JPS63156093A - Device for gas source molecular beam epitaxy - Google Patents
Device for gas source molecular beam epitaxyInfo
- Publication number
- JPS63156093A JPS63156093A JP30281686A JP30281686A JPS63156093A JP S63156093 A JPS63156093 A JP S63156093A JP 30281686 A JP30281686 A JP 30281686A JP 30281686 A JP30281686 A JP 30281686A JP S63156093 A JPS63156093 A JP S63156093A
- Authority
- JP
- Japan
- Prior art keywords
- pressure
- gas
- valves
- gaseous reactant
- cell
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000171 gas-source molecular beam epitaxy Methods 0.000 title description 5
- 239000000376 reactant Substances 0.000 abstract description 6
- RGGPNXQUMRMPRA-UHFFFAOYSA-N triethylgallium Chemical compound CC[Ga](CC)CC RGGPNXQUMRMPRA-UHFFFAOYSA-N 0.000 abstract description 3
- 238000000407 epitaxy Methods 0.000 abstract 2
- 238000007599 discharging Methods 0.000 abstract 1
- 239000007789 gas Substances 0.000 description 20
- 238000001451 molecular beam epitaxy Methods 0.000 description 7
- 239000012495 reaction gas Substances 0.000 description 5
- 239000007787 solid Substances 0.000 description 4
- 238000000034 method Methods 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 125000002524 organometallic group Chemical group 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- IBEFSUTVZWZJEL-UHFFFAOYSA-N trimethylindium Chemical compound C[In](C)C IBEFSUTVZWZJEL-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
- Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
Abstract
Description
【発明の詳細な説明】
〔概 要〕
ガスソース分子線エピタキシャル装置の反応ガス放出用
圧力セル内の圧力を一定に保つために、反応ガスの圧力
を段階的に降下せしめて供給する。DETAILED DESCRIPTION OF THE INVENTION [Summary] In order to keep the pressure in the reaction gas discharge pressure cell of the gas source molecular beam epitaxial apparatus constant, the pressure of the reaction gas is lowered stepwise and then supplied.
本発明は分子線エピタキシャル装置、とりわけガスソー
ス分子線エピタキシャル装置に係る。The present invention relates to a molecular beam epitaxial apparatus, and more particularly to a gas source molecular beam epitaxial apparatus.
分子線エピタキシー(MBE)は非常に薄い半導体層を
形成する技術として近年急速に成長してきた。しかしな
がら、慣用のMBEは加熱した固体のソースが用いられ
てきたが、取扱いの便利さあるいは再現性などに問題も
あり、ごく最近、この問題を解決するために気体のソー
スを用いることが提案された。これがガスソースMBE
といわれるもので、第2図を参照すると、従来の固体ソ
ースに代えて例えばトリメチルインジウム、トリエチル
ガリウムなどの有機金属ガス1をソースとして圧力セル
2から成長室3内の基板4上に放出し、基板4上で有機
金属の熱分解により金属あるいは半導体を析出、成長さ
せる技術である。Molecular beam epitaxy (MBE) has grown rapidly in recent years as a technique for forming very thin semiconductor layers. However, conventional MBE has used a heated solid source, but there are problems with ease of handling and reproducibility, and very recently it has been proposed to use a gaseous source to solve this problem. Ta. This is gas source MBE
Referring to FIG. 2, an organometallic gas 1 such as trimethylindium or triethylgallium is used as a source instead of a conventional solid source, and is discharged from a pressure cell 2 onto a substrate 4 in a growth chamber 3. This is a technique in which metals or semiconductors are deposited and grown on the substrate 4 by thermal decomposition of organic metals.
しかしながら、従来のMBE装置では、ガスボンベlか
ら供給されるソースガスは圧力可変リークバルブ5によ
って一定圧力に調整された後、圧力セル2からパルプ(
シャッター)6の開閉によって成長室3内に放出される
。このような装置でバルブ6を開閉した場合、圧力セル
2内の圧力が変動し、ソースガスの放出ビームのmlが
一定しないという問題がある。このような圧力あるいは
ビーム流量の変動は格超子のような超薄膜構造を形成し
ようとするとき決定的な障害となる。However, in the conventional MBE apparatus, the source gas supplied from the gas cylinder 1 is adjusted to a constant pressure by the variable pressure leak valve 5, and then the pulp (
It is released into the growth chamber 3 by opening and closing the shutter) 6. When the valve 6 is opened and closed in such a device, there is a problem that the pressure inside the pressure cell 2 fluctuates, and the ml of the source gas emitted beam is not constant. Such fluctuations in pressure or beam flow rate become a decisive obstacle when attempting to form ultra-thin film structures such as lattice superstructures.
本発明は、上記の如き問題点を解決するために、ガス供
給源からソースガス(反応ガス)の圧力を段階的に降下
せしめて圧力セルに供給するものである。In order to solve the above-mentioned problems, the present invention is to reduce the pressure of a source gas (reactant gas) from a gas supply source in stages and supply it to a pressure cell.
圧力セルの手前の圧力が段階的に変化しているので、圧
力セルから反応ガスが放出されて圧力セル内の圧力が低
下する場合にも、圧力変動が最小限に抑えられる。Since the pressure in front of the pressure cell changes stepwise, pressure fluctuations are minimized even when the pressure inside the pressure cell decreases due to the release of reaction gas from the pressure cell.
第1図に本発明の実施例を示す。同図中、反応ガス(例
えばトリエチルガリウム)はガスボンベ11からパイプ
12によって圧力セル13へ供給される。ガスボンベl
l中で圧力P0の反応ガスは圧力リークバルブ13で最
終圧力Pfに近い圧力P1に調整された後、高速開閉型
バルブ15 、16゜17 、18によって段階的に圧
力降下されてから(p+=P+ =Pz =Pz −P
4−Pt ) 、所望圧力Ptで圧力セル13に供給さ
れる。FIG. 1 shows an embodiment of the present invention. In the figure, a reaction gas (for example, triethyl gallium) is supplied from a gas cylinder 11 to a pressure cell 13 through a pipe 12. gas cylinder l
The reaction gas at pressure P0 in 1 is adjusted to a pressure P1 close to the final pressure Pf by a pressure leak valve 13, and then the pressure is lowered stepwise by high-speed opening/closing valves 15, 16, 17, and 18 (p+= P+ = Pz = Pz −P
4-Pt) is supplied to the pressure cell 13 at a desired pressure Pt.
バルブ15〜18を用いて圧力を段階的に調整するには
、バルブ15〜18の中間において圧力センサ(図示せ
ず)を用いて圧力をモニターし、その検出された圧力に
応じてバルブ15〜18を高速開閉(約0.1秒)し、
バルブ15〜18間の圧力を所定の値に調整する。バル
ブ15〜18の間は単なるパイプでもよいし、所望であ
れば管径を大きくしてセルにしてもよい。また、バルブ
15〜18の数は特に限定されず、MBE装置の容量や
所望の圧力変動許容量等に応じて適宜選択して採用すれ
ばよい。To adjust the pressure stepwise using the valves 15-18, the pressure is monitored using a pressure sensor (not shown) between the valves 15-18, and the valves 15-18 are adjusted according to the detected pressure. Open and close 18 at high speed (about 0.1 seconds),
The pressure between valves 15 to 18 is adjusted to a predetermined value. A simple pipe may be used between the valves 15 to 18, or if desired, the pipe diameter may be increased to form a cell. Further, the number of valves 15 to 18 is not particularly limited, and may be appropriately selected and employed depending on the capacity of the MBE apparatus, desired pressure fluctuation tolerance, and the like.
但し、圧力セル13に最も近いバルブ18はできるだけ
圧力セル13の近くにあることが圧力変動をより小さく
できるので好ましい。同じ理由から圧力セル13もあま
り大きすぎないことが望ましい。However, it is preferable that the valve 18 closest to the pressure cell 13 be located as close to the pressure cell 13 as possible because pressure fluctuations can be further reduced. For the same reason, it is desirable that the pressure cell 13 is not too large.
なお、圧力を段階的に降下させる方法は、上記のように
圧力センサーと高速開閉バルブとの組合せに限られず、
例えば、単純に圧力調整弁を数段に設置するなど、いろ
いろに変形可能である。Note that the method of decreasing the pressure in stages is not limited to the combination of a pressure sensor and a high-speed opening/closing valve as described above.
For example, various modifications can be made, such as simply installing pressure regulating valves in several stages.
また、ガスソースMBE装置は必ずしもガスソースのみ
ならずガスソースと固体ソースが併用されることができ
るが、本発明の段階的圧力降下ガスソースはこのような
MBE装置に適用でき、さらには複数のガスソースのう
ち一部のガスソースだけに適用してもよい。Further, a gas source MBE device can use not only a gas source but also a gas source and a solid source in combination, and the stepwise pressure drop gas source of the present invention can be applied to such an MBE device, and can also be used in combination with a gas source and a solid source. It may be applied only to some of the gas sources.
本発明によれば、ガスソースMBEにおいてソースガス
の圧力が一定に保たれるので、超格子のように厳密なコ
ントロールを要するエピタキシャル成長にガスソースM
BEを適用する上で効果がある。According to the present invention, since the pressure of the source gas is kept constant in gas source MBE, gas source MBE is suitable for epitaxial growth that requires strict control such as superlattice.
It is effective in applying BE.
第1図は本発明の実施例のMBE装置のガス供給部の概
略図、第2図は従来のMBE装置の概略図である。
l・・・ガスボンベ、 2・・・圧力セル、3・・・
成長室、 4・・・基板、5・・・圧力リーク
バルブ、
6・・・バルブ(シャッター)、
11・・・ガスボンベ、 12・・・パイプ、13・
・・圧力セル、 14・・・圧力リークバルブ、1
5〜18・・・バルブ。FIG. 1 is a schematic diagram of a gas supply section of an MBE apparatus according to an embodiment of the present invention, and FIG. 2 is a schematic diagram of a conventional MBE apparatus. l...Gas cylinder, 2...Pressure cell, 3...
Growth chamber, 4...Substrate, 5...Pressure leak valve, 6...Valve (shutter), 11...Gas cylinder, 12...Pipe, 13...
...Pressure cell, 14...Pressure leak valve, 1
5-18...Valve.
Claims (1)
に反応ガスビームを放出する圧力セル内の圧力を一定に
保つために、反応ガス供給源から反応ガスの圧力を段階
的に降下せしめて該圧力セルに供給することを特徴とす
るガスソース分子線エピタキシャル成長装置。1. In order to keep the pressure in the pressure cell constant, which releases the reactive gas beam into the growth chamber of the gas source molecular beam epitaxial growth apparatus, the pressure of the reactive gas is gradually lowered from the reactive gas supply source and supplied to the pressure cell. A gas source molecular beam epitaxial growth apparatus characterized by:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30281686A JPS63156093A (en) | 1986-12-20 | 1986-12-20 | Device for gas source molecular beam epitaxy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30281686A JPS63156093A (en) | 1986-12-20 | 1986-12-20 | Device for gas source molecular beam epitaxy |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63156093A true JPS63156093A (en) | 1988-06-29 |
Family
ID=17913440
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP30281686A Pending JPS63156093A (en) | 1986-12-20 | 1986-12-20 | Device for gas source molecular beam epitaxy |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63156093A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011219311A (en) * | 2010-04-09 | 2011-11-04 | Sumitomo Electric Ind Ltd | Apparatus and method for manufacturing compound semiconductor crystal |
-
1986
- 1986-12-20 JP JP30281686A patent/JPS63156093A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011219311A (en) * | 2010-04-09 | 2011-11-04 | Sumitomo Electric Ind Ltd | Apparatus and method for manufacturing compound semiconductor crystal |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0645256A (en) | Method for supplying gas pulse and method forming for film using the same | |
US5025751A (en) | Solid film growth apparatus | |
JPS63156093A (en) | Device for gas source molecular beam epitaxy | |
JP2006319207A (en) | Flow rate control device and method, and thin film deposition device | |
JPH05206033A (en) | Cvd film deposition method and apparatus | |
JP3681908B2 (en) | Mechanism for introducing a trace gas into an ultra-high vacuum chamber | |
JP2002110560A (en) | Semiconductor manufacturing apparatus | |
JP2840533B2 (en) | Low pressure vapor phase growth equipment | |
US6869481B2 (en) | Method and device for regulating the differential pressure in epitaxy reactors | |
JP2954142B2 (en) | Semiconductor manufacturing apparatus and gas flow control method | |
JP2641539B2 (en) | Method for manufacturing semiconductor device | |
JP2832847B2 (en) | Low pressure vapor deposition | |
JPH01239098A (en) | Production of superlattice of ii-vi compound | |
DE102017101202B4 (en) | Procedure and vacuum arrangement | |
JPH04240198A (en) | Vapor phase growth method for thin film | |
JP2663914B2 (en) | Vacuum processing equipment for semiconductor manufacturing | |
JPH0489391A (en) | Molecular beam generator | |
JPH08274030A (en) | Normal pressure vapor growth device | |
JPH01313390A (en) | Vertical vapor growth device for organometallic compound | |
JPS5927757B2 (en) | Vapor phase epitaxial growth method | |
JPH0745492A (en) | Pressure controller for vacuum chamber | |
JPH08213318A (en) | Epitaxial growing device | |
JPS5826657B2 (en) | 3-5 Epitaxy and hand-wringing method | |
JPS5827637A (en) | Gas supply circuit in gas pahse growing furnace | |
JPS62211912A (en) | Device for crystal growth by means of gas source molecular beam |