2002-09-25 | Sumitomo Rubber Ind Ltd | Arrangement method of wheel with tire |
JP2002274107A (en) * | 2001-03-16 | 2002-09-25 | Sumitomo Rubber Ind Ltd | Wheel for automobile |
-
1986
- 1986-12-23 JP JP30985486A patent/JPS63160201A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002274106A (en) * | 2001-03-16 | 2002-09-25 | Sumitomo Rubber Ind Ltd | Arrangement method of wheel with tire |
JP2002274107A (en) * | 2001-03-16 | 2002-09-25 | Sumitomo Rubber Ind Ltd | Wheel for automobile |
JP4490596B2 (en) * | 2001-03-16 | 2010-06-30 | 住友ゴム工業株式会社 | How to arrange wheels with tires |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9048048B2 (en) | Thermal protector | |
JP2008545971A (en) | Overheat protection devices, applications and circuits | |
JPS5814864B2 (en) | Glassy metal alloy temperature sensing element for resistance thermometers | |
CA1088981A (en) | Electric fuse | |
JPS63160201A (en) | Current limiting device | |
US3222486A (en) | Gas-filled enclosed electric switchgear with copper contacts | |
US1339505A (en) | Composition of matter for platinum surstitute in electrical terminals and other uses | |
JPS58157935A (en) | Shape memory alloy | |
Lindquist | Structure and Transformation Behavior of Martensitic Ti--(Ni, Pd) and Ti--(Ni, Pt) Alloys | |
US3936790A (en) | Temperature sensitive resistor having a critical transition temperature of about 140°C | |
JPH0665740B2 (en) | Method for manufacturing NiTi-based shape memory material | |
US2884501A (en) | Circuit protective device | |
US4734670A (en) | Element for a current limiting fuse | |
US4663606A (en) | Bimetal circuit breaker | |
US3710297A (en) | A stretched fuse device | |
JPS61190177A (en) | Shape memory element | |
JPS61227141A (en) | Niti shape memory alloy wire | |
CN2205593Y (en) | Marmen current limiting protector | |
US20240339278A1 (en) | Overcurrent protection device based on thermo magnetically-shiftable material | |
US2486202A (en) | Electrical fuse element | |
US3030699A (en) | High electrical resistivity thermostatic metal | |
JPS63187526A (en) | Line protective device | |
JPS62190632A (en) | Fuse | |
JP2659716B2 (en) | Alloy having low temperature coefficient of electric resistance and low melting point, method for producing the same, and highly stable electric resistor or eddy current displacement sensor using the same | |
JPS6160561B2 (en) |