JPS63159793A - Concentration controller for solvent extraction process - Google Patents
Concentration controller for solvent extraction processInfo
- Publication number
- JPS63159793A JPS63159793A JP61306442A JP30644286A JPS63159793A JP S63159793 A JPS63159793 A JP S63159793A JP 61306442 A JP61306442 A JP 61306442A JP 30644286 A JP30644286 A JP 30644286A JP S63159793 A JPS63159793 A JP S63159793A
- Authority
- JP
- Japan
- Prior art keywords
- concentration
- solvent extraction
- temperature
- extraction process
- aqueous phase
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000638 solvent extraction Methods 0.000 title claims description 17
- 238000000034 method Methods 0.000 title claims description 16
- 239000008346 aqueous phase Substances 0.000 claims description 16
- 239000012074 organic phase Substances 0.000 claims description 15
- 238000004364 calculation method Methods 0.000 claims description 5
- 238000005259 measurement Methods 0.000 claims description 4
- 238000012545 processing Methods 0.000 claims description 4
- 230000004992 fission Effects 0.000 claims description 3
- 239000003758 nuclear fuel Substances 0.000 claims description 3
- 239000000463 material Substances 0.000 claims 2
- 239000002253 acid Substances 0.000 claims 1
- 239000000243 solution Substances 0.000 description 10
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 7
- 238000000605 extraction Methods 0.000 description 7
- 229910017604 nitric acid Inorganic materials 0.000 description 7
- 239000003960 organic solvent Substances 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 238000005192 partition Methods 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 2
- 238000009529 body temperature measurement Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000005375 photometry Methods 0.000 description 2
- 238000012958 reprocessing Methods 0.000 description 2
- STCOOQWBFONSKY-UHFFFAOYSA-N tributyl phosphate Chemical compound CCCCOP(=O)(OCCCC)OCCCC STCOOQWBFONSKY-UHFFFAOYSA-N 0.000 description 2
- 230000005856 abnormality Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 239000002915 spent fuel radioactive waste Substances 0.000 description 1
- 239000012085 test solution Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
Landscapes
- Extraction Or Liquid Replacement (AREA)
- Sampling And Sample Adjustment (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は再処理プラントにおける溶媒抽出装置に係り、
特に軽水炉及び高速増殖炉の使用済核燃料を濃硝酸に溶
解し、核分裂生成物質(FP)とPu及びUを一定濃度
で抽出分離するのに好適な溶媒抽出プロセス用濃度制御
装置に関する。[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a solvent extraction device in a reprocessing plant,
In particular, the present invention relates to a concentration control device for a solvent extraction process suitable for dissolving spent nuclear fuel of light water reactors and fast breeder reactors in concentrated nitric acid, and extracting and separating fission products (FP), Pu and U at a constant concentration.
従来、溶媒抽出プロセス内の硝酸溶液中のU。 Traditionally, U in nitric acid solution within a solvent extraction process.
Pu及びFPの濃度計測法は、特開昭60−17349
8号公報に記載のようにミキサー・セトラ一方式の場合
、サンプルビンに試料を採取して化学分析室に送付し、
そこで妨害物質を前処理で除去した後、フォトメトリに
よってU、Pu等の濃度検出をオフラインで手分析して
いた。The concentration measurement method for Pu and FP is disclosed in Japanese Patent Application Laid-Open No. 60-17349.
In the case of a single mixer/settler system as described in Publication No. 8, the sample is collected in a sample bottle and sent to the chemical analysis laboratory.
Therefore, after removing interfering substances through pretreatment, the concentration of U, Pu, etc. was manually analyzed off-line by photometry.
上記従来技術は、オフライン計測の為に、溶媒抽出プロ
セス内の外乱により、U、Pu及びFPの濃度が変動し
た場合に対応が遅れ、U及びPuの製品濃度に悪影響を
及ぼす。Since the above-mentioned conventional technology performs off-line measurement, when the concentrations of U, Pu, and FP change due to disturbances in the solvent extraction process, there is a delay in responding, which adversely affects the product concentrations of U and Pu.
本発明の目的は、溶媒抽出プロセスにおいて、有機相−
水相間の抽出操作に係る分配係数(有機相と水相中の対
象核種の濃度比)が温度に大きく依存することに着目し
、温度計測により硝酸溶液中の対象核種濃度を制御でき
る溶媒抽出プロセス用濃度制御装置を提供することにあ
る。The purpose of the present invention is to provide an organic phase in a solvent extraction process.
Focusing on the fact that the partition coefficient (concentration ratio of the target nuclide in the organic phase and the aqueous phase) associated with the extraction operation between the aqueous phases is highly dependent on temperature, a solvent extraction process that can control the concentration of the target nuclide in the nitric acid solution by temperature measurement An object of the present invention is to provide a concentration control device for use.
上記目的は、以下の抽出特性を利用することにより達成
される。The above objective is achieved by utilizing the following extraction properties.
再処理プラント溶媒抽出プロセスに使用する機器として
、ミキサー・セトラー、パルスカラム。The equipment used in the reprocessing plant solvent extraction process is a mixer/settler and a pulse column.
遠心抽出器等が挙げられるが、いずれも供給溶液と有機
溶媒を向流接触させることにより、有機相にUやPuの
核燃料物質が抽出される。この際、FPは、U、Puに
比べて非常に小さい分配係数を有する為、99%以上が
水相に抽残される。このような溶媒抽出プロセスにおけ
る流量と濃度との関係は次式で表現できる。Centrifugal extractors and the like can be mentioned, but in either case, nuclear fuel substances such as U and Pu are extracted into the organic phase by bringing the supply solution into countercurrent contact with the organic solvent. At this time, since FP has a very small distribution coefficient compared to U and Pu, 99% or more is left in the aqueous phase. The relationship between flow rate and concentration in such a solvent extraction process can be expressed by the following equation.
F−Xi =E−Xs +A−X! −(1)
但し、F、E、A:供給溶液、有機相、水相流量Xz、
Xe、Xa:供給溶液、有機相、水相濃度ここで、分配
係数D=xe/Xav流量比VRミE/Aの関係を(1
)式に代入して整理すると、有機相及び水相中の濃度は
各々、次式で与えられる。F-Xi =E-Xs +A-X! -(1)
However, F, E, A: supply solution, organic phase, aqueous phase flow rate Xz,
Xe, Xa: supply solution, organic phase, aqueous phase concentration Here, the relationship of distribution coefficient D=xe/Xav flow rate VRmiE/A is (1
), the concentrations in the organic phase and the aqueous phase are each given by the following equations.
VRD+1
VR+1
(2)、(3)式より、有機相及び水相濃度Xexaは
、供給溶液濃度Xz ?流量比VR及び分配係数りに依
存することがわかる。また、分配係数りは硝酸濃度Nと
温度Tに依存し1次式で近似できる。VRD+1 VR+1 From equations (2) and (3), the organic phase and aqueous phase concentrations Xexa are the supply solution concentration Xz? It can be seen that it depends on the flow rate ratio VR and the distribution coefficient. Further, the distribution coefficient depends on the nitric acid concentration N and the temperature T, and can be approximated by a linear equation.
・・・(4)
但し、Ai、B:実験定数、To:基準温度(2) 〜
(4)式より、Xe IXaは硝酸濃度Nと温度Tにも
似存することがわかる。...(4) However, Ai, B: experimental constant, To: reference temperature (2) ~
From equation (4), it can be seen that Xe IXa exists similarly to the nitric acid concentration N and the temperature T.
従って、溶媒抽出プロセスにおける外乱として、Xi
、VR、D、N及びTの変動が考えられ、Xe 。Therefore, as a disturbance in the solvent extraction process, Xi
, VR, D, N and T variations are considered, and Xe.
及びXaを一定に制御する為には、プラント運転上容易
なTを計測する必要がある。(4)式では、Tの増加に
伴い、抽出操作の基礎定数であるDが減少する傾向を示
す。In order to control and keep Xa constant, it is necessary to measure T, which is easy for plant operation. Equation (4) shows a tendency for D, which is a basic constant of the extraction operation, to decrease as T increases.
本発明は1以上の抽出特性に基づき、溶媒抽出プロセス
における温度を計測し、有機相及び水相中の対象核種濃
度を一定濃度に制御することを特徴とする。The present invention is characterized in that the temperature in the solvent extraction process is measured based on one or more extraction characteristics, and the concentration of the target nuclide in the organic phase and the aqueous phase is controlled to a constant concentration.
以下、本発明の一実施例を第1図により説明する。ミキ
サー・セトラーやパルスカラム等の溶媒抽出装置1は、
溶液供給配管2.有機溶媒供給配管3.有機相出口配管
4及び水相出口配管5を有している。抽出装置1内には
、溶液温度計測用の温度センサ6が設置されており、温
度センサ6からの信号は、計測演算処理部7で増幅、A
D変換。An embodiment of the present invention will be described below with reference to FIG. A solvent extraction device 1 such as a mixer/settler or a pulse column is
Solution supply piping 2. Organic solvent supply piping 3. It has an organic phase outlet pipe 4 and an aqueous phase outlet pipe 5. A temperature sensor 6 for measuring the temperature of the solution is installed inside the extraction device 1, and a signal from the temperature sensor 6 is amplified by a measurement calculation processing section 7 and processed by A.
D conversion.
記憶、演算処理等が施され、制御装[8を介して温度調
節器9で濃度を制御するシステムになっている。It is a system in which storage, arithmetic processing, etc. are performed, and the concentration is controlled by a temperature regulator 9 via a control device [8].
抽出装置1の溶液供給配管2から供給したU。U was supplied from the solution supply pipe 2 of the extraction device 1.
Pu及びRu等のFPを含む硝酸溶液と、有機溶媒供給
配管3から供給したリン酸トリブチル(TOP)等の有
機溶媒が抽出装置1内で向流接触し、分配係数の大きな
U、Puは有機相に抽出され、分配係数の小さいRu等
のFPは水相中に残る0本プロセスの水相出入口におけ
る硝酸濃度はほとんど変化せず約3Nである為、(4)
式の分配係数評価式においては、温度のみの関数となる
。そこで第2図に有機相、水相中のRu濃度に及ぼす温
度依存性を試算した結果を示す。同図より、温度が30
℃±50%変動した場合、水相中のRu濃度はほとんど
依存しないが、有機相中のRu濃度は6 ppmからQ
、 4 ppmまで約1桁変動することがわかる。こ
の結果から、溶媒抽出プロセスにおいては、温度を計測
することにより、有機相中の濃度を制御することが可能
である。有機相中濃度がわかれば水相中濃度は前述の(
1)〜(4)式から計算で求まる。A nitric acid solution containing FPs such as Pu and Ru and an organic solvent such as tributyl phosphate (TOP) supplied from the organic solvent supply pipe 3 come into countercurrent contact in the extractor 1, and U and Pu, which have large partition coefficients, are FPs such as Ru that are extracted into the phase and have a small partition coefficient remain in the aqueous phase.The nitric acid concentration at the inlet and outlet of the aqueous phase of the process hardly changes and is approximately 3N, (4)
In the distribution coefficient evaluation formula, it is a function only of temperature. Therefore, FIG. 2 shows the results of a trial calculation of the temperature dependence on the Ru concentration in the organic phase and the aqueous phase. From the same figure, the temperature is 30
When fluctuating by ±50% in °C, the Ru concentration in the aqueous phase is almost independent, but the Ru concentration in the organic phase varies from 6 ppm to Q
, it can be seen that it fluctuates by about one order of magnitude up to 4 ppm. From this result, in the solvent extraction process, it is possible to control the concentration in the organic phase by measuring the temperature. If the concentration in the organic phase is known, the concentration in the aqueous phase can be calculated as described above (
It can be calculated from equations 1) to (4).
したがって、濃度を一定に制御する為には、抽出装置1
に設置した温度センサ6からの信号を連続的に収集し、
計測演算処理部7にて計測温度Tと基準温度Toとを常
に監視しながら、もし異常があれば、制御装置8を介し
て、温度調節器で加熱冷却操作をすることにより、濃度
制御ができる。Therefore, in order to control the concentration constant, the extraction device 1
Continuously collects signals from temperature sensor 6 installed at
The measurement calculation processing unit 7 constantly monitors the measured temperature T and the reference temperature To, and if there is an abnormality, the concentration can be controlled by heating and cooling the temperature controller via the control device 8. .
本実施例によれば、溶媒抽出プロセス内の温度を計測す
るだけでU、Pu、Ru等対象核種の濃度検出が可能で
ある為、オフラインによる化学操作及びフォトメトリに
よる濃度分析が不要となり。According to this embodiment, the concentration of target nuclides such as U, Pu, and Ru can be detected simply by measuring the temperature in the solvent extraction process, so offline chemical operations and concentration analysis by photometry are no longer necessary.
システムのコンパクト化、低コスト化が図れる。The system can be made more compact and lower in cost.
本発明によれば、温度計測システムのみで、溶媒抽出プ
ロセスのU、Pu及びRu等FPの濃度制御ができるの
で、従来と異なり、プロセス内の外乱によりU、Pu等
の濃度が変化しても、即座に対応可能となり、U、Pu
9品の品質向上に効果が大きい。According to the present invention, the concentration of FPs such as U, Pu, and Ru in the solvent extraction process can be controlled using only the temperature measurement system. , immediately available, U, Pu
It has a great effect on improving the quality of 9 products.
さらに、本プロセスのバイパスラインから試液を採取し
てオフラインで対象核種の濃度を検出していたものが、
オンラインで検出あるいは制御できるようになる。Furthermore, the concentration of the target nuclide was detected off-line by collecting a test solution from the bypass line of this process.
Can be detected or controlled online.
第1図は本発明の一実施例を示す構成図、第2図は、第
1図の構成で実施した場合の試算結果の線図である。FIG. 1 is a configuration diagram showing an embodiment of the present invention, and FIG. 2 is a diagram showing trial calculation results when the configuration shown in FIG. 1 is implemented.
Claims (1)
解液を溶媒抽出により、有機相側に核燃料物質を、水相
側に核分裂生成物を分離する装置において、有機相及び
水相出口の対象核種濃度を一定値に制御する為に、前記
装置に温度センサ、計測演算処理部、制御装置及び温度
調節器を設置して、溶解液温度を所定温度に保持しなが
ら濃度を制御することを特徴とする溶媒抽出プロセス用
濃度制御装置。1. In a device that separates the nuclear fuel material into the organic phase and the fission products into the aqueous phase by solvent extraction of a strong acid solution containing multiple types of nuclear fuel materials and fission products, the target of the organic phase and aqueous phase outlet In order to control the nuclide concentration to a constant value, a temperature sensor, a measurement calculation processing section, a control device, and a temperature regulator are installed in the device, and the concentration is controlled while maintaining the temperature of the solution solution at a predetermined temperature. Concentration control device for solvent extraction process.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61306442A JPS63159793A (en) | 1986-12-24 | 1986-12-24 | Concentration controller for solvent extraction process |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61306442A JPS63159793A (en) | 1986-12-24 | 1986-12-24 | Concentration controller for solvent extraction process |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63159793A true JPS63159793A (en) | 1988-07-02 |
Family
ID=17957053
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61306442A Pending JPS63159793A (en) | 1986-12-24 | 1986-12-24 | Concentration controller for solvent extraction process |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63159793A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0631290A1 (en) * | 1993-06-24 | 1994-12-28 | Hitachi, Ltd. | Reprocessing plant and method of operating the same |
-
1986
- 1986-12-24 JP JP61306442A patent/JPS63159793A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0631290A1 (en) * | 1993-06-24 | 1994-12-28 | Hitachi, Ltd. | Reprocessing plant and method of operating the same |
EP0817207A1 (en) * | 1993-06-24 | 1998-01-07 | Hitachi, Ltd. | Reprocessing plant and method for operating the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Bernstein et al. | A high-capacity annular centrifugal contactor | |
RU2663882C1 (en) | Method for recycling nuclear waste, including uranium (vi) purification from at least one actinide (iv) by producing actinide (iv) complex | |
Hadadian et al. | Separation of uranium (VI) using dispersive liquid-liquid extraction from leach liquor | |
Manchanda et al. | Distribution behavior of U (VI), Pu (IV), Am (III), and Zr (IV) with N, N-dihexyl octanamide under uranium-loading conditions | |
JPS63159793A (en) | Concentration controller for solvent extraction process | |
SE462303B (en) | PREPARED TEST PREPARATION BY ANALYSIS OF PARTICULATE SOCIETIES IN A FLOW OF WATER | |
EP0389801B1 (en) | Method of regulating a purex solvent extraction process | |
Sreenivasulu et al. | Studies related to the processing of U–Zr and U–Pu–Zr metallic fuels using tri-iso-amyl phosphate (TiAP) as extractant | |
JPS63180894A (en) | Concentration controller for solvent extraction process | |
Rodrigues et al. | Thermodynamic approach of uranium (VI) extraction by N, N-(2–ethylhexyl) isobutyramide | |
Stokely et al. | Selective Liquid-Liquid Extraction of Radiotin with 2-Thenoyltrifluoroacetone. | |
US3615227A (en) | Method for the determination of distribution factors | |
Chilton et al. | Isolation of plutonium in chloride media anion exchange resin studies—I | |
JP2865265B2 (en) | Primary water quality monitoring system for boiling water reactor | |
JP2575663B2 (en) | Online moisture analyzer | |
Dukes | The formation and effects of dibutyl phosphate in solvent extraction | |
Boudry et al. | Adaptation of the Purex process to the reprocessing of fast reactor fuels | |
Kessie | Plutonium and uranium hexafluoride hydrolysis kinetics | |
Terentiev et al. | Full-fledged affination extractive-crystallizing platform for technology validation of the fast reactor spent fuel reprocessing on fast neutrons-the results of first experiments | |
Suresh et al. | Extraction of U (VI) by tri-n-amyl phosphate under high solvent loading conditions | |
Hughes et al. | Distribution surfaces in solvent extraction systems | |
Fieg et al. | Experimental and theoretical studies of the steady-state and dynamic behaviour of packed columns | |
US3454366A (en) | Electronic controls of a plutonium extraction battery employing neutron detectors | |
Morgan et al. | Processing of irradiated reactor fuels. Effect of dibutyl phosphate in the tributyl phosphate processing system | |
Wierczinski et al. | Application of fast solvent extraction processes to studies of exotic nuclides |