JPS6315814B2 - - Google Patents

Info

Publication number
JPS6315814B2
JPS6315814B2 JP54011002A JP1100279A JPS6315814B2 JP S6315814 B2 JPS6315814 B2 JP S6315814B2 JP 54011002 A JP54011002 A JP 54011002A JP 1100279 A JP1100279 A JP 1100279A JP S6315814 B2 JPS6315814 B2 JP S6315814B2
Authority
JP
Japan
Prior art keywords
light
optical fiber
transformers
output
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54011002A
Other languages
Japanese (ja)
Other versions
JPS55103036A (en
Inventor
Koji Maeda
Toshinobu Ebizaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP1100279A priority Critical patent/JPS55103036A/en
Publication of JPS55103036A publication Critical patent/JPS55103036A/en
Publication of JPS6315814B2 publication Critical patent/JPS6315814B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Emergency Protection Circuit Devices (AREA)

Description

【発明の詳細な説明】 この発明は電気量を光量に変換する発光素子と
発光素子からの光量を伝達する為の通信線を主体
として送配電線に於ける故障の有無を差動保護の
原理を使つて保護する光差動保護継電方式に関す
るものである。
[Detailed Description of the Invention] This invention uses the principle of differential protection to detect the presence or absence of failures in power transmission and distribution lines, mainly consisting of light emitting elements that convert the amount of electricity into light amounts and communication lines for transmitting the amount of light from the light emitting elements. This relates to an optical differential protection relay system that uses .

従来、送配電線に於ける保護を、各変電所間に
張設された、通信線を用いて行う保護方式とし
て、表示線と呼ばれる導体を用いる表示線差動保
護継電方式があり、2端子、もしくは、3端子程
度までの端子数の保護が可能であるが、3端子を
越えると表示線に於ける伝送損失、強電回路から
の電磁誘導等が問題となり、適用できないのが現
状である。
Conventionally, as a protection method for protecting power transmission and distribution lines using communication lines stretched between substations, there is an indicator line differential protection relay system that uses a conductor called an indicator line. It is possible to protect terminals or the number of terminals up to 3 terminals, but if the number of terminals exceeds 3 terminals, transmission loss in the display line, electromagnetic induction from strong electric circuits, etc. become problems, so it is currently not applicable. .

一方、電力需要の偏在化、電力系統の拡大化に
必然的に送配電線の多端子化を要求しており、現
在は、系統の多端子化に於て、法護継電方式がネ
ツクとなつていると言える。以下、従来の表示線
保護継電方式について述べる。第1図は、保護し
ようとする多端子構成化された送配電線を示し、
本図では、5端子までの保護を考えている。
On the other hand, the uneven distribution of electricity demand and the expansion of power systems inevitably require multi-terminal transmission and distribution lines, and currently, the legally protected relay system is no longer a viable option for multi-terminal systems. I can say that I am getting used to it. The conventional display line protection relay system will be described below. Figure 1 shows a multi-terminal power transmission and distribution line to be protected.
In this diagram, protection for up to 5 terminals is considered.

第1図に於て、1A,1B,1C,1D,1E
は各変電所に設置されたCTを示す。第2図は、
第1図の保護を、表示線を用いて、差動保護を行
うとした場合の図であり、図中10A,10B,
10C,10D,10EはCTからの入力を変成
する変成器、20A,20B,20C,20Dは
それぞれの変電所から、中心となる変電所である
E変電所へと張設されている表示線を示す。30
A,30B,30C,30Dは各変電所からの表
示線を介して伝達された入力を変成する変成器、
50は5つの変電所からのCT入力を全部合成し
て差動をとつている差動回路である。本図から解
かるように、各変電所からの入力はトランス30
A,30B,30C,30Dを介して、結合され
た形となつている為端子数が増大すれば、するだ
け相手側の表示線回路が多く接続され、その部分
へ吸収される量が多くなり、必然的に伝送すべき
で量が増大し、CTの飽和を早める事になり差動
がとれなくなつてくる。一方表示線20A,20
B,20C,20Dは送配電線と平行して張設さ
れる事が多く、これら強電回路からの電磁誘導に
より表示線対間に現れる誤差電圧は差動回路50
に入力を与える事になり、差動回路50として
は、この事を考慮して感度低下を行つているのが
現状であり、この事も、伝送量の増大化、すなわ
ち、CTの飽和を早める方向へ作用している為、
過大入力域での差動がとれなくなる。
In Figure 1, 1A, 1B, 1C, 1D, 1E
indicates the CT installed at each substation. Figure 2 shows
This is a diagram for the case where the protection in Figure 1 is performed by differential protection using display lines, and in the figure, 10A, 10B,
10C, 10D, and 10E are transformers that transform the input from the CT, and 20A, 20B, 20C, and 20D are indicator lines that are stretched from each substation to the E substation, which is the central substation. show. 30
A, 30B, 30C, and 30D are transformers that transform the input transmitted via the display line from each substation;
50 is a differential circuit that combines all CT inputs from five substations to create a differential circuit. As can be seen from this diagram, the input from each substation is the transformer 30.
Since they are connected via A, 30B, 30C, and 30D, the more the number of terminals increases, the more display line circuits on the other side will be connected, and the amount absorbed by that part will increase. , the amount of data that must be transmitted will inevitably increase, which will accelerate the saturation of the CT and make it impossible to maintain differential transmission. On the other hand, display lines 20A, 20
B, 20C, and 20D are often stretched parallel to power transmission and distribution lines, and the error voltage that appears between the display line pairs due to electromagnetic induction from these high-power circuits is generated by the differential circuit 50.
The current situation is that the differential circuit 50 takes this into account and lowers its sensitivity.This also increases the amount of transmission, which accelerates the saturation of the CT Because it acts in the direction,
The differential cannot be maintained in the excessive input range.

従つて、現在は各変電所からの伝送された入力
量に比例した抑制力をかける(第2図では示して
ない)事により辛うじて3端子程度までが、保護
可能とされている訳であり、3端子を越えると、
伝送損失、強電回路からの電磁誘導による影響が
CTの飽和を早め、過大入力域での保護が問題と
なる。
Therefore, it is currently possible to protect up to three terminals by applying a suppressing force proportional to the amount of input transmitted from each substation (not shown in Figure 2). If you exceed 3 terminals,
Transmission loss and the effects of electromagnetic induction from high-voltage circuits
This speeds up the saturation of the CT, and protection in the excessive input range becomes a problem.

本発明は伝送量として、本質的に電磁誘導、並
びに端子数が増大していく事による相手側通信線
回路のインピーダンスの影響を受けない、光と言
う媒体を使う事による多端子保護を目的としてお
り、第3図に本発明による回路構成を示す。図中
3A,3B,3C,3D,3Eは各変電所に於け
るCTからの入力を変成する変成器、4A,4B,
4C,4D,4Eは各変電所からE端にある動作
判定部200までの距離を等しく見せる為の亘長
補償器、5A,5B,5C,5D,5Eは電気的
入力量を発光素子6A,6B,6C,6D,6E
への入力量に変換する光量変換器、7A,7B,
7C,7D,7Eは各変電所間に張設される光フ
アイバー線を示し、 100は各光フアイバー線からの光を結合させ
て動作判定部200に判定用入力を与える光結合
器を示す。
The purpose of the present invention is to protect multiple terminals by using a medium called light, which is essentially unaffected by electromagnetic induction and the impedance of the communication line circuit on the other side due to an increase in the number of terminals. FIG. 3 shows a circuit configuration according to the present invention. In the figure, 3A, 3B, 3C, 3D, and 3E are transformers that transform the input from the CT at each substation; 4A, 4B,
4C, 4D, and 4E are length compensators to make the distances from each substation to the operation determination unit 200 at the E end appear equal; 5A, 5B, 5C, 5D, and 5E are light emitting elements 6A, 6B, 6C, 6D, 6E
Light amount converter, 7A, 7B, which converts the input amount to
Reference numerals 7C, 7D, and 7E indicate optical fiber lines installed between each substation, and 100 indicates an optical coupler that couples the light from each optical fiber line and provides judgment input to the operation judgment unit 200.

第3図に於て、各端でCTにより変成された電
気量はE端に設置されている動作判定部200ま
での減衰の程度を等しくする為に一旦、亘長補償
回路4A,4B,4C,4D,4Eを通りこの回
路を通過した電気量は、それが同じ大きさであつ
た場合、光結合器100、動作判定部200での
光量変換された入力量も等しくなるよう調整され
た量となつている。
In Fig. 3, in order to equalize the degree of attenuation of the electric quantity transformed by the CT at each end to the operation determination unit 200 installed at the E end, , 4D, and 4E and which have passed through this circuit are adjusted so that if they have the same magnitude, the input quantities converted into light quantities in the optical coupler 100 and the operation determination section 200 will also be equal. It is becoming.

亘長補償回路4A,4B,4C,4D,4Eを
通つた電気量は次に5A,5B,5C,5D,5
Eの光量変換器と6A,6B,6C,6D,6E
の発光素子とにより、電気量に比例した光量に変
換され、この光量が7A,7B,7C,7D,7
Eの光を伝達する為の媒体である光フアイバーを
介して光結合器100まで導入され、ここでA、
B、C、D、E全端からの光量が合成された形と
なつて最後に動作判定部200に光量の合成値が
導入され、この動作判定部200で、光の脈動の
程度を判断して、内部、外部故障の判別を行う事
になる。第4図にA端、B端の2つの変電所のみ
を考えた際の外部故障発生時の光結合器100か
らの出力を示す。又、第5図は第4図と同様A、
B端のみを考えた際の内部故障発生時の光結合器
100からの出力を示す。
The amount of electricity passing through the length compensation circuits 4A, 4B, 4C, 4D, 4E is then 5A, 5B, 5C, 5D, 5
E light intensity converter and 6A, 6B, 6C, 6D, 6E
7A, 7B, 7C, 7D, 7A, 7B, 7C, 7D, 7
The light of E is introduced to the optical coupler 100 via an optical fiber which is a medium for transmitting the light of A,
The amounts of light from all ends B, C, D, and E are combined, and the combined value of the amounts of light is finally introduced into the operation determining section 200, which determines the degree of pulsation of the light. This will determine whether there is an internal or external failure. FIG. 4 shows the output from the optical coupler 100 when an external failure occurs, considering only the two substations at the A end and B end. Also, Figure 5 shows A, similar to Figure 4.
The output from the optical coupler 100 when an internal failure occurs when considering only the B end is shown.

次に第4図について説明すると一定の光のバイ
アスの下で電流入力量に従つて光量変換されたも
のは、商用周波数で脈動する光量の変化となつて
現われ、外部事故の際はA端の光量の強弱の時間
帯とB端の光量の強弱の時間帯とでは完全に逆に
なる為、光結合器で合成された光量は第4図ハで
示すごとく脈動の無い、一定レベルの光量とな
る。
Next, to explain Fig. 4, the light amount converted according to the amount of current input under a constant light bias appears as a change in the amount of light that pulsates at the commercial frequency. Since the time periods when the light intensity is strong and weak and the time periods when the light intensity at the B end is strong and weak are completely opposite, the light amount combined by the optical coupler is a constant level light amount with no pulsation, as shown in Figure 4 (c). Become.

一方、第5図の内部事故について説明するとA
端と、B端の光量変化の時間帯は等しい訳であり
光結合器で合成すると第5図ハで示すごとく両端
の脈動分をプラスした形で光量が変化する事にな
る。
On the other hand, to explain the internal accident in Figure 5,
The time period for the change in the light amount at the end and the B end is the same, and when combined by an optical coupler, the light amount changes in the form of adding the pulsation at both ends, as shown in Figure 5 (c).

以上の説明は簡単の為、代表的に2端子分のみ
を取り上げたが、原理的には端子数が増大しても
同じであり外部故障では光の脈動が無くなり、内
部故障では光の脈動が全端合成された形で現われ
る。
For the sake of simplicity, the above explanation only deals with two terminals as a representative, but the principle remains the same even if the number of terminals increases; an external failure causes no pulsation of light, and an internal failure causes no pulsation of light. Appears in fully synthesized form.

一方、光の伝達媒体である光フアイバー7A,
7B,7C,7D,7Eは原理的に光は電気回路
からの電磁誘導の影響を受けない周波数帯に位置
する為、極端に言えば送電線に巻き付ける形で各
端間に張設しても良い訳である。
On the other hand, the optical fiber 7A, which is a light transmission medium,
In principle, 7B, 7C, 7D, and 7E are located in a frequency band where light is not affected by electromagnetic induction from electric circuits, so in extreme cases, they can be wrapped around power lines and stretched between each end. That's a good reason.

要するに本発明では電磁誘導並びに、多端子化
する事による伝送損失の問題を除去した形で、差
動をとる事を目的として、光量合成による光差動
保護継電方式を提案している。
In short, the present invention proposes an optical differential protection relay system using light intensity synthesis, with the aim of achieving differential operation while eliminating problems of electromagnetic induction and transmission loss due to multi-terminals.

尚、最終動作判定に用いた脈動の有無による
内、外事故の判別法は、本発明に限らず、電気量
のみを用いて行つている従来の差動保護継電方式
にも原理として採用し得る事、並びに各端からの
減衰量を等しくする意味で入れている減衰器は本
文では電気的なもので考慮したが、光量を調節す
る光量減衰器でも行なえる事は言うまでもない。
Note that the method of determining internal and external accidents based on the presence or absence of pulsation used in the final operation judgment is not limited to the present invention, but can also be used as a principle in conventional differential protective relay systems that use only electrical quantities. In this text, we have considered an electrical attenuator to equalize the amount of attenuation from each end, but it goes without saying that this can also be done with a light attenuator that adjusts the amount of light.

以上のように、この発明によれば、複数の変流
器からの故障電流を亘長補償器で補償した後に光
量に変換し、故障信号を光量のアナログ量として
そのまま光フアイバー線により伝送して合成し、
この合成信号の脈動の有無によつて内部事故か外
部事故かを判定するように構成したもので、従
来、電磁誘導に起困する変流器の飽和により事実
上困難であつた多端子保護が可能になるという効
果がある。
As described above, according to the present invention, fault currents from a plurality of current transformers are compensated by a length compensator and then converted into a light quantity, and a fault signal is transmitted as an analog quantity of light quantity via an optical fiber line. synthesize,
The system is configured to determine whether an internal or external accident is occurring based on the presence or absence of pulsation in this composite signal, and multi-terminal protection, which was previously difficult due to current transformer saturation caused by electromagnetic induction, is now possible. This has the effect of making it possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は保護対象の多端子構成化送電線を示す
線路図、第2図は表示線を用いた従来の保護回路
構成の一例を示す回路図、第3図は本発明による
保護回路構成の一例を示す回路図、第4図は外部
故障時の光量一時間図、第5図は内部故障の光量
一時間図である。 図において、1A,1B,1C,1D,1Eは
各S/Sに設置されたCT、4A,4B,4C,
4D,4Eは亘長補償器、5A,5B,5C,5
D,5E、は光量変換器、6A,6B,6C,6
D,6Eは発光素子、7A,7B,7C,7D,
7Eは光フアイバー線、100は結合器、200
は動作判定部である。なお、各図中の同一符号は
同一または相当部分を示す。
Figure 1 is a line diagram showing a multi-terminal power transmission line to be protected, Figure 2 is a circuit diagram showing an example of a conventional protection circuit configuration using indicator lines, and Figure 3 is a circuit diagram of a protection circuit configuration according to the present invention. A circuit diagram showing an example, FIG. 4 is a diagram showing the amount of light per hour when an external failure occurs, and FIG. 5 is a diagram showing the amount of light per hour when an internal failure occurs. In the figure, 1A, 1B, 1C, 1D, 1E are CTs installed in each S/S, 4A, 4B, 4C,
4D, 4E are length compensators, 5A, 5B, 5C, 5
D, 5E are light quantity converters, 6A, 6B, 6C, 6
D, 6E are light emitting elements, 7A, 7B, 7C, 7D,
7E is an optical fiber line, 100 is a coupler, 200
is a motion determination section. Note that the same reference numerals in each figure indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] 1 電力系統の保護区間に設置された複数の変流
器と、前記複数の変流器の出力を変成する複数の
変成器と、前記複数の変成器の出力をそれぞれ所
定出力に補償する複数の亘長補償器と、前記複数
の亘長補償器の電気的出力を複数の光量変換器を
介して所定光量に変換する複数の発光素子と、前
記複数の発光素子から出力される光量を一端側か
ら他端側に伝送する複数の光フアイバー線と、前
記複数の光フアイバー線の他端側を結合し、該複
数の光フアイバー線の光量を合成する光結合器
と、前記光結合器から出力される合成信号を入力
し、該合成信号中の脈動の有無に基いて、前記保
護区間の内部故障又は外部故障の判定を行なう動
作判定部とから成る光差動保護継電装置。
1 A plurality of current transformers installed in a protected area of a power system, a plurality of transformers that transform the output of the plurality of current transformers, and a plurality of transformers that compensate the output of the plurality of transformers to a predetermined output, respectively. a length compensator; a plurality of light emitting elements that convert the electrical outputs of the plurality of length compensators into a predetermined amount of light via a plurality of light amount converters; a plurality of optical fiber lines to be transmitted from the optical fiber lines to the other end side; an optical coupler that couples the other end side of the plurality of optical fiber lines to combine the amounts of light of the plurality of optical fiber lines; and an output from the optical coupler. An optical differential protection relay device comprising: an operation determining unit that inputs a composite signal generated by the protective section and determines whether an internal failure or an external failure occurs in the protection section based on the presence or absence of pulsation in the composite signal.
JP1100279A 1979-02-01 1979-02-01 Optical differential protecting relay Granted JPS55103036A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1100279A JPS55103036A (en) 1979-02-01 1979-02-01 Optical differential protecting relay

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1100279A JPS55103036A (en) 1979-02-01 1979-02-01 Optical differential protecting relay

Publications (2)

Publication Number Publication Date
JPS55103036A JPS55103036A (en) 1980-08-06
JPS6315814B2 true JPS6315814B2 (en) 1988-04-06

Family

ID=11765908

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1100279A Granted JPS55103036A (en) 1979-02-01 1979-02-01 Optical differential protecting relay

Country Status (1)

Country Link
JP (1) JPS55103036A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57183221A (en) * 1981-04-30 1982-11-11 Mitsubishi Electric Corp Protective relay unit
JPS57183220A (en) * 1981-04-30 1982-11-11 Mitsubishi Electric Corp Protective relay unit
JPS57183219A (en) * 1981-04-30 1982-11-11 Mitsubishi Electric Corp Protective relay unit

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5141841A (en) * 1974-10-04 1976-04-08 Hitachi Ltd
JPS52143462A (en) * 1976-05-24 1977-11-30 Mitsubishi Electric Corp Synchronous sampling device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5141841A (en) * 1974-10-04 1976-04-08 Hitachi Ltd
JPS52143462A (en) * 1976-05-24 1977-11-30 Mitsubishi Electric Corp Synchronous sampling device

Also Published As

Publication number Publication date
JPS55103036A (en) 1980-08-06

Similar Documents

Publication Publication Date Title
AU1112495A (en) Method and apparatus for signal coupling at medium voltage in a power line carrier communications system
US3697896A (en) Signal transmission system
US6437554B1 (en) High current measurement system incorporating an air-core transducer
Large et al. Broadband cable access networks: the HFC plant
JPS6315814B2 (en)
US5949300A (en) Line coupler
CA1269165A (en) Direct transfer trip apparatus for use with an active pilot wire communications channel
US3674933A (en) Communications cables having reduced interference characteristics
CA1267966A (en) Active pilot wire apparatus for electromechanical current differential relays
JP2001218309A (en) Distribution board
US4088850A (en) Remote supply system for a cable transmission line with repeaters subjected to the influence of external electric fields
JPS60241709A (en) Differential protecting device
Bradley et al. The New Zealand harmonic legislation
SU1023501A1 (en) Device for relay protection of power transformer having split windings
JPS60185171A (en) Measurement of dielectric dissipation factor
JP3306599B2 (en) Protection relay device
JP3591240B2 (en) Distribution line protection device
SU760459A1 (en) Device for protecting communication line from power transmission line influence
JPH08242528A (en) Ground fault protection system
JPS62207130A (en) Protective relay system for loop type power system
SU1095296A1 (en) Device for longitudinal differential current protecting of electric power line with branching
JPH0358512A (en) Noise filter
JPS6089761A (en) Wide band current transofrmer measuring current of power transmission line
JPH0232853B2 (en)
RU1781759C (en) Device for differential protection with deceleration