JPS6315975B2 - - Google Patents

Info

Publication number
JPS6315975B2
JPS6315975B2 JP969382A JP969382A JPS6315975B2 JP S6315975 B2 JPS6315975 B2 JP S6315975B2 JP 969382 A JP969382 A JP 969382A JP 969382 A JP969382 A JP 969382A JP S6315975 B2 JPS6315975 B2 JP S6315975B2
Authority
JP
Japan
Prior art keywords
friction
coefficient
present
dry
bronze
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP969382A
Other languages
Japanese (ja)
Other versions
JPS58126948A (en
Inventor
Naohiro Hirose
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tungaloy Corp
Original Assignee
Toshiba Tungaloy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Tungaloy Co Ltd filed Critical Toshiba Tungaloy Co Ltd
Priority to JP969382A priority Critical patent/JPS58126948A/en
Publication of JPS58126948A publication Critical patent/JPS58126948A/en
Publication of JPS6315975B2 publication Critical patent/JPS6315975B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、ブロンズ系の乾式焼結摩擦材料に関
し、特に摩擦係数が高く、しかも相手材に対する
攻撃性も改善されるようにしたものである。 従来、乾式の摩擦クラツチおよびブレーキを含
むアスベスト系乾式摩擦材料では、熱フエード現
象、水フエード現象から、摩擦係数の減少問題が
あり、ブロンズ系摩擦材料では、水フエード現象
による摩擦係数の低下は少ないが、前記アスベス
ト系摩擦材料に対しては摩擦係数が低いという欠
点があつた。 また、摩擦係数を大きくすると摩耗が多くなつ
て、相反する上記問題点を抑止することが要求さ
れ、特に材料組成の面からの開発が必要とされて
いる。 本発明は、上述の点に鑑みなされたもので、ブ
ロンズ系の焼結合金からなる乾式焼結摩擦材料に
おいて、前記焼結合金は、重量比で銅60〜80%、
錫3〜20%、アルミナおよび/またはシリカを3
〜20%、黒鉛3〜10%、二硫化モリブデン1〜5
%およびフツ化カルシウム10%以下を含む高摩擦
係数を有し、かつ相手板に対する攻撃性も改善さ
れている乾式焼結摩擦材料を提供するものであ
る。 以下、本発明乾式焼結摩擦材料について、便宜
的にマトリツクス成分、耐摩耗成分および潤滑成
分に分けて説明する。 (1) マトリツクス成分 本発明の乾式焼結摩擦材料は、マトリツクス成
分としてブロンズ系の焼結合金を適用している。
従来のアスベスト系摩擦材料では、摩擦係数は高
いが、前述した熱フエード現象、水フエード現象
に対する抵抗性が低い。また鉄系の焼結摩擦材料
では、さびの問題や耐摩耗性が低いという欠陥を
有する。 そこで、本発明では、ブロンズ系のマトリツク
ス材料に着目し、その組成として、重量比(以下
同じ)で、銅60〜80%、錫3〜20%、の範囲を選
択した。この範囲は、従来のブロンズ系のマトリ
ツクス範囲としては、むしろ一般的なものであ
る。しかし、その選択基準は、摩擦面の安定性か
らである。すなわち、ブロンズ系のマトリツクス
材は、材料強度に係わりをもち、制動時摩擦係数
を安定させ、かつ割れの発生や摩耗の増大を抑止
するため、前記添加量を必要とする。 (2) 耐摩耗成分 本発明の乾式焼結摩擦材料は、耐摩耗成分とし
て、アルミナ(Al2O3)および/またはシリカ
(SiO2)を3〜20%含有させている。この含有量
は、従来の範囲とほゞ同じであるが、摩擦係数を
高め、また摩擦において発生する移着物や反応生
成物をかき落す効果がある。しかし多すぎると相
手材への攻撃性に応じて、その相手材を攻撃する
ため範囲が適宜選択されるものである。 (3) 潤滑成分 本発明の乾式焼結摩擦材料は、潤滑成分とし
て、黒鉛3〜10%、二硫化モリブデン(MoS2
1〜5%、およびフツ化カルシウム(CaF2)10
%以下を含有させている。この選択基準は、相手
材に対する攻撃性の改善および高温状態における
高摩擦係数の保持から選択されている。すなわ
ち、これらの成分は、温度上昇過程で、黒鉛、
MoS2,CaF2の順にそれぞれの温度域で潤滑性を
発揮し、またそれぞれの温度域を超えると摩擦係
数向上剤として働くものである。そして特に
CaF2は、高温摩擦条件下で潤滑作用があり、ま
た種々の実験結果から相手材に対する攻撃性を改
良する顕著な効果があることも判明した。 なお、潤滑成分として一般的な鉛(Pb)、亜鉛
(Zn)については、熱フエード現象に伴ない高摩
擦係数を維持できないことの知見に基づき添加さ
れていない。すなわち、本発明の乾式焼結摩擦材
料は、その摩擦係数が約0.4〜0.6であり、高摩擦
係数を有する材料であつて、熱フエード現象、水
フエード現象に対する抵抗性が高く、他方相手材
に対する攻撃性が改善されているものである。 次に、本発明乾式焼結摩擦材料における一実施
例について説明する。 本発明の乾式焼結摩擦材料として、A〜C、従
来の比較材料としてD〜Gの試料を製造した。そ
の成分組成(単位重量%)は、第1表のとおりで
ある。 また、このときの製造条件は、79〜82%の密度
に圧縮成形後、780℃〜820℃の温度で還元雰囲気
中60分間加圧保持して焼結したものである。な
お、試料の大きさは、縦20mm×横15mm×厚さ5mm
の長方形板とした。
The present invention relates to a bronze-based dry sintered friction material that has a particularly high coefficient of friction and is also improved in its aggressiveness against mating materials. Conventionally, asbestos-based dry friction materials, including those used in dry friction clutches and brakes, have had the problem of decreasing friction coefficients due to thermal and water fade phenomena, but with bronze-based friction materials, the decrease in friction coefficients due to water fade phenomena is small. However, the above-mentioned asbestos-based friction materials have a drawback of having a low coefficient of friction. In addition, increasing the coefficient of friction increases wear, so it is necessary to suppress the above-mentioned contradictory problems, and there is a need for development in terms of material composition in particular. The present invention has been made in view of the above points, and provides a dry sintered friction material made of a bronze-based sintered alloy, in which the sintered alloy has a weight ratio of 60 to 80% copper;
3-20% tin, 3% alumina and/or silica
~20%, graphite 3~10%, molybdenum disulfide 1~5
The present invention provides a dry sintered friction material having a high coefficient of friction containing 10% or less of calcium fluoride and improved aggressiveness against a mating plate. Hereinafter, the dry sintered friction material of the present invention will be explained separately into a matrix component, a wear-resistant component, and a lubricating component for convenience. (1) Matrix component The dry sintered friction material of the present invention uses a bronze-based sintered alloy as a matrix component.
Conventional asbestos-based friction materials have a high coefficient of friction, but have low resistance to the aforementioned thermal fade phenomenon and water fade phenomenon. Furthermore, iron-based sintered friction materials have the disadvantage of rust and low wear resistance. Therefore, in the present invention, we focused on a bronze-based matrix material, and selected a composition in the range of 60 to 80% copper and 3 to 20% tin in terms of weight ratio (the same applies hereinafter). This range is rather typical for conventional bronze-based matrix ranges. However, the selection criterion is based on the stability of the friction surface. That is, the bronze-based matrix material is related to material strength, and requires the above-mentioned addition amount in order to stabilize the coefficient of friction during braking and to suppress the occurrence of cracks and increase in wear. (2) Wear-resistant component The dry sintered friction material of the present invention contains 3 to 20% of alumina (Al 2 O 3 ) and/or silica (SiO 2 ) as a wear-resistant component. This content is approximately the same as the conventional range, but has the effect of increasing the coefficient of friction and scraping off deposits and reaction products generated during friction. However, if there is too much, the range will be appropriately selected to attack the opponent material depending on the aggressiveness towards the opponent material. (3) Lubricating components The dry sintered friction material of the present invention contains 3 to 10% graphite and molybdenum disulfide (MoS 2 ) as lubricating components.
1-5%, and calcium fluoride ( CaF2 ) 10
% or less. The selection criteria were selected based on improved aggressiveness against mating materials and retention of a high coefficient of friction in high temperature conditions. In other words, these components convert into graphite, graphite, and
MoS 2 and CaF 2 exhibit lubricity in the respective temperature ranges in that order, and act as friction coefficient improvers when the respective temperature ranges are exceeded. and especially
CaF 2 has a lubricating effect under high-temperature friction conditions, and various experimental results have also revealed that it has a significant effect on improving the aggressiveness of mating materials. Note that lead (Pb) and zinc (Zn), which are common lubricating ingredients, are not added based on the knowledge that a high coefficient of friction cannot be maintained due to the thermal fade phenomenon. That is, the dry sintered friction material of the present invention has a friction coefficient of about 0.4 to 0.6, and is a material with a high friction coefficient, and has high resistance to thermal fade phenomenon and water fade phenomenon, and has high resistance to the opposing material. It has improved aggressiveness. Next, an example of the dry sintered friction material of the present invention will be described. Samples A to C were produced as dry sintered friction materials of the present invention, and samples D to G were produced as conventional comparative materials. Its component composition (unit weight %) is as shown in Table 1. Moreover, the manufacturing conditions at this time were that after compression molding to a density of 79 to 82%, sintering was performed by holding under pressure for 60 minutes at a temperature of 780° C. to 820° C. in a reducing atmosphere. The size of the sample is 20 mm long x 15 mm wide x 5 mm thick.
It was made into a rectangular plate.

【表】 次に、上記A〜Gについて、JIS D 4411で規
定された定速式摩擦試験機を用いて性能比較した
が、第2表のような結果が得られた。
[Table] Next, the performances of A to G above were compared using a constant speed friction tester specified in JIS D 4411, and the results shown in Table 2 were obtained.

【表】【table】

【表】 第2表は、摩擦係数、摩耗率、相手板攻撃性お
よび耐熱フエード性の4つについて比較したもの
である。この場合、これらの特性値は、摩擦試験
およびフエード試験により得たものである。そし
て、これらの試験条件は、両試験とも相手板を外
径=350mmφのFC20として、摺速=10m/src、
面圧=5Kg/cm2の条件で前述した大きさの試料を
2個回転方向で180゜離して相手板に押付けるよう
にしたものである。 また、摩擦試験では、摩擦面温度を自然発熱と
し、15分間連続回転したときの摩擦係数μ、摩耗
率δおよび相手板攻撃性を第2表のように測定し
た。なお、相手板攻撃性については、相手板の厚
みの減少量を表面粗さ計で測定したものであり、
その評価基準は、なし=0、大=0.004mm、非常
に大=0.0010mmとしたものである。 さらに、フエード試験では、100℃のときの摩
擦係数に対し、押付けを続けることによつて250
℃に到達したときの摩擦係数の低下量を測定した
ものである。そして、第2表における耐熱フエー
ド性の評価基準は、優=0.01、良=0.02、やゝ劣
る=0.03とした。 この結果、本発明品に係る試料(A〜C)は、
いずれもすぐれた性能を示し、特にCaF2の添加
による効果が顕著であつた。これに対し、比較の
ために行つたCaF2の添加がない試料(D〜G)
は、相手板攻撃性および耐熱フエード性が共に良
好なものはなかつた。 なお、CaF2の添加量については、各種試験し
た結果10%以下が好適範囲であると判明した。10
%を超えるものは、一般的に摩耗量の増加となつ
て現われることから排除した。 本発明は、以上説明したようにブロンズ系の乾
式焼結摩擦材料について、フツ化カルシウムを添
加した特定の成分組成とすることによつて以下の
ように効果のある乾式摩擦材料が提供されるもの
である。 第1に高摩擦係数を有する乾式焼結摩擦材料が
提供されること。本発明では、約0.4〜0.6の高摩
擦係数が得られ耐熱フエード性も優れるものであ
る。これは、特に高速摺動化でも安定した摩擦面
が得られることを意味し、自動車用には、特に好
適なものといえる。 第2に、相手板に対する攻撃性が改善された乾
式焼結摩擦材料が提供されること。一般的には、
摩擦係数が高ければ、摩耗量が多くなり、これに
伴つて相手板に対する攻撃性も増加する。しか
し、本発明では、摩擦係数が高い反面、その摩耗
率も抑えられているものである。これは、第2表
中の摩耗率をみれば、本発明のA〜Cが、従来例
のD,EおよびF,G間に位置していることから
も明らかである。したがつて、攻撃性に対する改
善から、いわゆる鳴きの減少にもつながるもので
ある。 第3に、水フエード現象に対しても改善された
乾式焼結摩擦材料が提供されること。本発明で
は、ブロンズ系のマトリツクスを基にしているた
め水フエード現象に対しても抵抗性があり、特に
露出形の二輪自動車には好適する。この場合相手
板としてステンレス鋼を使用すれば、さびの問題
も同時に解決される。
[Table] Table 2 compares the following four factors: friction coefficient, wear rate, attack on mating plate, and heat fade resistance. In this case, these characteristic values were obtained by friction tests and fade tests. In both tests, the mating plate was FC20 with an outer diameter of 350 mmφ, the sliding speed was 10 m/src, and
Two samples of the size described above were pressed against a mating plate at a rotational direction of 180° under the condition of surface pressure = 5 kg/cm 2 . In addition, in the friction test, the friction surface temperature was set as natural heat generation, and the friction coefficient μ, wear rate δ, and opponent plate aggressiveness were measured as shown in Table 2 during continuous rotation for 15 minutes. Regarding the aggressiveness of the opponent board, the amount of decrease in the thickness of the opponent board was measured using a surface roughness meter.
The evaluation criteria were: none = 0, large = 0.004 mm, and very large = 0.0010 mm. Furthermore, in the fade test, the coefficient of friction at 100°C was increased to 250°C by continuing to press.
The amount of decrease in the coefficient of friction when the temperature reached ℃ was measured. The evaluation criteria for heat fade resistance in Table 2 were: excellent = 0.01, good = 0.02, and slightly poor = 0.03. As a result, the samples (A to C) related to the products of the present invention were
All showed excellent performance, and the effect of adding CaF 2 was particularly remarkable. In contrast, samples without addition of CaF 2 (D to G) were conducted for comparison.
None of them had good attack resistance to the mating plate and heat fade resistance. As for the amount of CaF 2 added, various tests have revealed that a suitable range is 10% or less. Ten
% was excluded because it generally results in an increase in the amount of wear. As explained above, the present invention provides a dry friction material having the following effects by adding calcium fluoride to a bronze-based dry sintered friction material with a specific component composition. It is. First, a dry sintered friction material having a high coefficient of friction is provided. In the present invention, a high coefficient of friction of about 0.4 to 0.6 is obtained and the heat fade resistance is also excellent. This means that a stable friction surface can be obtained even when sliding at high speeds, making it particularly suitable for automobiles. Second, a dry sintered friction material with improved aggressiveness against a mating plate is provided. In general,
If the coefficient of friction is high, the amount of wear will increase, and the aggressiveness against the mating plate will also increase accordingly. However, in the present invention, while the friction coefficient is high, the wear rate is also suppressed. This is clear from the fact that when looking at the wear rates in Table 2, A to C of the present invention are located between D and E and F and G of the conventional example. Therefore, the improvement in aggressiveness also leads to a reduction in so-called barking. Third, a dry sintered friction material is provided that also has improved resistance to water fade. Since the present invention is based on a bronze matrix, it is resistant to water fade, and is particularly suitable for exposed type two-wheeled vehicles. In this case, if stainless steel is used as the mating plate, the problem of rust will be solved at the same time.

Claims (1)

【特許請求の範囲】 1 ブロンズ系の焼結合金からなる乾式焼結摩擦
材料において、 前記焼結合金は、重量比で、銅60〜80%、錫3
〜20%、アルミナおよび/またはシリカを3〜20
%、黒鉛3〜10%、二硫化モリブデン1〜5%お
よびフツ化カルシウム10%以下を含むことを特徴
とする乾式焼結摩擦材料。
[Claims] 1. A dry sintered friction material made of a bronze-based sintered alloy, wherein the sintered alloy contains 60 to 80% copper and 3% tin by weight.
~20%, 3~20% alumina and/or silica
%, graphite 3-10%, molybdenum disulfide 1-5% and calcium fluoride 10% or less.
JP969382A 1982-01-25 1982-01-25 Dry sintered friction material Granted JPS58126948A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP969382A JPS58126948A (en) 1982-01-25 1982-01-25 Dry sintered friction material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP969382A JPS58126948A (en) 1982-01-25 1982-01-25 Dry sintered friction material

Publications (2)

Publication Number Publication Date
JPS58126948A JPS58126948A (en) 1983-07-28
JPS6315975B2 true JPS6315975B2 (en) 1988-04-07

Family

ID=11727297

Family Applications (1)

Application Number Title Priority Date Filing Date
JP969382A Granted JPS58126948A (en) 1982-01-25 1982-01-25 Dry sintered friction material

Country Status (1)

Country Link
JP (1) JPS58126948A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08100227A (en) 1994-07-30 1996-04-16 Sumitomo Electric Ind Ltd Sintered sliding member
JPH08245949A (en) * 1995-03-08 1996-09-24 Sumitomo Electric Ind Ltd Dry-type friction material and its production

Also Published As

Publication number Publication date
JPS58126948A (en) 1983-07-28

Similar Documents

Publication Publication Date Title
US2408430A (en) Friction composition product
US4659679A (en) Insulative composition and method of making articles therefrom
CN103459626A (en) Sintered friction material for high-speed rail
JPS5881948A (en) Aluminum composite material excellent in wear resistance and vibration attenuating capacity
EP0740745B1 (en) FRICTION MATERIAL FOR USE WITH Al.ALLOY ROTOR
Liu et al. The influence of surface oxidation on the wear resistance of cast iron
JPS6315975B2 (en)
JP3213193B2 (en) Sliding composition and sliding member
JPH05179232A (en) Sintered metallic friction material for brake
JPS58136737A (en) Bearing aluminum alloy
JP4589215B2 (en) Sintered friction material
US6004370A (en) Sintered friction material
US5841042A (en) Brake lining material for heavy-load braking device
JPS6315976B2 (en)
JPS63109131A (en) Friction material of sintered alloy
JPS58153745A (en) Dry sintered friction material
JPH0645837B2 (en) Sintered alloy friction material
JPS626736B2 (en)
JPS61207549A (en) Sintered alloy friction material
JPS60200932A (en) Friction material
JPS58147534A (en) Dry sintered friction material
SU589270A1 (en) Sintered friction material
JP2000328171A (en) Inorganic frictional material
RU2026397C1 (en) Copper-base powder antifrictional material
JPS6037180B2 (en) Iron-based or copper-based sintered sliding material containing manganese sulfide