JPS63156047A - Aid for centrifugal molding - Google Patents

Aid for centrifugal molding

Info

Publication number
JPS63156047A
JPS63156047A JP11584787A JP11584787A JPS63156047A JP S63156047 A JPS63156047 A JP S63156047A JP 11584787 A JP11584787 A JP 11584787A JP 11584787 A JP11584787 A JP 11584787A JP S63156047 A JPS63156047 A JP S63156047A
Authority
JP
Japan
Prior art keywords
strength
concrete
centrifugal force
centrifugal
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11584787A
Other languages
Japanese (ja)
Other versions
JPH0649603B2 (en
Inventor
等 森山
清水 久行
伊藤 峯雄
芳春 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Publication of JPS63156047A publication Critical patent/JPS63156047A/en
Publication of JPH0649603B2 publication Critical patent/JPH0649603B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/04Carboxylic acids; Salts, anhydrides or esters thereof

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing Of Tubular Articles Or Embedded Moulded Articles (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、コンクリート製品を製造する際の遠心力成型
助剤に関し、詳しくハ、ヒユーム管、コンクリートパイ
ル・鋼管複合パイル・ボール等遠心力成型して製造され
るコンクリート製品の遠心力成型助剤に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a centrifugal force forming aid for producing concrete products, and in particular, centrifugal force forming of humid pipes, concrete piles, steel pipe composite piles, balls, etc. This invention relates to a centrifugal forming aid for concrete products produced by

〔従来の技術とその問題点〕[Conventional technology and its problems]

従来、ヒユーム管1推進管、コンクリートパイル、ボー
ル、鋼管複合パイル及び鋼・R内のモルタルやコンクリ
ートのライニング停は遠心力を利用して締め固め成型さ
れている。
Conventionally, the Huum Pipe 1 propulsion pipe, concrete pile, ball, steel pipe composite pile, and mortar or concrete lining in the steel/R are compacted and formed using centrifugal force.

しかしながら、一般に、モルタルやコンクリートの遠心
力成型性は悪く、例えば、内面の仕上がりが生命とする
ヒユーム管などは、製管時間が30〜40分管するのが
通例であり、蒸気養生後に管内面のモルタル層が剥離す
る場合が多かつ念。
However, in general, mortar and concrete have poor centrifugal formability, and for example, for humid pipes, which depend on the finish of the inner surface, it is customary to make the tube for 30 to 40 minutes, and after steam curing, the inner surface of the tube is Please note that the mortar layer often peels off.

これを改善するために、最後の仕上げ段階でセメント粉
や新しいモルタル又は剥離防止剤等ヲ管内面に添加して
遠心力成型している。又、モルタルやコンクリートの遠
心力成型性は、各種減水剤を添加することにより一層悪
くなるので、内面の仕上がりが生命となるヒユーム管や
mfライニングなどでは、一般に減水剤は使用しないの
が原4uとなっている。
In order to improve this, cement powder, new mortar, or anti-peeling agents are added to the inner surface of the tube in the final finishing step, and centrifugal force molding is performed. Furthermore, the centrifugal formability of mortar and concrete is further deteriorated by the addition of various water-reducing agents, so water-reducing agents are generally not used in pipes, mf linings, etc. where the inner surface finish is vital. It becomes.

しかしながら、J工S改定により、高強度化が心安とな
ったヒユーム管等では、生産効率や製品歩留りが悪くな
るの全覚悟で少量の減水剤を使用しているが現状である
(例えば、特開昭56−160358号公報)。又、内
面の仕上がりの良否が問題とならず、高強度が必要なコ
ンクリートパイルやイール寺は、高性能減水剤を多訃に
添加して、極力水°セメント比を下げたコンクリート全
遠心力成型して製造している。
However, with the revision of J-Engineering S, it has become safe to increase the strength of humu pipes, and at present, small amounts of water-reducing agents are used at full risk of deteriorating production efficiency and product yield (for example, Publication No. 56-160358). In addition, for concrete piles and eel temples where the quality of the inner surface finish is not an issue and high strength is required, we use full centrifugal force forming of concrete with the addition of a high-performance water reducing agent to reduce the water/cement ratio as much as possible. Manufactured using

各種減水剤の中でも、特に、この高性能減水剤を添加し
たモルタルやコンクリートの遠心力成型性は悪く、多量
のノロが発生したり、管内面が締らず、その強度も、差
動成型したものより平均10%程度は低くなることが知
られている。
Among various water reducing agents, the centrifugal formability of mortar and concrete to which this high-performance water reducing agent is added is particularly poor, resulting in a large amount of slag, the inner surface of the pipe not tightening, and its strength being lower than that of differential forming. It is known that on average it is about 10% lower than the standard.

本発明者らは、この高性能減水剤を使用し九モルタル又
はコンクリートの遠心力成型性を改良するためオキシカ
ルピン酸又はそれらの塩を併用する方法を提案した(特
開昭59−69457号公報)。しかしながらこの方法
では、オキシカルぎン酸又・はそれらの塩の凝結遅延作
用が大きいことから、その添加量やモルタルやコンクリ
ートの温度により、安定した強度が得られないという欠
点があった。
The present inventors have proposed a method of using this high-performance water reducing agent in combination with oxycarpic acid or its salts in order to improve the centrifugal formability of mortar or concrete (Japanese Unexamined Patent Publication No. 59-69457). ). However, this method has the disadvantage that stable strength cannot be obtained depending on the amount of oxycarginic acid or its salts added and the temperature of the mortar or concrete, since the setting retardation effect is large.

一万、本発明者らは、蒸気養生を行なうコンクIJ −
ト裂品の高強度化の為にセラコラ類を比較的多量に添加
する方法を提案した(特開昭53−4902号公報)。
10,000, the present inventors have discovered that concrete IJ-
In order to increase the strength of torn products, a method was proposed in which a relatively large amount of Ceracola was added (Japanese Unexamined Patent Publication No. 53-4902).

この技術は一般化され、普及しているが、この時、使用
されるセラコラ類は、最も強度的効果の大きい硬セツコ
ウである。硬セツコウは、他のセラコラ類を350℃以
上で熱処理することにより容易に得られるが、経済性の
面から弗酸発生時に副生ずる硬セツコウ(以下弗酸セラ
コラという)が通常使用されている。
This technique has been generalized and spread, but the Ceracola type used at this time is a hard stone with the greatest strength effect. Hard slag can be easily obtained by heat-treating other ceracola at 350° C. or higher, but for economical reasons, slag that is produced as a by-product during hydrofluoric acid generation (hereinafter referred to as hydrofluoric acid ceracola) is usually used.

ところが、種々の事情により弗酸セラコラの生産槍は、
年々減少している。そのため少量添加で従来品と同橿度
の強度発現効果が得られること、さらに、他のセラコラ
類もそのまま使用できるように強度の増大をはかること
などの必要性が生じている。
However, due to various circumstances, the production of Ceracola hydrofluoric acid was
It is decreasing year by year. Therefore, there is a need to achieve the same strength development effect as conventional products by adding a small amount, and to increase the strength so that other Ceracola types can be used as is.

本発明者らは、減水剤の添加の有無に拘らず、更にはセ
ラコラ類の種類を問わず、芳香族カルぜン酸類を添加す
ることにより、以下の点を改善できることを知見し、本
発明を完成するに到った。
The present inventors have discovered that the following points can be improved by adding aromatic calzynic acids regardless of the presence or absence of a water reducing agent and regardless of the type of Ceracola. I have reached the point where I have completed the .

(1)  管内面を硬く締め、内面剥離を防止すると共
に、製管時間を短縮し生産の効率化を図る。
(1) Tighten the inner surface of the tube to prevent inner surface peeling, reduce tube manufacturing time, and improve production efficiency.

(2)脱水効果を上げ振動締め固め供試体と同等以上の
強度を遠心力成型体で安定的に得る。
(2) Improve the dehydration effect and stably obtain strength equal to or higher than that of the vibratory compacted specimen with the centrifugal force molded body.

(3)硬セツコウを少量添加で従来の強度を得る。(3) Achieve the conventional strength by adding a small amount of hard stone.

(4)硬セツコウ以外のセラコラ類と使用しても従来の
強度を得る。
(4) Even when used with Ceracola other than Hard Setsuko, the same strength as before can be obtained.

特に(2)以降の強度については、コンクU −ト温度
による影響が小さく、工業的実用に耐えるものである。
In particular, the strength of (2) onwards is less affected by the concrete temperature and is suitable for industrial use.

〔問題点を解決するための手段〕[Means for solving problems]

即ち、本発明は芳香族カル?ン酸類を主成分とする、コ
ンクリート製品を装造する際の遠心力成型助剤である。
That is, the present invention is an aromatic cal? It is a centrifugal forming aid for concrete products, which mainly contains phosphoric acids.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明で使用する芳香族カルビン酸類とは、安息香酸、
サリチル酸、アニス酸、アントラニル酸及び没食子酸等
のモノカルざン酸、フタル酸、テレフタル酸及びイソフ
タルe等のゾカルボン酸、フェニル酢酸、マンデル酸及
びケイ皮酸等の側鎖カルざンハ等とこれらのナトリウム
及びカリウム塩寺である。
Aromatic carbic acids used in the present invention include benzoic acid,
Monocarboxylic acids such as salicylic acid, anisic acid, anthranilic acid and gallic acid; zocarboxylic acids such as phthalic acid, terephthalic acid and isophthalic acid; side chain carboxylic acids such as phenylacetic acid, mandelic acid and cinnamic acid; It is a sodium and potassium salt temple.

芳香族カルざン酸類の使用量はセメントに対し0.00
5〜1.0電量%であり、好ましい範囲は0.01〜1
.0重量%である。0.005 、重量%未満では使用
効果が小さく、1.0重量%を越えると、凝結遅延性が
強く表われるものもあり強度的に好ましくない。
The amount of aromatic carboxylic acids used is 0.00 per cement.
It is 5 to 1.0 coul%, and the preferable range is 0.01 to 1
.. It is 0% by weight. If it is less than 0.005% by weight, the effect of use is small, and if it exceeds 1.0% by weight, it may exhibit strong setting retardation, which is not preferable in terms of strength.

セラコラ類としては、硬セツコウ、可岩性無水セツコウ
ニ水セツコウ、半水セラコラ(以下各々硬セッコウ、回
連性無水、工水、半水という)が使用され、その使用量
は、セメントに対しCa804換算で多くても15重量
%であり、好ましい範囲は2〜13重量%である。15
重量%を越えて使用しても強度的に大きくならないので
経済的に好ましくない。
As the Ceracola type, hard gypsum, rockable anhydrous gypsum, water gypsum, and semi-hydrous gypsum (hereinafter referred to as anhydrous gypsum, recirculated anhydrous, industrial water, and semi-water) are used, and the amount used is Ca804 per cement. The amount is at most 15% by weight, and the preferred range is from 2 to 13% by weight. 15
Even if it is used in excess of this weight percent, the strength will not increase, which is economically undesirable.

又、本発明の遠心力成型性やコンク11−ト製品の強度
をさらに助長する成分としてアルカリ金属の炭酸塩、重
炭酸塩、硫酸塩、重硫酸塩、亜硫酸塩、1項硫酸塩及び
亜硫酸カルシウムや硫酸マグネシウム専の無機塩があり
、これらを併用する場合の使用量は、無水物換算で多く
ともセメントに対し0.3重量%であり、好ましい範囲
は多くとも0.1重量%である。
In addition, alkali metal carbonates, bicarbonates, sulfates, bisulfates, sulfites, 1-term sulfates, and calcium sulfites are used as ingredients that further enhance the centrifugal formability and the strength of the concrete product of the present invention. There are inorganic salts exclusively for magnesium sulfate and magnesium sulfate, and when these are used in combination, the amount used is at most 0.3% by weight based on the cement in terms of anhydride, and the preferred range is at most 0.1% by weight.

コンクリートの遠心力成型時の脱水性は、硫酸ナトリウ
ム、重炭酸ナトリウム、本炭酸カリウム、炭酸カリウム
、炭酸ナトリウム、炭酸アンモニウム等の順で小さくな
るが、重硫酸塩、亜硫酸カルシウム、硫酸マグネシウム
及び炭酸ナトリウム等は脱水性に対する効果が小さいに
も拘らず、強度的には効果が大きい。
The dehydration property of concrete during centrifugal forming decreases in the order of sodium sulfate, sodium bicarbonate, potassium carbonate, potassium carbonate, sodium carbonate, ammonium carbonate, etc., but bisulfate, calcium sulfite, magnesium sulfate, and sodium carbonate Although they have a small effect on dehydration, they have a large effect on strength.

減水剤として框、リグニンスルホン酸塩やポリオール系
などの一般減水剤の他に、高強度コンクリート用として
コンクリート製品工場等で多用されている?リアルキル
アリルスルホン酸塩系やメラミン樹脂スルホン酸塩系な
どの高性能減水剤があり、前者はメーカー指定量、後者
は、多くともセメントに対し5重量%(固型分換算)の
使用が好ましい。
In addition to general water reducing agents such as stile, lignin sulfonate, and polyol, it is widely used in concrete product factories for high-strength concrete. There are high performance water reducing agents such as realkylaryl sulfonate type and melamine resin sulfonate type, the former is preferably used in the amount specified by the manufacturer, and the latter is preferably used at most 5% by weight (solid content equivalent) based on cement. .

本発明でモルタル又はコンクリートの製造に使用される
セメントは、普通・早強・超早強・中庸熱・耐硫酸塩等
の各種ポルトラン1セメントや高炉スラグ、フライアッ
シュ、シリカ等′fr:混合した混合セメントであり、
強度的には水硬性係数が大きい程高い強度が得られる。
The cement used in the production of mortar or concrete in the present invention includes various Portolan 1 cements such as normal, early strength, super early strength, moderate heat, and sulfate resistant, blast furnace slag, fly ash, silica, etc. It is a mixed cement,
In terms of strength, the larger the hydraulic coefficient, the higher the strength.

又、本発明は市販の膨張材やシリカヒユーム等を併用し
た場合においても遠心成型助剤としての効果は失なわれ
ないものである。
Further, the present invention maintains its effectiveness as a centrifugal molding aid even when a commercially available expansion material, silica hume, etc. are used in combination.

本発明の実施にあたり、芳香族カルボン酸及びそれらの
塩類や石膏類は混4時他の材料と一緒に直接ミキサーに
投入しても良く予じめ、混練水の一部に溶解又は分散さ
せて使用しても良い。又、遠心力成型コンクリート製品
の製造方法は通常現場で行われている方法で行われる。
In carrying out the present invention, aromatic carboxylic acids, their salts, and gypsum may be directly added to the mixer together with other ingredients during mixing, or they may be dissolved or dispersed in a portion of the mixing water in advance. May be used. Further, the manufacturing method of centrifugal force-formed concrete products is carried out by a method normally performed on site.

〔実施例〕〔Example〕

以下、本発明を実施例により詳しく説明する。 Hereinafter, the present invention will be explained in detail with reference to Examples.

同、各表中、の%はセメントに対する外削M量%であり
無水物又は固形分換算した値で、石fF類など静的に多
いものは砂と厭き変えた。
% in each table is the amount of externally cut M in cement, converted into anhydrous or solid content, and those that are statically large, such as stone fF, are replaced with sand.

$施例1 表−1のコンク17− ト配合を用い、芳香族カルボン
酸類(1級試薬)の種類と添加量金変えて、20φx3
[]tX5tcrILの遠心力供試管の遠心力成型性と
圧縮強度について測定した。
$ Example 1 Using the concrete formulation in Table 1, the type of aromatic carboxylic acids (first class reagent) and the amount of gold added were changed, and 20φx3
The centrifugal formability and compressive strength of centrifugal force test tubes of []tX5tcrIL were measured.

遠心力成型は、コンクリートを18に9一定とし型枠に
投入した後低速5Gで3分、中速15Gで3分、高速3
0Gで3分の遠心力成型を行い、−W内面の締らない軟
かいモルタル層の厚さく以下ノロ層厚という)で成型性
の良否を判断した。圧縮強度は、遠心成型した供試・U
と振動詰めの10φX20crrLの供試体1 以下余白 セメント(c) : ”iに気化学工業(株)製訝通ポ
ルトランドセメント、比!3.16 砂   (S)二新潟県姫用産川砂、比重2.65砕 
石 (G):t     砕石、比:!!2.68一般
減水剤 :リグニンスルホン酸塩系東唾貿易(株)製部
品名「コン ブラスト211」 高性能減水剤 (a) :ポリアルキルアリルスルホン酸塩系 化工(株)商品名「マイティ 100」粉状 (b):メラミン樹脂スルホン酸塩系 昭和電工(抹)商品名「メルノ ントF−10J粉状 前置き4時間の後、65℃まで3時間で上げ、そのまま
4時間保持し、以後、自然放冷した後、d8税型し24
時間圧縮強度全測定1.た。尚、コンクリートの混線は
、強制aOミキサーで307゜を3分行ない、混線と前
置き養生は20℃の室内で行った。
For centrifugal force forming, after placing the concrete into the formwork at a constant rate of 18 to 9, it was heated at a low speed of 5G for 3 minutes, at a medium speed of 15G for 3 minutes, and at a high speed of 3 minutes.
Centrifugal force molding was performed at 0 G for 3 minutes, and the moldability was judged by the thickness of the soft mortar layer on the -W inner surface (hereinafter referred to as slag layer thickness). The compressive strength is the centrifugally molded sample U.
Specimen 1 of 10 φ x 20 crrL packed with vibration.The following margin cement (c): ``i'' is made by Kei Kagaku Kogyo Co., Ltd., Kyotsu Portland cement, ratio! 3.16 Sand (S) Niigata prefecture Himeyo river sand, specific gravity 2 .65 crush
Stone (G):t Crushed stone, ratio:! ! 2.68 General water reducing agent: Lignosulfonate-based product name: “Comblast 211” manufactured by Toyaku Trading Co., Ltd. High performance water-reducing agent (a): Polyalkylaryl sulfonate-based product name: “Mighty 100” manufactured by Kako Co., Ltd. ” Powder (b): Melamine resin sulfonate product Showa Denko (red) product name “Melnont F-10J Powder” After 4 hours of preparation, the temperature was raised to 65°C for 3 hours, kept as it was for 4 hours, and then naturally heated. After cooling, d8 tax mold 24
Time compressive strength total measurement 1. Ta. The concrete cross-conducting was carried out at 307° for 3 minutes using a forced aO mixer, and the cross-conducting and pre-curing were carried out indoors at 20°C.

測定結果を表−2に示す。The measurement results are shown in Table-2.

以下余白 表−2中、実験屑、1〜5は比較例である。Margin below In Table 2, experimental scraps 1 to 5 are comparative examples.

本発明の芳香族オキシカル♂ン酸類は、セメントに対し
0.005〜1.0重量%で遠心力成型性を強度発現効
果が大きく、好ましい範囲は0.01〜0.51倚%で
あることが示される。
The aromatic oxycarboxylic acid of the present invention has a large effect on developing centrifugal force formability and strength at 0.005 to 1.0% by weight based on cement, and the preferable range is 0.01 to 0.51%. is shown.

実施例2 実験扁、3と屑、12の配合のコンクリートを用い、セ
ラコラ類の種類と使用量をかえて同様の試験を行った。
Example 2 Experiment A similar test was conducted using concrete with a mix of flat plate 3 and scrap 12, but with different types and amounts of Ceracola.

その結果を表−3に示す。The results are shown in Table-3.

セラコラ類: 硬セツコウ二弗酸発生副産セツコウ(プレーン値4,5
00儒2/g) 2 水  :工業用 半 水  :2水を150℃で6時間乾燥可容性無水二
半水金200”Cで6時間再乾燥表−6中実験7%28
〜37は比較例である。
Ceracola: Hydrofluoric acid by-product (plain value 4,5
00 儒2/g) 2 Water: Industrial use Water: 2 Dry water at 150℃ for 6 hours Soluble Anhydrous 2Hanhydrous Gold Redry for 6 hours at 200”C Table-6 Experiment 7% 28
-37 are comparative examples.

比較例では、遠心力成型性は悪く(即ちヒユーム管等で
は仕上げに時間がかかり内面層剥aなど生じ易い)、遠
心力成型した供試管 以下余白 強度は、10φX 20cWLの撮動詰め供試体より小
さくなる。
In the comparative example, the centrifugal force formability is poor (i.e., it takes a long time to finish the Hume tube, etc., and inner layer peeling is likely to occur), and the margin strength of the centrifugally formed test tube is lower than that of the 10φ x 20cWL photo-packed sample. becomes smaller.

本発明の遠心力成型助剤を使用した例では、遠心力成型
性が良く内面が硬く締まり、遠心力成継した供試管の強
度は10φX 20cmの供試体より常に高く、特に、
供試管の絶対強度が高くなり、セラコラ類の使用量が少
くても大きな強度が得られた。
In the examples using the centrifugal forming aid of the present invention, the centrifugal forming property is good and the inner surface is hard and firm, and the strength of the centrifugally applied test tube is always higher than that of the 10φ x 20cm test piece.
The absolute strength of the test tube was increased, and even with a small amount of Ceracola used, great strength was obtained.

実施例3 実験438と40の配合のコンフリートラ用い、各種無
機塩の添加効果を300φX1,000tmのRCぐい
(ストレート筋φ6BのPC@鋼6本、スパイラル筋φ
2Hの鉄線、間隔50u)を模疑した短ぐいの圧縮強度
で調べた。
Example 3 Experiments 438 and 40 were used for the comfleet mixer, and the effect of adding various inorganic salts was evaluated using 300φ x 1,000tm RC pipes (straight bar φ6B PC @ 6 steel bars, spiral bar φ6
The compressive strength of a short piece of 2H iron wire with a spacing of 50 u) was investigated.

コンクリート温度は10℃、外気@8℃で常法によって
遠心力成型し、6時間前置き養生の後、3時間で75”
Cに上げそのまま4時間保持し、その後、養生槽内で自
然放冷して、習日脱型後24時間圧縮強度を測定した。
Concrete temperature is 10℃, outside air @ 8℃, centrifugal molding is carried out by conventional method, and after pre-curing for 6 hours, it becomes 75” in 3 hours.
The sample was raised to temperature C and held as it was for 4 hours, then allowed to cool naturally in a curing tank, and the compressive strength was measured for 24 hours after demolding.

同、この時同時に10φX 2 (1mの振動詰め供試
体も採り、同様の養生を行ない比較とした。
At the same time, a 10φX 2 (1 m) vibration packed specimen was also taken and similarly cured for comparison.

結果を表−4に示す。The results are shown in Table 4.

以下余白 すサリチル酸専の種類と使用9並びに無機炭酸塩の種類
と使用量を変化させ遠心力成型を行った。
Centrifugal force molding was carried out by varying the type and amount of salicylic acid used (9) and the type and amount of inorganic carbonate used (see below).

遠心力成型体として外径20 cm 、長さ30備、厚
さ5cI!Lの供試管を用い、コンクリート量t−18
ゆ一定とし、低速3Gで2分、中速15Gで4分、高速
30Gで2分の遠心力成型を行い、ノロ厚層を測定した
As a centrifugal force molded body, the outer diameter is 20 cm, the length is 30 cm, and the thickness is 5 cI! Using L test pipe, concrete amount t-18
The centrifugal force molding was performed at a constant speed of 3G for 2 minutes, at a medium speed of 15G for 4 minutes, and at a high speed of 30G for 2 minutes, and the thickness of the slag layer was measured.

供試aの遠心力成型と一緒【、10φ×20CI!Lの
型枠に棒状バイブレータ−を使用してコンクリート全打
設し、供試体を成型し、前置き養生全20℃で4時間行
った後、15°C/hの昇温速度で65℃まで上げ、6
5°Cで4時間保持し、その後蒸気養生槽中で留日まで
静蓋し、24時間強度を測定した。使用材料は実施例1
と同様である。
Same as sample a centrifugal force molding [, 10φ x 20CI! Concrete was completely placed in the L formwork using a rod vibrator, the specimen was molded, and after pre-curing at 20℃ for 4 hours, the temperature was raised to 65℃ at a rate of 15℃/h. ,6
The sample was kept at 5°C for 4 hours, then kept in a steam curing tank until the day of retention, and the strength was measured for 24 hours. Materials used are Example 1
It is similar to

結果を表−6に示す。The results are shown in Table-6.

表−6において、実験4666〜70は比較例、実験4
671〜100は実施例である。実験慮66〜70では
、減水剤の種類やその使用の有無に拘らず成型性は悪い
。特に、高性能減水剤を添加した場合が恐く、添加量を
多くするとさらに悪くなる傾向にある。強度に関しては
、特に減水剤を使用した場合、10φX20cIILの
振動締め固めした供試体より、遠心力成型した供試管の
方が強度が小さい傾向が認められる。
In Table 6, Experiments 4666 to 70 are comparative examples, Experiment 4
671 to 100 are examples. In Experiment Nos. 66 to 70, the moldability was poor regardless of the type of water reducing agent and whether or not it was used. This is particularly the case when a high-performance water reducing agent is added, and the problem tends to worsen as the amount added is increased. As for strength, especially when a water-reducing agent is used, it is observed that the strength of the centrifugally formed test tube tends to be lower than that of the 10φ×20cIIL vibration-compacted specimen.

本発明の実施例では、遠心力成型性が改善され、供試管
の圧縮強度は供試体の強度より大きな値が得られている
In the examples of the present invention, the centrifugal force formability is improved, and the compressive strength of the test tube is larger than the strength of the test sample.

実施例5 実験%77において、コンクリート温度及び前置き養生
温度11:10℃(前置き時間は8時間)と60°C(
前置き時間は3時間)とし、クエン酸をセメントに対し
添加したものを比較例として、実施例4と同様の試験を
行った。結果を表−7に示す0 本発明の遠心力成型助剤を用いると、表−7より、比較
例実験4101.102に比べて圧縮強度に対する温度
の影響が少ないことがわかる。
Example 5 In experiment %77, concrete temperature and pre-curing temperature were 11:10°C (pre-curing time was 8 hours) and 60°C (
The same test as in Example 4 was conducted using a comparative example in which citric acid was added to the cement. The results are shown in Table 7.0 It can be seen from Table 7 that when the centrifugal force forming aid of the present invention is used, the influence of temperature on compressive strength is less than in Comparative Example Experiment 4101.102.

以下余白 実施例6 実験V;68と実験奮77のコンクI+ −トを用い、
内径600fi、長さ2430朋の41!!:筋ヒユー
ム管による遠心力成型性のテストを行った。
Below is the blank space Example 6 Experiment V; Using Conc I + -t of Experiment 68 and Experiment 77,
41 with an inner diameter of 600fi and a length of 2430mm! ! : A centrifugal force moldability test was conducted using muscle humerus canals.

遠心力成型条件は、コンクリートの投入後3Gで2分、
15Gで3分、43Gで4分行い、その後内面仕上げを
行った。
The centrifugal force forming conditions are: 3G for 2 minutes after concrete is poured;
The inner surface was finished after 3 minutes at 15G and 4 minutes at 43G.

本発明の遠心力成型助剤を用いるとAQGで4分遠心力
をかけた時点で固く締り、遠心力成型に9した時間げ約
15分であった。他方、比較例では、遠心力成型に約6
5分を要したが、管内面約1ぼの深さまで炊らかい状態
であつ念。
When the centrifugal force molding aid of the present invention was used, the product became firm after 4 minutes of centrifugal force was applied to the AQG, and the time required for centrifugal force molding was approximately 15 minutes. On the other hand, in the comparative example, about 6
It took 5 minutes, but it was cooked to a depth of about 1 inch inside the tube.

〔発明の効果〕〔Effect of the invention〕

以上、各実施例で示したように本発明の効果は、次の通
りである。
As described above in each embodiment, the effects of the present invention are as follows.

(1)遠心力成型による管内面のモルタルやコンクリー
ト層の締め固めが良好で、脱水性がよく、ノロの発生を
低減又は防止(−1且つ、内面剥離を防止し、遠心力成
型性が著しく同上する。
(1) Good compaction of the mortar and concrete layer on the inner surface of the tube through centrifugal force forming, good dewatering properties, and reduces or prevents the generation of slag (-1). Same as above.

特に、減水剤を併用し之ときの改善効果が著17い。In particular, when a water reducing agent is used in combination, the improvement effect is remarkable.

(2)遠心力成型し念供試gの圧縮強度が撮動締め固め
した供試体の圧縮強度より常に大となり、且つ、コンク
リート圧縮強度の都度依存性が小さい。
(2) The compressive strength of the specimen g formed by centrifugal force is always greater than the compressive strength of the photographically compacted specimen, and the dependence of concrete compressive strength on each occasion is small.

(3)製管時間が短く、生産効率が向上する。(3) Pipe making time is short and production efficiency is improved.

14)  遠心力FM、型した供試体の圧縮強度はセラ
コラ類5%の併用で従来のセラコラ類10%添加の10
φX20の撮動締め固めした供試体に匹敵する強度が得
られる。
14) Centrifugal force FM, the compressive strength of the molded specimen was 10% higher than that of the conventional 10% addition of Cerakola when 5% of Cerakola was added.
Strength comparable to that of a photographically compacted specimen of φX20 can be obtained.

(5J  アルカリ金属の炭酸塩、硫酸塩等の無機塩の
併用は、圧縮強度等の助長効果を示lす。
(5J The combined use of inorganic salts such as carbonates and sulfates of alkali metals has the effect of enhancing compressive strength, etc.

Claims (1)

【特許請求の範囲】[Claims] (1)芳香族カルボン酸類を主成分とする、コンクリー
ト製品を製造する際の遠心力成型助剤。
(1) A centrifugal forming aid used in the production of concrete products, whose main component is aromatic carboxylic acids.
JP11584787A 1986-07-02 1987-05-14 Centrifugal force molding aid Expired - Lifetime JPH0649603B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP61-154127 1986-07-02
JP15412786 1986-07-02

Publications (2)

Publication Number Publication Date
JPS63156047A true JPS63156047A (en) 1988-06-29
JPH0649603B2 JPH0649603B2 (en) 1994-06-29

Family

ID=15577495

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11584787A Expired - Lifetime JPH0649603B2 (en) 1986-07-02 1987-05-14 Centrifugal force molding aid

Country Status (1)

Country Link
JP (1) JPH0649603B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014083726A (en) * 2012-10-22 2014-05-12 Nakagawa Hume Kan Kogyo Kk Production method of concrete product

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08319671A (en) * 1995-05-25 1996-12-03 Kaneshin:Kk Bracing fixing hardware
JPH0967862A (en) * 1995-09-01 1997-03-11 Takatsu Kensetsu:Kk Binding reinforcing metal fitting

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014083726A (en) * 2012-10-22 2014-05-12 Nakagawa Hume Kan Kogyo Kk Production method of concrete product

Also Published As

Publication number Publication date
JPH0649603B2 (en) 1994-06-29

Similar Documents

Publication Publication Date Title
US7018466B2 (en) Process for producing a concrete and a mortar
JP2007191334A (en) Cement admixture, cement composition and method of producing centrifugal casting product using the same
JPS63156047A (en) Aid for centrifugal molding
JP2515397B2 (en) Cement admixture and cement composition
JPS6168361A (en) Manufacture of concrete centrifugally molded body
JP2005145747A (en) Hardening accelerator for hardened boy, method of accelerating hardening of hardened body and method of manufacturing hardened body
JPH11314947A (en) Cement composition
JPS6191051A (en) Manufacture of centrifugally molded body
JPH04193751A (en) High-strength concrete formed article
JP2501638B2 (en) Centrifugal molding single mouth reducing agent and method for producing centrifugal molding using the same
JPH0649602B2 (en) Cement admixture for heat curing
JPS636273B2 (en)
JPH10226549A (en) Cement admixture and cement composition
JP2007238439A (en) Cement composition, concrete and method of producing concrete hardened body using the same
JPS61238398A (en) Preparation of submerged sludge curing material
JPH02302346A (en) Hydraulic inorganic binder
JPS59207863A (en) Manufacture of centrifugal molded body
JP2000026151A (en) Grout material
JPH0510159B2 (en)
JP2859536B2 (en) Precast concrete formwork and method of manufacturing the same
JPH0476942B2 (en)
JPS59111955A (en) Expandable cement composition
JPS61127652A (en) Centrifugal molding process
JPH02302349A (en) Cement additive and cement composition using the same
JPH02172850A (en) Hydraulic inorganic bonding material and acid resistant hume pipe