JPS63155682A - Photovoltaic device - Google Patents

Photovoltaic device

Info

Publication number
JPS63155682A
JPS63155682A JP61302302A JP30230286A JPS63155682A JP S63155682 A JPS63155682 A JP S63155682A JP 61302302 A JP61302302 A JP 61302302A JP 30230286 A JP30230286 A JP 30230286A JP S63155682 A JPS63155682 A JP S63155682A
Authority
JP
Japan
Prior art keywords
gas
semiconductor film
si2h6
sih4
amorphous semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61302302A
Other languages
Japanese (ja)
Inventor
Yukio Nakajima
行雄 中嶋
Kaneo Watanabe
渡邉 金雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP61302302A priority Critical patent/JPS63155682A/en
Publication of JPS63155682A publication Critical patent/JPS63155682A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

PURPOSE:To cause the conversion efficiency not to be lowered very much even though a semiconductor film receives an intense light for a long time by using, as a photoactive layer, an amorphous semiconductor film which is formed with a direct resolution light CVD process where SiH4 and Si2H6 gases at least are practicable as an reaction gas. CONSTITUTION:A substrate 1 is heated while a reaction gas that is expressed by the following equality: SiH4/Si2H6=0.5 flows around the substrate and an ultraviolet light is radiated out of a mercury vapor lamp source 12. In such a case, an SiH4 gas which is hardly direct resolved by the radiated ultraviolet light is added to an Si2H6 gas and then, two gases are used as the reaction gas to form an amorphous semiconductor film. And its film has larger absorption coefficient than that of the amorphous semiconductor film which is formed by using only the SiH4 gas in a plasma CVD process as the reaction gas. The reason for this is that the SiH4 gas and a radical produced by resolving the Si2H6 gas interact each other to produce a freshly appeared radical which is hardly formed by only the Si2H6 gas and deposition of the fresh radical at the substrate surface will lessen a ratio of SiH2 combination to SiH combination in the above film.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は太陽光発電等に利用される光起電力装置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION (a) Industrial Application Field The present invention relates to a photovoltaic device used for solar power generation and the like.

(ロ)従来の技術 モノシラン(SiHJ、ジシラン(Si2Hs)、四フ
ッ化シリコン(SiF4)等のシリコン化合物をグロー
放電により励起跡れたプラズマエネルギによって直接分
解するプラズマCVD法を用いて非晶質シリコンや非晶
質シリコン合金等の非晶質半導体膜を容易に得ることが
できる。斯る非晶質を導体膜を光電変換動作する光活性
層とした光起電力装置は単位発電量当りのコストが安く
なる特徴点を有し、その需要が急激に増えつつある。
(b) Conventional technology Amorphous silicon is produced using a plasma CVD method in which silicon compounds such as monosilane (SiHJ, disilane (Si2Hs), silicon tetrafluoride (SiF4), etc. are directly decomposed by plasma energy left after excitation by glow discharge). Amorphous semiconductor films such as silicon alloys and amorphous silicon alloys can be easily obtained.A photovoltaic device using such an amorphous conductive film as a photoactive layer for photoelectric conversion has a low cost per unit power generation. It has the characteristic of being cheap, and its demand is rapidly increasing.

非晶質光起電力装置は単結晶光起電力装置に比し℃光電
変換効率が低いために、現在電卓、腕時計等の小型民生
用電子機器の電源が主流となっているものの、高光電変
換効率の開発に伴なって太陽光発電の分野にも利用され
つつある。
Amorphous photovoltaic devices have lower photoelectric conversion efficiency than single-crystal photovoltaic devices, so they are currently the main power source for small consumer electronic devices such as calculators and wristwatches. With the development of efficiency, it is also being used in the field of solar power generation.

然し乍ら、非晶質半導体膜を光活性層とした光起電力装
置は強い光照射を長時間受けると光電変換効率が低下す
る光劣化を招くことが知られている(Solar Ce
11s、9(1983)、第25頁〜第36頁〉。即ち
、小型民生用電子機器の電源として用いる場合、主とし
て直射日光の下で使用されることはなく殆ど光劣化せず
、また負荷となるLSIの低消費電力化が進んでいる関
係で、光劣化したとしても実質的には問題とならないも
のの、太陽光発電に利用される場合は、直射日光の下で
使用されるので光電変換効率は著しく光劣化する。
However, it is known that when a photovoltaic device with an amorphous semiconductor film as a photoactive layer is exposed to strong light irradiation for a long period of time, it causes photodeterioration in which the photoelectric conversion efficiency decreases (Solar Ce
11s, 9 (1983), pp. 25-36>. In other words, when used as a power source for small consumer electronic devices, they are not used under direct sunlight, so there is almost no photodegradation, and as the power consumption of LSIs, which serve as loads, are becoming lower, they are less susceptible to photodegradation. However, when used for solar power generation, the photoelectric conversion efficiency deteriorates significantly due to direct sunlight.

(ハ)発明が解決しようとする問題点 本発明は、単位発電量当りのコストが有利な非晶質半導
体膜を光活性層として用いると経時的に光電変換効率が
大幅に低下する点を解決しようとするものである。
(c) Problems to be solved by the invention The present invention solves the problem that when an amorphous semiconductor film, which has an advantageous cost per unit power generation amount, is used as a photoactive layer, the photoelectric conversion efficiency decreases significantly over time. This is what I am trying to do.

(ニ)問題点を解決するための手段 本発明光起電力装置は上記問題点を解決すべく、光電変
換動作する光活性層が、少なくともモ、ジシラン(Si
H斗)ガスとジシラン(Si2Hs)ガスを反応ガスと
し、該反応ガスを紫外領域の波長を輻射する光源の光エ
ネルギにより直接分解する光CVD法を用いて形成され
た非晶質半導体膜から構成される。
(d) Means for Solving the Problems In order to solve the above-mentioned problems, the photovoltaic device of the present invention has a photoactive layer that performs photoelectric conversion at least made of molybdenum, disilane (Si).
Consisting of an amorphous semiconductor film formed using a photo-CVD method in which H2H gas and disilane (Si2Hs) gas are used as reaction gases, and the reaction gases are directly decomposed by the light energy of a light source that radiates wavelengths in the ultraviolet region. be done.

(ポ〉 作用 上述の如< S i H4ガスと5i2HBガスを反応
ガスとした直接分解光CVD法により形成される非晶質
半導体膜は、光学的特性の吸収係数が増大することによ
って、該非晶質半導体膜を光活性層として用いると膜厚
を薄くすることができる。
(Po) Effect As described above, an amorphous semiconductor film formed by direct decomposition photoCVD using S i H4 gas and 5i2HB gas as a reaction gas is characterized by an increase in the absorption coefficient of the optical property. When a quality semiconductor film is used as a photoactive layer, the film thickness can be reduced.

(へ)実施例 第1図は本発明光起電力装置の基本構造を模式的に示す
断面図であって、(1)は光入射面を形成する透光性且
つ絶縁性の例えばガラスからなる基板、(2)はITO
,SnO2等の透光性導電酸化物(TCO)からなる受
光面電極、(3)は光電変換動作する光活性層(31)
を−導電型及び逆導電型の不純物層(3d+)(3d2
)で挾持したpin接合型の平溝体膜、(4)は背面側
に設けられたAI2、Ag 、 A l / T I 
、 A R/ T i A g 、 T CO/ Ag
、T CO/ A g 、 T CO/ A R/ T
 i 、 T CO/Aρ/ T i A g等の単層
乃至積層構造の背面電極で、上記受光面電極(2)、半
導体膜(3)及び背面電極(4)は上記基板く1〉の一
方の主面にこの順序で積層されている。
(f) Example FIG. 1 is a sectional view schematically showing the basic structure of the photovoltaic device of the present invention, in which (1) is made of a light-transmitting and insulating material, such as glass, forming the light incident surface. Substrate, (2) is ITO
, a light-receiving surface electrode made of a transparent conductive oxide (TCO) such as SnO2, and (3) a photoactive layer (31) that performs photoelectric conversion.
− conductivity type and opposite conductivity type impurity layer (3d+) (3d2
), and (4) is the pin-junction type flat-groove membrane sandwiched by the AI2, Ag, Al/T I provided on the back side.
, A R/ T i A g , T CO/ Ag
, T CO/ A g , T CO/ A R/ T
i, TCO/Aρ/TiAg, etc., with a single layer or multilayer structure back electrode, and the light-receiving surface electrode (2), the semiconductor film (3), and the back electrode (4) are on one side of the substrate 1>. are laminated in this order on the main surface.

」―足手導体膜(3〉の具体的構成は光入射側から見て
、−導電型、例えばp型の非晶質シリ−7ンカーバイド
からなる不純物層(3d+)と、p型やn型の導電型決
定不純物を全く含まないノンドープや僅かに含むスライ
ドリイドーブな状態の非晶質シリコンからなる光活性層
(31)と、逆導電型例えばn型の非晶質シリコンから
なる不純物層(3d2)とから構成されている。
” - The specific structure of the foot and hand conductor film (3) is, when viewed from the light incidence side, an impurity layer (3d+) made of conductivity type, for example, p-type amorphous silicon carbide, and p-type or n A photoactive layer (31) made of amorphous silicon in a non-doped or slide-doped state that does not contain any impurities that determine the conductivity type, and an impurity layer made of amorphous silicon of the opposite conductivity type, for example, n-type. (3d2).

而して、本発明光起電力装置の構成的特徴は光電変換動
作する光活性層(31)にある。即ち、本発明光起電力
装置の光活性層(31)は、少なくとも3iH*ガスと
Si2H6ガスを反応ガスとし、該反応ガスを紫外領域
の波長を輻射する光源の光エネルギにより直接分解する
光CVD法を用いて形成きれる。
The structural feature of the photovoltaic device of the present invention is the photoactive layer (31) that performs photoelectric conversion. That is, the photoactive layer (31) of the photovoltaic device of the present invention uses at least 3iH* gas and Si2H6 gas as reactant gases, and the photo-CVD method is used to directly decompose the reactant gases by the light energy of a light source that radiates wavelengths in the ultraviolet region. It can be formed using the law.

第2図は斯る光活性層(31)の製造方法を説明するた
めの光CVD装置の概念図であり−〔、反応室り11)
の下部に、波長184.9nmと253.7nmの紫外
領域の光を輻射する低圧水銀ランプの光源り12)を内
蔵したランプハウス〈13)が設けられている。北記2
ンブハウス(13)はその天面に紫外光を透過させ反応
室(11)内に斯る紫外光を照射1べく光照射窓として
の石英板(14)が設けられていると共に、該石英板〈
14)の反応室(11)白露出面には膜の付着を防止オ
t= <低蒸気圧のパーフルオロボリエテールが塗布さ
れている。そして、上記ランプハウス(13)内には反
応>ガスの侵入を防Iトすべくヘリウノ、(He)等の
不活性ガスが満たきれている。上記反応室り11〉の上
部には予めTCOの受光面電極(2)を被着した基板(
1)が、ヒータ(15)を内蔵した載置台(16)によ
って保持きれ、上記石英板(14)と反応空間を挾んで
対峙している。F2紫外光の光エネルギにより直接分解
される512H6ガスと、殆ど直接分解されることはな
いものの膜質を改善するSiH斗ガスは、斯る反応ガス
を夫々貯蔵するガスボンベ(17aH17b)を出発し
、バルブ(18a)<18h)、マスフローコントロー
ラ(19a)(19b)及び多数の噴出孔<20)(2
0)・・・が穿たれたガス供給体<21)を介して、反
応室(11)内に導入される。
FIG. 2 is a conceptual diagram of a photo-CVD apparatus for explaining the method of manufacturing such a photoactive layer (31).
A lamp house (13) containing a light source (12) of a low-pressure mercury lamp that radiates light in the ultraviolet region with wavelengths of 184.9 nm and 253.7 nm is provided at the bottom of the lamp house. Kitaki 2
The chamber house (13) is provided with a quartz plate (14) as a light irradiation window on its top surface to transmit ultraviolet light and irradiate the inside of the reaction chamber (11) with the ultraviolet light.
14) The white exposed surface of the reaction chamber (11) is coated with perfluoroboroether having a low vapor pressure to prevent film adhesion. The inside of the lamp house (13) is filled with an inert gas such as He, to prevent reactions and gas from entering. Above the reaction chamber 11〉 is a substrate (
1) is held by a mounting table (16) containing a heater (15), and faces the quartz plate (14) across the reaction space. 512H6 gas, which is directly decomposed by the light energy of F2 ultraviolet light, and SiH gas, which is hardly decomposed directly but improves film quality, leave the gas cylinders (17aH17b) that store these reaction gases, and then pass through the valve. (18a) <18h), mass flow controllers (19a) (19b) and numerous nozzle holes <20) (2
0)... are introduced into the reaction chamber (11) via the perforated gas supply body <21).

第3図は]二足光CVD装置を用いて光CVD法により
形成きれた非晶質半導体膜と、高周波グロー放電による
ブラスマCVD法により形成された非晶質半導体膜の光
学的特性である吸収)糸数を可視光帯域について測定し
たものである。測定に供せられた光CVD法による非晶
質半導体膜は、S+H+ガスと5jzHsガスを反応ガ
スとし、S i H4/S 12He =0.5となる
べく夫々のガス流ik カ約5〜505CCHの範囲で
マスフローコントローラC19a)(19b)により制
御され、また反応圧力は02〜2Tarr程度に保持さ
れた状態で基板(1)を約200〜300℃に加熱し、
低圧水銀ランプの光源(12)から該基板(1)の被着
面における光強度が波長184.9rmで5m11I/
clT12.253.7nmで3QmW/cm’の紫外
光を輻射することにより形成きれた。ここで注目すべき
は、低圧水銀ランプの光源(12)から輻射きれる紫外
光では殆ど直接分解されないS i H4ガスをSi2
H6ガスに追加してこの両者を反応ガスとした非晶質半
導体がSiH斗ガスを反応ガスとしたプラズマCVD法
により得られたものより犬さな吸収係数を持つことであ
る。斯る吸収係数の改善についての明確な解明は現在為
されていないものの、SiH+ガスは、5i2Hsガス
が分解して生成きれたラジカルと反応してSi2H6ガ
スのみでは殆ど形成きれることのなかった新たなラジカ
ルを生成し、そのラジカルが基板(1)表面に堆積する
ことによって膜中のSiH結合に対するSiH2結合の
割合を減少させるからであるう、と本発明者らは推測し
ている。即ち、SiH2結合が減少することは膜中にお
けるSi密度の増加となり、そのSi密度の増加が吸収
係数の改善に有効に作用していると思われる。因みに、
反応ガス中におけるガス組成比がSiHヰ/S i 2
 Hs =0.5のとき、SiH2結合は殆ど認められ
ず、SjH+/5j2H6=1のとき、SiH2結合/
 S i H結合が約1.8となり、またSiH6のみ
のときSiH2結合/ S i H結合は無限大となる
Figure 3 shows the optical characteristics of an amorphous semiconductor film formed by photo-CVD using a bipedal photo-CVD device and an amorphous semiconductor film formed by plasma CVD using high-frequency glow discharge. ) The number of threads was measured in the visible light band. The amorphous semiconductor film prepared by the photo-CVD method used for measurement was prepared using S+H+ gas and 5jzHs gas as reaction gases, and each gas flow ik was about 5 to 505 CCH so that S i H4/S 12He =0.5. The substrate (1) is heated to about 200 to 300° C. while the reaction pressure is maintained at about 0.2 to 2 Tarr.
The light intensity from the light source (12) of the low-pressure mercury lamp on the adhering surface of the substrate (1) is 5 m11 I/m at a wavelength of 184.9 rm.
The formation was completed by radiating ultraviolet light of 3 QmW/cm' with a clT of 12.253.7 nm. What should be noted here is that the S i H4 gas, which is hardly directly decomposed by the ultraviolet light radiated from the light source (12) of a low-pressure mercury lamp, is
An amorphous semiconductor using both H6 gas and H6 gas as a reactive gas has a smaller absorption coefficient than that obtained by plasma CVD using SiH gas as a reactive gas. Although there is currently no clear explanation of how to improve the absorption coefficient, SiH+ gas reacts with the radicals generated by the decomposition of 5i2Hs gas, creating a new type of gas that could hardly be formed with Si2H6 gas alone. The present inventors conjecture that this is because radicals are generated and the radicals are deposited on the surface of the substrate (1), thereby reducing the ratio of SiH2 bonds to SiH bonds in the film. That is, a decrease in SiH2 bonds results in an increase in the Si density in the film, and this increase in Si density seems to be effective in improving the absorption coefficient. By the way,
The gas composition ratio in the reaction gas is SiH/S i 2
When Hs = 0.5, almost no SiH2 bond is observed, and when SjH+/5j2H6 = 1, SiH2 bond/
The SiH bond is approximately 1.8, and when only SiH6 is used, the SiH2 bond/S i H bond is infinite.

このように吸収係数が改善された非晶質半導体膜により
、第1図に示す如きpin接合構造における光活性層(
31)を形成すると、従来のプラズマCVD法による光
活性層と比較して最適膜厚の薄膜化が図れる。即ち、従
来約5000人必要であった光活性層(31)はSiH
+ガスと5i2Heガスを反応ガスとする直接分解光C
VD法による非晶質半導体膜を用いることにより約10
00人〜3000レジ度に薄膜化することが可能となる
The amorphous semiconductor film with improved absorption coefficient can be used as a photoactive layer (
31), the optimum film thickness can be reduced compared to a photoactive layer formed by the conventional plasma CVD method. That is, the photoactive layer (31), which conventionally required about 5,000 people, is made of SiH.
Direct decomposition light C using + gas and 5i2He gas as reaction gases
Approximately 10
It becomes possible to make the film thin with a registration degree of 0.000 to 3000.

第4図は膜厚約1000人の光活性層(31〉を備えた
本発明光起電力装置と、膜厚約5000人の光活性層を
備えた従来装置との光電変換効率の光劣化を照射強度1
00mW/cm2、赤道直下の太陽光スペクトル(AM
−1)を輻射するソーラシュミレータを用いて調べたも
のである。測定に供せられた両装置は光活性層(31)
を除き他のp型不純物層(3d+)、n型不純物ffi
<362)については下記の如く共通仕様である。
Figure 4 shows the photodeterioration of the photoelectric conversion efficiency of the photovoltaic device of the present invention having a photoactive layer (31) with a thickness of about 1000 thick and the conventional device having a photoactive layer with a thickness of about 5000 thick. Irradiation intensity 1
00mW/cm2, sunlight spectrum just below the equator (AM
-1) was investigated using a solar simulator that radiates. Both devices subjected to the measurements had a photoactive layer (31)
Except for other p-type impurity layers (3d+), n-type impurity ffi
<362) is a common specification as shown below.

・p型不純物層(直接分解光CVD法)膜厚:200人 ガス組成比: B(CH3)3/S i2 Hs =3
%・n型不純物層(高周波プラズマCVD法)膜厚:4
00人 ガス組成比:PH3/SiH斗=1% この第4図から明らかな如く、本発明装置は初期値及び
長時間光照射後の値についても従来装置を大幅に上回る
ことが実験的にも確認できた。
・P-type impurity layer (direct decomposition photoCVD method) Film thickness: 200 people Gas composition ratio: B(CH3)3/S i2 Hs = 3
%・N-type impurity layer (high frequency plasma CVD method) film thickness: 4
00 people Gas composition ratio: PH3/SiH = 1% As is clear from this Figure 4, it has been experimentally shown that the device of the present invention greatly exceeds the conventional device both in initial values and values after long-term light irradiation. It could be confirmed.

(ト〉  発明の効果 本発明光起電力装置は以上の説明から明らかな如く、光
活性層として少なくともS i H4ガスと8j2Hs
ガスを反応ガスとした直接分解光CVD法により形成さ
れる非晶質半導体膜を用いることによって、光活性層の
最適膜厚を薄くすることができるので、強い光を長時間
受は一〇も大幅に光電変換効率が低下することはなく、
従って単位発電量当りのコストが有利な非晶質半導体膜
を備えた光起電力装置を太陽光発電に利用することがで
きる。
(G) Effects of the Invention As is clear from the above description, the photovoltaic device of the present invention contains at least SiH4 gas and 8j2Hs as a photoactive layer.
By using an amorphous semiconductor film formed by the direct decomposition photoCVD method using a gas as a reaction gas, the optimal thickness of the photoactive layer can be made thinner, so it is possible to receive strong light for a long time by less than 10 seconds. There is no significant decrease in photoelectric conversion efficiency,
Therefore, a photovoltaic device including an amorphous semiconductor film, which is advantageous in cost per unit power generation amount, can be used for solar power generation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明光起電力装置の基本構造を示す模式的断
面図、第2図は本発明光起電力装置の光活性層の製造に
用いられる光CVD装置の概念図、第3図は光CVD法
とプラズマCVD法により形成される非晶質半導体膜の
吸収係数と波長との関係を示す特性図、第4図は光電変
換効率の劣化特性図である。 (1)・・・基板、(2)・・・受光面電極、(3)・
・・半導体膜、(31〉・・・光活性層、(4)・・・
背面電極。
FIG. 1 is a schematic cross-sectional view showing the basic structure of the photovoltaic device of the present invention, FIG. 2 is a conceptual diagram of a photoCVD device used for manufacturing the photoactive layer of the photovoltaic device of the present invention, and FIG. 3 is a schematic cross-sectional view showing the basic structure of the photovoltaic device of the present invention. FIG. 4 is a characteristic diagram showing the relationship between the absorption coefficient and wavelength of an amorphous semiconductor film formed by the photo-CVD method and the plasma CVD method, and FIG. 4 is a characteristic diagram of the deterioration of photoelectric conversion efficiency. (1)...Substrate, (2)...Light-receiving surface electrode, (3)...
...Semiconductor film, (31>...Photoactive layer, (4)...
Back electrode.

Claims (1)

【特許請求の範囲】[Claims] (1)光電変換動作する光活性層が、少なくともモノシ
ラン(SiH_4)ガスとジシラン(Si_2H_6)
ガスを反応ガスとし、該反応ガスを紫外領域の波長を輻
射する光源の光エネルギにより直接分解する光CVD法
を用いて形成された非晶質半導体膜からなる光起電力装
置。
(1) The photoactive layer that performs photoelectric conversion is composed of at least monosilane (SiH_4) gas and disilane (Si_2H_6).
A photovoltaic device comprising an amorphous semiconductor film formed using a photo-CVD method in which a gas is used as a reactive gas and the reactive gas is directly decomposed by the light energy of a light source that radiates wavelengths in the ultraviolet region.
JP61302302A 1986-12-18 1986-12-18 Photovoltaic device Pending JPS63155682A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61302302A JPS63155682A (en) 1986-12-18 1986-12-18 Photovoltaic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61302302A JPS63155682A (en) 1986-12-18 1986-12-18 Photovoltaic device

Publications (1)

Publication Number Publication Date
JPS63155682A true JPS63155682A (en) 1988-06-28

Family

ID=17907336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61302302A Pending JPS63155682A (en) 1986-12-18 1986-12-18 Photovoltaic device

Country Status (1)

Country Link
JP (1) JPS63155682A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5925278A (en) * 1982-08-03 1984-02-09 Mitsui Toatsu Chem Inc Amorphous solar battery and manufacture thereof
JPS59198718A (en) * 1983-04-25 1984-11-10 Semiconductor Energy Lab Co Ltd Manufacture of film according to chemical vapor deposition
JPS6027121A (en) * 1983-07-22 1985-02-12 Semiconductor Energy Lab Co Ltd Photo chemical vapor deposition device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5925278A (en) * 1982-08-03 1984-02-09 Mitsui Toatsu Chem Inc Amorphous solar battery and manufacture thereof
JPS59198718A (en) * 1983-04-25 1984-11-10 Semiconductor Energy Lab Co Ltd Manufacture of film according to chemical vapor deposition
JPS6027121A (en) * 1983-07-22 1985-02-12 Semiconductor Energy Lab Co Ltd Photo chemical vapor deposition device

Similar Documents

Publication Publication Date Title
JP3364180B2 (en) Amorphous silicon solar cell
US20100300505A1 (en) Multiple junction photovolatic devices and process for making the same
US20100163100A1 (en) Photovoltaic Device and Process for Producing Same
WO2011007593A1 (en) Thin film solar cell and method for manufacturing same
Schropp Advances in solar cells made with hot wire chemical vapor deposition (HWCVD): superior films and devices at low equipment cost
JP2692091B2 (en) Silicon carbide semiconductor film and method for manufacturing the same
US4749588A (en) Process for producing hydrogenated amorphous silicon thin film and a solar cell
CN101626049A (en) Method for manufacturing film solar cell
JP2003188400A (en) Crystalline silicon carbide film and manufacturing method thereof, and solar cell
JP2006216624A (en) Solar cell and its production process
JPS63155682A (en) Photovoltaic device
US20100307583A1 (en) Solar cell and method for manufacturing the same
JP2004146735A (en) Silicon photovoltaic device and its manufacturing method
US8367453B2 (en) Method of manufacturing solar battery
JPS6233419A (en) Amorphous semiconductor
Rocheleau et al. Properties of a-Si: H and a-SiGe: H films deposited by photo-assisted CVD
JP2002261312A (en) Method of manufacturing hybrid thin-film photoelectric conversion device
JPH02177371A (en) Manufacture of amorphous solar cell
JPH03284882A (en) Semiconductor thin film and manufacture thereof
EP0137043B1 (en) Method of manufacturing hydrogenated amorphous silicon thin film and solar cell
JPS59161880A (en) Manufacture of amorphous solar battery
JPS63289968A (en) Manufacture of amorphous solar cell
JPS63155610A (en) Manufacture of semiconductor film
JPH1174550A (en) Production of amorphous silicon solar cell
JP2004172269A (en) Manufacturing apparatus of silicon photovoltaic element, the silicon photovoltaic element, and its manufacturing method