JPS60185171A - Measurement of dielectric dissipation factor - Google Patents

Measurement of dielectric dissipation factor

Info

Publication number
JPS60185171A
JPS60185171A JP4117984A JP4117984A JPS60185171A JP S60185171 A JPS60185171 A JP S60185171A JP 4117984 A JP4117984 A JP 4117984A JP 4117984 A JP4117984 A JP 4117984A JP S60185171 A JPS60185171 A JP S60185171A
Authority
JP
Japan
Prior art keywords
current
measured
voltage
wave form
difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4117984A
Other languages
Japanese (ja)
Inventor
Mitsugi Aihara
相原 貢
Yasumitsu Ebinuma
康光 海老沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SWCC Corp
Original Assignee
Showa Electric Wire and Cable Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Electric Wire and Cable Co filed Critical Showa Electric Wire and Cable Co
Priority to JP4117984A priority Critical patent/JPS60185171A/en
Publication of JPS60185171A publication Critical patent/JPS60185171A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)

Abstract

PURPOSE:To always monitor an insulating state by enabling the accurate measurement of dielectric dissipation factor even in the live wire state of a power cable, by measuring the phase difference of a voltage wave form and the current wave form of the vector current difference thereof. CONSTITUTION:The voltage wave form from an AC power source 10 is measured by a voltage divider 12 and, at the same time, current wave forms are measured by current transforms 13, 14 in a transmitting terminal side and a receiving terminal side to be inputted to a subtractor circuit 15 through an optical fiber 17 and the current wave form of the vector current difference of said wave forms is calculated to obtain the real straight-through current of an insulator. The wave form of this straight-through current and the voltage wave form from the voltage divider 12 are inputted to a phase meter 16 to measure the phase difference of both wave forms. By this method, dielectric dissipation factor tandelta is measured.

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は、誘電正接の測定方法に係り、特に電流を活線
状態における電カケーブルの両端の差で測定し、この電
流波形と電圧波形との位相差で誘電正接を測定するこの
種方法に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a method for measuring dielectric loss tangent, and in particular, the present invention relates to a method for measuring dielectric loss tangent, and in particular, the current is measured by the difference between both ends of a power cable in a live state, and the current waveform and voltage waveform are This invention relates to a method of this kind for measuring the dielectric loss tangent with a phase difference of .

[発明の技術的背景] 従来から絶縁物の性能及び劣化の判定には誘電正接(t
an δ)が有力な指数として測定されている。
[Technical background of the invention] The dielectric loss tangent (t
an δ) has been measured as a powerful index.

誘電体に交流電圧を加えた場合、何ら電力損失を生じな
い場合には、充電電流工0の位相は電圧■よりも90″
進んでいる。しかし直流によって電気伝導又は吸収現象
を起すよう外通常の誘電体においては、交流電界の下で
は電流の進みが第1図に示す如く90°より小となる。
When an alternating current voltage is applied to a dielectric and no power loss occurs, the phase of the charging current generator 0 is 90" than the voltage ■
It's progressing. However, in an ordinary dielectric material which causes electric conduction or absorption phenomenon due to direct current, the current advance under an alternating electric field is smaller than 90° as shown in FIG.

この90°より小さい角δを損失角、90°−δ=Oを
位相角といい、このような場合に誘電体損失が生じる。
This angle δ smaller than 90° is called a loss angle, and 90°−δ=O is called a phase angle, and in such a case, dielectric loss occurs.

また、誘電体力率は位相角Oのcos又は損失角δのs
inで表わされ1通常δは極めて小さいため、誘電体力
率=cosθ= sinδ=tanδとなって誘電体力
率はしanδで表わすことができ、これが誘電圧接と呼
ばれるものである。
Also, the dielectric power factor is cos of phase angle O or s of loss angle δ
Since δ is usually extremely small, the dielectric power factor = cos θ = sin δ = tan δ, and the dielectric power factor can be expressed as an δ, which is called dielectric voltage junction.

電カケーブルの絶縁監視する場合には、活線状態で絶縁
性能を測定する場合と、停電状態でtanδ、部分放電
等を測定する場合とがある。活線状態での測定は常時監
視という点で非常に望ましいものであるが未だ実用化さ
れていない。
When monitoring the insulation of power cables, there are cases in which the insulation performance is measured in a live line state, and cases in which tan δ, partial discharge, etc. are measured in a power outage state. Measurement while the line is live is highly desirable in terms of constant monitoring, but it has not yet been put to practical use.

一般にしallδの測定は、第2図に示すような停電状
態で行われる。即ち、電カケーブル1の送電端側では交
流電源2が接続されており、さらに分圧器3が接続され
て電圧波形を観測する。電カケーブル1は接続部4でジ
ヨイントされており、ケーブルシースは複数の点で接地
されている。また、送電端側の所定の位置における接地
点電流の波形を測定する変流器5が設置され、そして分
圧器3の電圧波形と変流器5の電流波形とによってその
位相差(0)咎測定する位相計6が設置される。
Generally, all δ is measured under a power outage condition as shown in FIG. That is, an AC power source 2 is connected to the power transmission end side of the power cable 1, and a voltage divider 3 is further connected to observe the voltage waveform. The electric power cable 1 is jointed at a connecting portion 4, and the cable sheath is grounded at multiple points. In addition, a current transformer 5 is installed to measure the waveform of the ground point current at a predetermined position on the power transmission end side, and the phase difference (0) is determined by the voltage waveform of the voltage divider 3 and the current waveform of the current transformer 5. A phase meter 6 for measurement is installed.

このように、勿圧器3による電圧波形と変流器5の接地
点の電流波形を位相計6によってその位相差(0)を測
定し、この位相差(θ)によってtanδ(906−〇
=δ)をめるものである。
In this way, the phase difference (0) between the voltage waveform by the pressure reducer 3 and the current waveform at the grounding point of the current transformer 5 is measured by the phase meter 6, and from this phase difference (θ), tan δ (906-〇=δ ).

[背景技術の問題点] しかしながら上記従来例はあくまでも停電時のことであ
り導体電流と接地点電流とが等しいためそれ自体問題は
ないが、活線状態でtanδを測定しようとすると、負
荷電流が流れ、そして電カケーブルには複数の接地点が
あることから分流が起こり、さらには地相、他回線から
誘導電流が接地点に流れる等の状態を惹起する。
[Problems with the Background Art] However, the above conventional example is only for power outages, and there is no problem in itself because the conductor current and the grounding point current are equal.However, if you try to measure tanδ in a live line state, the load current Because there are multiple grounding points in the power cable, branch currents occur, and furthermore, induced currents from the ground phase and other circuits flow to the grounding point.

このため、電カケーブルの被覆、即ち絶縁体を貫通する
真の電流を検出できなくなり、ひいては正しいしanδ
の測定ができないという難点がある。
For this reason, it becomes impossible to detect the true current passing through the insulation of the power cable, and therefore the correct and an δ
The problem is that it cannot be measured.

[発明の目的コ 本発明は、上記難点に鑑みなされたもので、電カケーブ
ル被覆のLanδを活線状態において測定することによ
って、常時絶縁状態を監視する誘電正接の測定方法を提
供せんとするものである。
[Purpose of the Invention] The present invention has been made in view of the above-mentioned difficulties, and aims to provide a method for measuring dielectric loss tangent that constantly monitors the insulation state by measuring the Lan δ of the power cable sheath in a live state. It is something.

[発明のイ既要] このような目的を達成するための本発明による誘電正接
(L、anδ)の測定方法は、活線状態における電カケ
ーブルの端末部で電圧波形を測定し、また電カケーブル
の送電端及び受電端の電流波形をそれぞれ測定し、その
ベクトル電流差を算出して絶縁体を貫通する真の電流を
検出し、そして前記電圧波形と該ベクトル電流差の電流
波形との位相差(a)を測定して、最終的にシanδを
測定するものである。
[Summary of the Invention] A method for measuring a dielectric loss tangent (L, an δ) according to the present invention to achieve such an object measures a voltage waveform at the end of a power cable in a live state, and The current waveforms at the power transmitting end and the power receiving end of the cable are measured respectively, the vector current difference is calculated to detect the true current passing through the insulator, and the voltage waveform and the current waveform of the vector current difference are calculated. The phase difference (a) is measured and finally the cyan δ is measured.

[発明の実施例コ 以下、本発明の好ましい実施例を第3図により説明する
[Embodiments of the Invention] A preferred embodiment of the present invention will be described below with reference to FIG.

本発明の誘電圧接(シanδ)の測定方法は第3図に示
すシステム構成により実現される。即ち、第3図におい
て、交流電源lOから接続部11′によりジヨイントさ
れた電カケーブル11を介して送電されている場合、送
電端側に、交流電源1.0と並列に分圧器12および変
流器13が設けられ、受電端側にも変流器14が設けら
れている。変流器13.14からの電流は引算回路15
に入力され、引算回路15の出力は分圧器12からの電
圧と共に位相計16に入力されている。因に分圧器12
、変流器13.14の信号伝送には、例えば光ファイバ
17が使用され引算回路15、位相H(16に入力され
る。
The method for measuring dielectric voltage junction (an δ) of the present invention is realized by the system configuration shown in FIG. That is, in FIG. 3, when power is being transmitted from the AC power supply 10 through the power cable 11 jointed by the connection part 11', a voltage divider 12 and a transformer are connected to the power transmission end side in parallel with the AC power supply 1.0. A current transformer 13 is provided, and a current transformer 14 is also provided on the power receiving end side. The current from the current transformers 13 and 14 is passed through the subtraction circuit 15.
The output of the subtraction circuit 15 is input to the phase meter 16 along with the voltage from the voltage divider 12. Incidentally, voltage divider 12
For signal transmission of the current transformers 13 and 14, for example, an optical fiber 17 is used, and the signals are input to the subtraction circuit 15 and the phase H (16).

このようなシステム構成による誘電正接の測定は、先ず
交流電源10から供給される電圧(電圧波形)を分圧器
12により測定される。これと同時に送電端、受電端側
に設けられた変流器13.14により電流(電流波形)
が測定される。変流器13.14により測定された電流
波形は光ファイバ17を通って引算回路15に入力され
てそれらのベクトル電流差の電流波形が算出される。即
ち、変流器13で測定される電流は、電カケーブル11
の被覆(絶縁体)の貫通電流と負荷電流の両方を含んで
いるものであり、また変流器14で測定される電流は負
荷電流のみであるから、これらを引算回路15に入力さ
せてそのベクトル電流差を算出するということは絶縁体
の真の貫通電流が得られるのである。
To measure the dielectric loss tangent using such a system configuration, first, the voltage (voltage waveform) supplied from the AC power supply 10 is measured by the voltage divider 12. At the same time, current transformers 13 and 14 installed at the power transmission end and power reception end generate a current (current waveform).
is measured. The current waveforms measured by the current transformers 13 and 14 are input to the subtraction circuit 15 through the optical fiber 17, and the current waveform of their vector current difference is calculated. That is, the current measured by the current transformer 13 is
This includes both the through current of the sheath (insulator) and the load current, and the current measured by the current transformer 14 is only the load current, so these are input to the subtraction circuit 15. By calculating the vector current difference, the true through current of the insulator can be obtained.

そして、この絶縁体の真の貫通電流波形と、分圧器12
から光ファイバ17を通って送られる電圧波形とが位相
計16に入力されて、これらの位相差(0)が測定され
る。位相差(θ)は90゜−δであるから、これよりδ
がめられ誘電正接tanδが測定されるのである。
Then, the true through current waveform of this insulator and the voltage divider 12
The voltage waveform sent from the optical fiber 17 through the optical fiber 17 is input to the phase meter 16, and the phase difference (0) between them is measured. Since the phase difference (θ) is 90°−δ, from this, δ
The dielectric loss tangent tan δ is measured.

[発明の効果] 以上のような実施例からも明らかなように本発明によれ
ば、電カケーブルの両端の電流差、即ち絶縁体の真の貫
通電流波形と端末部の電圧波形との位相差を測定してt
、anδを測定することにより、電カケーブルにおいて
負荷電流の影響が除去されるため活線状態でも正確なt
anδの811定ができ、茶また電カケーブル以外の箇
所で電流を測定しているため誘導電流の影響を受けるこ
となく、常時綿I。
[Effects of the Invention] As is clear from the embodiments described above, according to the present invention, the difference in current between both ends of the power cable, that is, the level between the true through-current waveform of the insulator and the voltage waveform at the terminal portion, can be reduced. Measure the phase difference and
By measuring , and δ, the influence of load current on power cables is removed, so accurate t can be obtained even in live line conditions.
An δ of 811 can be maintained, and since the current is measured at a location other than the power cable, it is not affected by induced current and is always connected to the cotton I.

緑状態を監視することができる。Green status can be monitored.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は誘電体の電圧と電流のベクトル図、第2図は従
来の誘電正接(tanδ)の測定におけるシステム4M
成図、第3図は本発明の誘電正接の測定方法におけるシ
ステム構成図である。 11 ・・・・・・・・電カケーブル 12・・・・・・・・分圧器 13.14 ・・・・・・・・変流器 15 ・・・・・・・・引算回路 16 ・・・・・・・・位相側 lθ 代理人 弁理士 守 谷 −雄 1図 第2門 第 3 図
Figure 1 is a vector diagram of dielectric voltage and current, and Figure 2 is a conventional system 4M for measuring dielectric loss tangent (tan δ).
FIG. 3 is a system configuration diagram in the method for measuring dielectric loss tangent of the present invention. 11 ...... Electric cable 12 ...... Voltage divider 13.14 ...... Current transformer 15 ...... Subtraction circuit 16・・・・・・・・・Phase side lθ Agent Patent attorney Moritani-Yu 1 Figure 2 Gate 3

Claims (1)

【特許請求の範囲】[Claims] 活線状態における電カケーブルの端末部で電圧波形を測
定し、該電カケーブルの送電端及び受電端の電流波形を
それぞれ測定してそのベクトル電流差を算出し、前記電
圧波形と該ベクトル電流差の電流波形との位相差を測定
することを特徴とする誘電正接の測定方法。
Measure the voltage waveform at the end of the power cable in a live state, measure the current waveforms at the sending end and receiving end of the power cable, calculate the vector current difference, and calculate the difference between the voltage waveform and the vector current. A method for measuring dielectric loss tangent, characterized by measuring the phase difference between the difference and the current waveform.
JP4117984A 1984-03-02 1984-03-02 Measurement of dielectric dissipation factor Pending JPS60185171A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4117984A JPS60185171A (en) 1984-03-02 1984-03-02 Measurement of dielectric dissipation factor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4117984A JPS60185171A (en) 1984-03-02 1984-03-02 Measurement of dielectric dissipation factor

Publications (1)

Publication Number Publication Date
JPS60185171A true JPS60185171A (en) 1985-09-20

Family

ID=12601200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4117984A Pending JPS60185171A (en) 1984-03-02 1984-03-02 Measurement of dielectric dissipation factor

Country Status (1)

Country Link
JP (1) JPS60185171A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01110267A (en) * 1987-10-23 1989-04-26 Yazaki Corp Insulation deterioration diagnostic apparatus
CN102156250A (en) * 2011-03-17 2011-08-17 华北电力大学(保定) Dielectric loss factor measurement method based on equivalent model
JP2018072049A (en) * 2016-10-25 2018-05-10 株式会社かんでんエンジニアリング Dielectric loss tangent measurement method of electric power cable

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01110267A (en) * 1987-10-23 1989-04-26 Yazaki Corp Insulation deterioration diagnostic apparatus
CN102156250A (en) * 2011-03-17 2011-08-17 华北电力大学(保定) Dielectric loss factor measurement method based on equivalent model
JP2018072049A (en) * 2016-10-25 2018-05-10 株式会社かんでんエンジニアリング Dielectric loss tangent measurement method of electric power cable

Similar Documents

Publication Publication Date Title
JPS60185171A (en) Measurement of dielectric dissipation factor
Gu et al. On-line calibration of partial discharge monitoring for power cable by HFCT method
JPH0631435Y2 (en) Cable diagnostic equipment
JP2960782B2 (en) Partial discharge measurement method
JP2564956B2 (en) Partial discharge measurement method
JP2665935B2 (en) Measuring method of dielectric loss of cable
JPH0336195Y2 (en)
CN110297160B (en) Power cable on-line detection and monitoring system and power supply method thereof
JP2568346Y2 (en) Cable loss tangent measurement device
JP3327186B2 (en) Zero-phase voltage detector
JP2613435B2 (en) Partial discharge measurement method
JP3479339B2 (en) Electrical measuring method and electrical measuring device for cable
JPH0249472B2 (en)
EP0176995A3 (en) Connecting device for the cable of a measuring or testing apparatus
RU2028633C1 (en) Method of measurement of capacitance relative to frame of ship power system
JP2850463B2 (en) Power cable deterioration diagnosis method
JPH0442779Y2 (en)
JPS6239330Y2 (en)
JPS62242869A (en) Measuring and monitoring instrument for deterioration of insulator
JPS5939774Y2 (en) water cooled cable current detector
SU1718157A1 (en) Method of determining a search direction in testing power lines for shorted spots and device thereof
JPS6097278A (en) Measurement of insulating property of power cable
JP2000065868A (en) Measurement from outside of dc cable coating for core wire voltage and device therefor
JPS6315814B2 (en)
JPH03180771A (en) Measurement of grounding resistance