JPS63159750A - Array type ultrasonic probe - Google Patents
Array type ultrasonic probeInfo
- Publication number
- JPS63159750A JPS63159750A JP61306526A JP30652686A JPS63159750A JP S63159750 A JPS63159750 A JP S63159750A JP 61306526 A JP61306526 A JP 61306526A JP 30652686 A JP30652686 A JP 30652686A JP S63159750 A JPS63159750 A JP S63159750A
- Authority
- JP
- Japan
- Prior art keywords
- tungsten
- epoxy
- oscillators
- acoustic impedance
- electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000523 sample Substances 0.000 title claims abstract description 21
- 239000000463 material Substances 0.000 claims abstract description 28
- 239000000919 ceramic Substances 0.000 claims abstract description 15
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 claims abstract description 7
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 abstract description 20
- 239000010937 tungsten Substances 0.000 abstract description 19
- 229910052721 tungsten Inorganic materials 0.000 abstract description 19
- 239000004593 Epoxy Substances 0.000 abstract description 18
- 239000012212 insulator Substances 0.000 abstract description 6
- 238000004519 manufacturing process Methods 0.000 abstract description 3
- 239000000758 substrate Substances 0.000 abstract description 2
- 238000012856 packing Methods 0.000 abstract 3
- 230000004304 visual acuity Effects 0.000 abstract 3
- 230000010287 polarization Effects 0.000 abstract 1
- 238000001514 detection method Methods 0.000 description 5
- 230000001681 protective effect Effects 0.000 description 5
- 238000000034 method Methods 0.000 description 4
- 229910010293 ceramic material Inorganic materials 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 238000003745 diagnosis Methods 0.000 description 2
- 238000002592 echocardiography Methods 0.000 description 2
- 239000003822 epoxy resin Substances 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical group [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/22—Details, e.g. general constructional or apparatus details
- G01N29/24—Probes
- G01N29/2437—Piezoelectric probes
- G01N29/245—Ceramic probes, e.g. lead zirconate titanate [PZT] probes
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Transducers For Ultrasonic Waves (AREA)
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
- Ultra Sonic Daignosis Equipment (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の目的〕
(産業上の利用分野)
この発明は、超音波診断や超音波探傷に用いる超音波探
触子に関する。Detailed Description of the Invention [Object of the Invention] (Industrial Application Field) The present invention relates to an ultrasonic probe used for ultrasonic diagnosis and ultrasonic flaw detection.
(従来の技術)
超音波診断や超音波探傷に使用される超音波探触子は圧
電振動子の背面にバンキング材、超音波の放射面にマツ
チング層を設けた構成となっている。超音波探触子の高
い距離分解能を目的として高い音響インピーダンスを有
するバッキング材が開発されてきた。圧電振動子に圧電
セラミックス材料を用いた場合、高い距離分解能を実現
するためには、その音響インピーダンスは、圧電セラミ
ックス材料の音響インピーダンス30〜35X106k
g/ゴ弓の約8割が望ましく即ち24〜28X106k
p/rrt・Sの高い音響インピーダンスが要求される
。(Prior Art) Ultrasonic probes used for ultrasonic diagnosis and ultrasonic flaw detection have a structure in which a banking material is provided on the back side of a piezoelectric vibrator and a matching layer is provided on the ultrasonic radiation surface. Backing materials with high acoustic impedance have been developed for the purpose of high distance resolution of ultrasonic probes. When a piezoelectric ceramic material is used for the piezoelectric vibrator, in order to achieve high distance resolution, the acoustic impedance of the piezoelectric ceramic material must be 30 to 35 x 106k.
About 80% of the g/go bow is desirable, i.e. 24-28X106k
A high acoustic impedance of p/rrt·S is required.
この高い音響インピーダンスを有するバッキング材を実
現するには、エポキシ樹脂に金属粉末を混合した複合材
料が有効であり、特にタングステン粉末を用いたバッキ
ング材はその高い混合率で、20〜zsxxo榴/m”
・Sの音響インピーダンスが得られる。このタングステ
ンとエポキシ樹脂の複合材料(以下、タングステン・エ
ポキシと略す)を圧電セラミックス振動子の背面に接着
しバッキング材として使用した場合、タングステンIエ
ポキシは導電性が良好であるために、圧電セラミックス
撮動子の裏面電極とバッキング材が眠気的に短絡し同電
位となる。一般に1個の振動子を用いた単一探触子では
、振動子の裏面の電極に信号を印加し、超音波放射面、
即ち表面の電極をアースし、電磁的にはシールド電極と
して使用するのが通常である。故に、タングステン・エ
ポキシの導電率が良く振動子の裏面の電極と短絡しても
何ら問題はなく、絶縁体である必要はない。し゛かし、
複数個の振動子を配列したアレイ型超音波探触子におい
て、同様な構成では、複数個の振動子の裏面電極が全て
短絡し、電気的に共通の駆動電極となる。アレイ壓探触
子は、電子走査により、超音波ビームの集束や偏向を特
長としている、島のであシ、その電子走査は、各々のエ
レメントあるいはチャンネルに印加する駆動パルスのタ
イミングを変化して行うために、各々のエレメントは、
絶縁されているととが必要である。しかし、このように
、タングステン・エポキシをバッキング材に用いた場合
、複数個の振動子の裏面の電極は、全て共通となり、電
子走査は不可能となる。そこで従来、振動子の裏面の電
極を全て共通アース電極として用い、超音波放射面電極
に駆動パルスを印加して、電子走査を行う方法を採用し
ていた。しかしこの場合、マツチング層あるいは、保護
板は。In order to realize a backing material with this high acoustic impedance, a composite material in which epoxy resin is mixed with metal powder is effective.In particular, a backing material using tungsten powder has a high mixing ratio of 20~zsxxo/m. ”
・Acoustic impedance of S can be obtained. When this composite material of tungsten and epoxy resin (hereinafter abbreviated as tungsten epoxy) is bonded to the back surface of a piezoelectric ceramic resonator and used as a backing material, tungsten I epoxy has good conductivity, so The back electrode of the mover and the backing material are drowsily short-circuited and have the same potential. Generally, in a single probe using one transducer, a signal is applied to the electrode on the back of the transducer, and the ultrasonic emission surface
That is, the surface electrode is usually grounded and used as an electromagnetic shield electrode. Therefore, tungsten epoxy has good conductivity and there is no problem even if it is shorted to the electrode on the back side of the vibrator, so it does not need to be an insulator. However,
In an array type ultrasonic probe in which a plurality of transducers are arranged, in a similar configuration, the back electrodes of the plurality of transducers are all short-circuited and become an electrically common drive electrode. The array probe is characterized by focusing and deflecting the ultrasonic beam by electronic scanning.The electronic scanning is performed by changing the timing of the driving pulse applied to each element or channel. Therefore, each element is
Insulated caps and caps are required. However, when tungsten epoxy is used as the backing material in this way, the electrodes on the back surfaces of the plurality of vibrators all become common, making electronic scanning impossible. Conventionally, therefore, a method has been adopted in which all the electrodes on the back surface of the vibrator are used as a common ground electrode, and a drive pulse is applied to the ultrasonic emission surface electrode to perform electronic scanning. However, in this case, the matching layer or protective plate.
絶縁体に限定される。更に、電磁的な影響を除外するた
めに、マツチング層や保護板の表面にシールド電極を設
けなければならないなどの問題点があった。更に1表面
の駆動電極は、切断後のパリの発生や、タングステン会
エポキシの粉末によシ短絡しやすいなどの欠点があった
。Limited to insulators. Furthermore, in order to exclude electromagnetic influences, there are other problems such as the need to provide shield electrodes on the surfaces of the matching layer and the protective plate. Furthermore, the drive electrode on one surface has drawbacks such as the generation of sparks after cutting and the tendency to short circuit due to tungsten-containing epoxy powder.
(発明が解決しようとする問題点)
このようにアレイ型超音波探触子のバッキング材にタン
グステン・エポキシを用いた場合シールド電極をマツチ
ング層や保護板に設けなければならない1%に超音波探
傷においては、電極の耐摩耗性や保護板との大きな付着
強度が要求されるが、これらの要求を満足する十分な特
性が得られないなどの問題点があった。又、駆動電極が
1表面にあるため、エレメント間が電気的に短絡しやす
いなどの欠点があった。(Problems to be Solved by the Invention) As described above, when tungsten epoxy is used as the backing material of an array type ultrasonic probe, a shield electrode must be provided on the matching layer or protective plate for ultrasonic flaw detection. In this method, abrasion resistance of the electrode and high adhesion strength to the protective plate are required, but there have been problems such as the inability to obtain sufficient characteristics to satisfy these requirements. Furthermore, since the drive electrode is located on one surface, there is a drawback that electrical short circuits between elements are likely to occur.
本発明の目的は以上の問題点を解消し、バッキング材と
振動子間に絶縁体を設け、従来のように振動子の裏面の
電極を駆動電極、また、表面の電極を共通アース電極と
して使用し、良好な特性を有するアレイ型超音波探触子
を提供する仁とである。The purpose of the present invention is to solve the above problems, provide an insulator between the backing material and the vibrator, and use the electrode on the back side of the vibrator as a drive electrode and the electrode on the front side as a common ground electrode as in the past. The company also provides an array-type ultrasonic probe with good characteristics.
(問題を解決するための手段)
この発明は、タングステン・エポキシと同等の音響イン
ピーダンスを有する絶縁体をタングステン・エポキシと
振動子との間に設けることによシ、複数個の振動子を絶
縁し、従来と同様の電極構成で、アレイ探触子が実現で
きることが特徴である。即ち、タングステン・エポキシ
と振動子が絶縁されているために、振動子の裏面電極を
、パルス駆動電極として使用でき、また、超音波放射面
の表面電極を共通アース電極として使用できることがあ
げられる。(Means for Solving the Problem) This invention insulates a plurality of vibrators by providing an insulator having an acoustic impedance equivalent to that of tungsten epoxy between the tungsten epoxy and the vibrator. , the feature is that an array probe can be realized with the same electrode configuration as the conventional one. That is, since the tungsten epoxy and the vibrator are insulated, the back electrode of the vibrator can be used as a pulse drive electrode, and the front electrode of the ultrasound emission surface can be used as a common ground electrode.
(作 用)
この発明によれば、高い距離分解能を実現する為に開発
したタングステン・エポキシを有効に活用し、距離分解
能が向上するので高い精度の画像化が可能となる。又、
エレメント間の短絡事故も減少し、高い製造歩留ルが得
られる。(Function) According to the present invention, tungsten epoxy, which was developed to achieve high distance resolution, is effectively utilized, and distance resolution is improved, making it possible to perform highly accurate imaging. or,
Short-circuit accidents between elements are also reduced, resulting in a high manufacturing yield.
(実施例) 以下1発明の実施例を図面に従って説明する。(Example) An embodiment of the invention will be described below with reference to the drawings.
第1図に、本発明のアレイ型超音波探触子の断面図を示
した1本探触子の構成は、タングステン・エポキシのバ
ッキング材1と電極3を設けた複数個の振動子2の間に
続接板4があり、振動子20表面には、マツチング層又
は保護板5が取付けられた構成となっている。FIG. 1 shows a cross-sectional view of the array-type ultrasonic probe of the present invention. The configuration of a single probe includes a backing material 1 of tungsten epoxy and a plurality of transducers 2 provided with electrodes 3. There is a connection plate 4 between them, and a matching layer or a protection plate 5 is attached to the surface of the vibrator 20.
次に、アレイ探触子の製造法を簡単に述べる。Next, a method for manufacturing the array probe will be briefly described.
先ずタングステン・エポキシのバッキング材lに絶縁板
4を接着した後、所定のエレメント数。First, the insulating plate 4 is bonded to the tungsten epoxy backing material l, and then the predetermined number of elements are bonded.
あるいは、チャンネル数に和尚する。あらかじめ電極3
を設け、分極済の圧電セラミックス基板2を絶縁板4に
接着する。次に所定の間隔で切断し複数個のセラミック
振動子2を得る。この切断は絶縁板4を完全に切断する
必要はなく、その厚みの1/2〜1/3を残すのが望ま
しい。更に、マツチング層あるいは保護板5をセラミッ
ク撮動子に接着する。Or, adjust to the number of channels. Electrode 3 in advance
is provided, and the polarized piezoelectric ceramic substrate 2 is bonded to the insulating plate 4. Next, a plurality of ceramic vibrators 2 are obtained by cutting at predetermined intervals. In this cutting, it is not necessary to completely cut the insulating plate 4, and it is preferable to leave 1/2 to 1/3 of its thickness. Furthermore, a matching layer or protection plate 5 is bonded to the ceramic sensor.
構成は以上述べたように、従来のバッキング材と振動子
及びマツチング層の構成に、導電性のバッキング材が振
動子の裏面電極と短絡しないように振動子とバッキング
材の間に絶縁板を設けた構成となっている。この構成に
おける絶縁板の音響特性、特に音響インピーダンスは、
高い距離分解能を目的として、開発したタングステン・
エポキシを有効に活用する為に最適な値を有する材料を
選択しなければならない。その最適な音響インピーダン
スを選択するために、探触子の等何回路を用いて、超音
波探傷におけるパルス・エコーヲシミュレーシッンし、
パルス−エコーの短い即チ、距離分解能が高い範囲を求
めた。As described above, the configuration is as follows: In addition to the conventional backing material, vibrator, and matching layer configuration, an insulating plate is provided between the vibrator and the backing material to prevent the conductive backing material from shorting with the back electrode of the vibrator. The structure is as follows. The acoustic properties of the insulating plate in this configuration, especially the acoustic impedance, are
Tungsten, which was developed for the purpose of high distance resolution.
In order to utilize epoxy effectively, materials with optimal values must be selected. In order to select the optimal acoustic impedance, we simulated the pulse echo in ultrasonic flaw detection using the same number of circuits in the probe.
We sought a range with short pulse-echo pulses and high distance resolution.
シミュレーシ胃ンに用いた探触子の構成材料は圧電セラ
ミックス振動子には、音響インピーダンス35X10
kg/rrt−8を有するチタン酸鉛系の圧電セラミッ
クス材料、バッキング材には、音響インピーダンス23
.5X10’〜/rrt−8を有するタングステンψエ
ポキシ、保護板には音響インピーダンス40 x 10
6kg/rrt −Sを有する1/4波長の厚みのアル
ミナ板を用いた。尚、圧電セラミック振動子の機械的共
振周波数fo (fo=vo / 2eto 、 Vg
圧電セラミックス振動子の縦波音速s toセラミッ
クス振動子の厚み)を5MHzとした。また被検体は鉄
鋼材料で音響インピーダンス約45×106kg/ゴ・
Sとした。The component material of the probe used for the simulation is a piezoelectric ceramic vibrator with an acoustic impedance of 35 x 10
kg/rrt-8, the backing material has an acoustic impedance of 23
.. Tungsten ψ epoxy with 5X10'~/rrt-8, acoustic impedance 40 x 10 on protective plate
An alumina plate having a thickness of 1/4 wavelength and having a weight of 6 kg/rrt -S was used. Note that the mechanical resonance frequency of the piezoelectric ceramic vibrator fo (fo=vo/2eto, Vg
The longitudinal sound velocity (s to the thickness of the ceramic vibrator) of the piezoelectric ceramic vibrator was set to 5 MHz. The test object is made of steel and has an acoustic impedance of approximately 45 x 106 kg/go.
It was set as S.
シミエレーシ冒ンは、以上の圧電セラミックス振動子、
バッキング材保護板の材料定数を一定とし、絶縁板の音
響インピーダンスを5〜50X10’#/771’・S
と変化した場合の直接接触法における超音波探傷のパル
ス・エコーを計算した。Simieresi uses piezoelectric ceramic vibrators,
The material constant of the backing material protection plate is constant, and the acoustic impedance of the insulating plate is 5 to 50X10'#/771'S
The pulse echo of ultrasonic flaw detection in the direct contact method was calculated when the
第2図は、そのシミエレーシ冒ンの結果をグラフにまと
めたもので、横軸は、絶縁板の音響インピーダンスを示
し、縦軸はパルス幅として示した。FIG. 2 is a graph summarizing the results of the simulation, in which the horizontal axis shows the acoustic impedance of the insulating plate, and the vertical axis shows the pulse width.
このパルス幅は一般にパルスΦエコーの評価に使用され
るものでパルス嗜エコーの最大値の1/10の値の時間
幅を示した。但しこの絶縁体の厚みは。This pulse width is generally used for evaluating pulse Φ echoes, and the time width was 1/10 of the maximum value of pulse Φ echoes. However, the thickness of this insulator.
1/4波長として計算を行った。Calculations were performed using 1/4 wavelength.
パルス幅は、第2図に示すように、絶縁板の音響インピ
ーダンスを5X106kl/ゴーSから20XlO’k
q/ m’・Sへと増加するに従い短くなり、23〜2
7xlokg/ゴ・Sで、パルス幅が約0.471tB
と最短の値を示す、更に音響インピーダンスを増加する
と、パルス幅も増加する特性を示した。このように、絶
縁板の音響インピーダンスを23〜27×10Vゴ・S
の範囲に選択すれば、パルス幅が短く、即ち、高い距離
分解能が実現できるという結果が得られた。これらの条
件、即ち、電気的な絶縁性が十分なこと、音響インピー
ダンスが23〜27刈06kq/rrt−8であること
、更に加工性が良好なことなどを基に材料を検討した結
果、窒化アルミニウムを主成分としたセラはツクス(以
下窒化アルミニウムと略す)が適していることがわかっ
た。この窒化アルミニウムは、縦波音速が8480m/
S%密度が2.95 X 10 kg/lであシ音響イ
ンピーダンスが25 X 10 kg/y’・Sとなる
ので前述の最適な絶縁板の音響インピーダンスを十分満
足していもまたこの窒化アルミニウムは、層状化合物と
なっているため切削性が良好で、高精度な加工が可能で
ある。更に窒化アルミニウムの絶縁板の厚ミは、音響イ
ンピーダンスが25 X l 06に9/rrL” ”
Sで、バッキング材の音響インピーダンス23.5X
10 ’ kg/m” ” Sと非常に近いので1/4
波長(0,53m5 )にする必要はなく’、0.5〜
1.0關としても、パルス幅は0.47〜0.5μsと
変化は小さく、良好な特性が実現できる。The pulse width is determined by adjusting the acoustic impedance of the insulating plate from 5X106kl/GoS to 20XlO'k, as shown in Figure 2.
It becomes shorter as it increases to q/m'・S, and becomes 23 to 2
7xlokg/Go・S, pulse width is approximately 0.471tB
When the acoustic impedance was further increased, the pulse width also increased. In this way, the acoustic impedance of the insulating plate can be adjusted to 23 to 27 x 10V Go・S.
It was found that if the pulse width is selected within the range of , the pulse width is short, that is, high distance resolution can be achieved. After considering the material based on these conditions, namely, sufficient electrical insulation, acoustic impedance of 23 to 27 kq/rrt-8, and good workability, we found that nitrided It was found that Tx (hereinafter abbreviated as aluminum nitride) is suitable as a ceramic whose main component is aluminum. This aluminum nitride has a longitudinal sound velocity of 8480 m/
Since the S% density is 2.95 x 10 kg/l and the acoustic impedance is 25 x 10 kg/y'S, this aluminum nitride is Since it is a layered compound, it has good machinability and can be processed with high precision. Furthermore, the thickness of the aluminum nitride insulating plate has an acoustic impedance of 25 x l06 to 9/rrL""
S, acoustic impedance of backing material 23.5X
10'kg/m"" It is very close to S, so it is 1/4
There is no need to set the wavelength (0.53m5), 0.5~
Even if the pulse width is 1.0, the change in pulse width is small, 0.47 to 0.5 μs, and good characteristics can be achieved.
以上述べたように本発明は絶縁板としてバッキング材と
振動子の間に窒化アルミニウムを設けただ為、有効にタ
ングステンΦエポキシの高い音響インピーダンスを活用
でき、距離分解能の高いアレイ型超音波探触子が得られ
る。また、セラミック振動子の裏面電極をパルス駆動電
極として用い表面電極を共通アース電極、即ち、シール
ド電極として使用できるために電磁的なノイズが低減で
き高いSN比が得られる特長がある。As described above, in the present invention, since aluminum nitride is provided between the backing material and the vibrator as an insulating plate, the high acoustic impedance of tungsten Φ epoxy can be effectively utilized, resulting in an array-type ultrasonic probe with high distance resolution. is obtained. Further, since the back electrode of the ceramic vibrator can be used as a pulse drive electrode and the front electrode can be used as a common ground electrode, that is, a shield electrode, it has the advantage that electromagnetic noise can be reduced and a high S/N ratio can be obtained.
第1図は、本発明のアレイ型探触子の断f図、第2図は
絶縁板の音響インピーダンスを変化した場合のパルス・
エコーのパルス幅の特性である。
1・・・バッキング材、2・・・振動子、5・・・マツ
チング層。
代理人 弁理士 則 近 憲 佑
同 竹 花 喜久男
第1図
ft色釆&不反り音響インご一ダン又(X1d’Kg/
m2.5)第2図FIG. 1 is a cross-sectional view of the array type probe of the present invention, and FIG.
This is a characteristic of the echo pulse width. 1... Backing material, 2... Vibrator, 5... Matching layer. Agent: Patent Attorney Noriyuki Ken Yudo Takehana Kikuo Figure 1 ft Colored pot & non-warped acoustic inboard mata (X1d'Kg/
m2.5) Figure 2
Claims (1)
及びマッチング層で構成名れるアレイ型超音波探触子に
おいてバイキング材と圧電セラミックス振動子の間に窒
化アルミニウムを主成分とするセラミックスを設けたこ
とを特徴とするアレイ量超音波探触子。(1) In an array-type ultrasonic probe that is composed of multiple piezoelectric ceramic vibrators, a backing material, and a matching layer, a ceramic mainly composed of aluminum nitride is provided between the viking material and the piezoelectric ceramic vibrator. An array-quantity ultrasonic probe characterized by:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61306526A JPH0765986B2 (en) | 1986-12-24 | 1986-12-24 | Array type ultrasonic probe |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61306526A JPH0765986B2 (en) | 1986-12-24 | 1986-12-24 | Array type ultrasonic probe |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63159750A true JPS63159750A (en) | 1988-07-02 |
JPH0765986B2 JPH0765986B2 (en) | 1995-07-19 |
Family
ID=17958085
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61306526A Expired - Lifetime JPH0765986B2 (en) | 1986-12-24 | 1986-12-24 | Array type ultrasonic probe |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0765986B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007086180A1 (en) * | 2006-01-26 | 2007-08-02 | Hitachi Medical Corporation | Ultrasound probe |
JP2011229976A (en) * | 2011-08-08 | 2011-11-17 | Toshiba Corp | Ultrasonic probe and ultrasonic imaging apparatus |
CN114660182A (en) * | 2022-04-02 | 2022-06-24 | 常州达森特无损检测设备有限公司 | High-resolution ultrasonic transducer with wear-resistant layer |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5900107B2 (en) * | 2012-03-30 | 2016-04-06 | セイコーエプソン株式会社 | Ultrasonic transducer element chip and probe, electronic device and ultrasonic diagnostic apparatus |
-
1986
- 1986-12-24 JP JP61306526A patent/JPH0765986B2/en not_active Expired - Lifetime
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007086180A1 (en) * | 2006-01-26 | 2007-08-02 | Hitachi Medical Corporation | Ultrasound probe |
US7969067B2 (en) | 2006-01-26 | 2011-06-28 | Hitachi Medical Corporation | Ultrasound probe |
JP2011229976A (en) * | 2011-08-08 | 2011-11-17 | Toshiba Corp | Ultrasonic probe and ultrasonic imaging apparatus |
CN114660182A (en) * | 2022-04-02 | 2022-06-24 | 常州达森特无损检测设备有限公司 | High-resolution ultrasonic transducer with wear-resistant layer |
Also Published As
Publication number | Publication date |
---|---|
JPH0765986B2 (en) | 1995-07-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5099459A (en) | Phased array ultrosonic transducer including different sized phezoelectric segments | |
US4326418A (en) | Acoustic impedance matching device | |
US4462092A (en) | Arc scan ultrasonic transducer array | |
US4371805A (en) | Ultrasonic transducer arrangement and method for fabricating same | |
JPS605133A (en) | Ultrasonic converter improved in vibration mode | |
US4635484A (en) | Ultrasonic transducer system | |
US4583018A (en) | Electrode configuration for piezoelectric probe | |
JPS63159750A (en) | Array type ultrasonic probe | |
Greenstein et al. | A 2.5 MHz 2D array with Z-axis electrically conductive backing | |
Brown et al. | Generation and reception of wideband ultrasound | |
McNab et al. | Monolithic phased array for the transmission of ultrasound in NDT ultrasonics | |
JP2692878B2 (en) | Ultrasound diagnostic equipment | |
JP2001276067A (en) | Ultrasonic probe, method for manufacturing the same and ultrasonic diagnostic device | |
DE3149732A1 (en) | Ultrasonic transducer arrangement | |
Dias | Construction and performance of an experimental phased array acoustic imaging transducer | |
US7876027B2 (en) | Multilayer piezoelectric and polymer ultrawideband ultrasonic transducer | |
Goldberg et al. | Multi-layer PZT transducer arrays for improved sensitivity (for medical US) | |
KR20220101189A (en) | Methods and Systems for Multi-Frequency Transducer Array | |
JPH0236117Y2 (en) | ||
Fang et al. | Linear Ultrasonic Array Development incorporating Cantor Set Fractal Geometry | |
RU2121241C1 (en) | Piezoelectric converter and process of its manufacture | |
US20240066554A1 (en) | Transducer and method of manufacture | |
DeSilets et al. | Highly efficient transducer arrays useful in nondestructive testing applications | |
JPS6234500A (en) | Matrix like ultrasonic probe and its manufacture | |
JPH0534880B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |