JPS63155603A - Manufacture of bond magnet - Google Patents

Manufacture of bond magnet

Info

Publication number
JPS63155603A
JPS63155603A JP61302628A JP30262886A JPS63155603A JP S63155603 A JPS63155603 A JP S63155603A JP 61302628 A JP61302628 A JP 61302628A JP 30262886 A JP30262886 A JP 30262886A JP S63155603 A JPS63155603 A JP S63155603A
Authority
JP
Japan
Prior art keywords
magnet powder
magnet
magnetic field
molding
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61302628A
Other languages
Japanese (ja)
Other versions
JPH0531806B2 (en
Inventor
Hirofumi Nakano
廣文 中野
Masakuni Kamiya
神谷 昌邦
Kazuo Matsui
一雄 松井
Masanori Sato
正則 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP61302628A priority Critical patent/JPS63155603A/en
Publication of JPS63155603A publication Critical patent/JPS63155603A/en
Publication of JPH0531806B2 publication Critical patent/JPH0531806B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To obtain a bond magnet which has high saturation magnetization and residual magnetic flux density by mixing a fatty acid with rare earth magnet powder, by treating the mixture after forming it in a magnetic field and then by curing and solidifying it by impregnating it with a bond agent. CONSTITUTION:A fatty acid of weight of 6 weight % or less of magnet powder is mixed as a forming assistant with the 2-17 system rare earth magnet powder of coercive force 6 kOe or less before an aging treatment. After the mixture is formed in a magnetic field, the obtained compact is subjected to aging. Then, the compact is impregnated with a bonding agent and is cured. Then, the friction among the magnet powder is reduced, the orientation is improved and the magnet powder is densely packed. This enables obtaining a bond magnet which has high saturation magnetization and residual magnetic flux density.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、樹脂結合剤を用いて磁石粉体を結合したボン
ド磁石の製造方法に関し、更に詳しくは、成形助剤とし
て脂肪酸を用い、時効処理前の低保磁力状態の2−17
系希土類磁石粉体と混合して磁場中成形を行い、その後
に時効処理を施し、結合剤を含浸させ固化させるように
したボンド磁石の製造方法に関するものである。
Detailed Description of the Invention [Industrial Application Field] The present invention relates to a method for manufacturing a bonded magnet in which magnet powder is bonded using a resin binder, and more specifically, it relates to a method for producing a bonded magnet in which magnetic powder is bonded using a resin binder. 2-17 in low coercive force state before treatment
The present invention relates to a method for manufacturing a bonded magnet, in which the bonded magnet is mixed with a rare earth magnet powder, molded in a magnetic field, and then subjected to an aging treatment, impregnated with a binder, and solidified.

[従来の技術] 希土類磁石粉体を結合剤(バインダー)により複合化し
たボンド磁石は従来公知である。結合剤としては、熱可
塑性または熱硬化性樹脂の他、金属や合金等、あるいは
ガラス系の無機物質等が用いられている。そして圧縮、
射出、押し出し、圧延等種々の成形法により製造される
が、なかでも高エネルギー積を生じさせるため一般には
圧縮成形が行われている。
[Prior Art] Bonded magnets in which rare earth magnet powder is composited with a binder are conventionally known. As the binder, in addition to thermoplastic or thermosetting resins, metals, alloys, or glass-based inorganic substances are used. and compression,
It is manufactured by various molding methods such as injection, extrusion, and rolling, but compression molding is generally used to produce a high energy product.

このような希土類ボンド磁石は、磁気特性が高く、量産
性に優れ寸法精度が出し易く、また形状の自由度が大き
い等の利点があり、近年、急速に様々な用途で使用され
つつある。
Such rare earth bonded magnets have advantages such as high magnetic properties, excellent mass production, easy dimensional accuracy, and a large degree of freedom in shape, and are rapidly being used in a variety of applications in recent years.

従来の希土類ボンド磁石の製造方法は、例えば第2図に
示すように、圧縮成形法に関しては先ず原料である合金
を粉砕し成形して焼結した後そのまま時効処理を行う。
In the conventional manufacturing method of rare earth bonded magnets, for example, as shown in FIG. 2, in the compression molding method, an alloy as a raw material is first crushed, molded and sintered, and then subjected to an aging treatment as it is.

そしてそれを粉砕した後、その時効処理後の粉体と結合
剤とを混練し、磁場中で形成した後、内部に含まれてい
る結合剤をキュア処理する構成が一般的である。
After pulverizing the powder, the aged powder is kneaded with a binder, formed in a magnetic field, and the binder contained therein is generally cured.

[発明が解決しようとする問題点コ 磁場中で成形を行う時に磁石粉体を十分に配向させるた
めには、印加する磁場の強さは素材である磁石粉体の保
磁力の4〜5倍以上が必要であると言われている。この
ため従来技術において、例えばSm2Co+7系のボン
ド磁石の場合には、成形時に40〜50kOe以上の強
い磁場を印加しなければならない。
[Problems to be Solved by the Invention] In order to sufficiently orient the magnetic powder when molding is performed in a magnetic field, the strength of the applied magnetic field must be 4 to 5 times the coercive force of the raw material, the magnetic powder. It is said that more than that is necessary. For this reason, in the prior art, for example, in the case of Sm2Co+7 bonded magnets, a strong magnetic field of 40 to 50 kOe or more must be applied during molding.

しかし現在広く用いられている磁場プレス装置で得られ
る磁場の強さは上記の値を満足できない(一般に製造ラ
インで印加可能な磁場は15kOe程度である)ため、
実際に行われている磁場中成形では素材原料粉体を十分
に配向できていない。
However, the strength of the magnetic field obtained with the currently widely used magnetic press equipment cannot satisfy the above values (generally, the magnetic field that can be applied on the production line is about 15 kOe).
In actual magnetic field forming, raw material powder cannot be oriented sufficiently.

このような問題を解決するため、本発明者等は先に時効
処理する以前の保磁力が6kOe以下の磁石粉体を磁場
中成形し、その後に時効処理を施す方法を提案した。こ
の方法は成形時に低磁場で磁石粉体の十分な配向ができ
ることから、容易に高い特性を有するボンド磁石を製造
できる利点がある。しかしこのような製造方法を採用し
ても焼結晶と比較するとその(BH)max  (最大
エネルギー積)は半分程度の値にとどまっている。この
磁気特性を更に向上させるためにはより一層磁石粉体の
充填率を向上し配向度を高める必要がある。
In order to solve such problems, the present inventors proposed a method in which magnet powder having a coercive force of 6 kOe or less before being subjected to aging treatment is first formed in a magnetic field, and then subjected to aging treatment. This method has the advantage of being able to easily produce bonded magnets with high properties because the magnet powder can be sufficiently oriented with a low magnetic field during molding. However, even if such a manufacturing method is adopted, its (BH)max (maximum energy product) remains at about half the value compared to a fired crystal. In order to further improve this magnetic property, it is necessary to further improve the filling rate of the magnet powder and the degree of orientation.

そこで成形前に成形助剤を加え成形し易い状態にしてか
ら磁場中成形を行う方法が考えられるが、前記の本発明
者等が提案した方法では磁場中成形後に磁石粉体を高保
磁力化するために400〜1000℃程度の高温で時効
処理を行わねばならず、成形助剤の種類によってはかえ
って(BH)maxを低下させる現象が生じることが認
められた。これは、その種類によりヒステリシスループ
の角形性が劣化することによる。
Therefore, a method of adding a molding aid before molding to make it easier to mold and then molding in a magnetic field can be considered, but in the method proposed by the present inventors, the magnetic powder is made to have a high coercive force after being molded in a magnetic field. Therefore, aging treatment must be carried out at a high temperature of about 400 to 1000° C., and it has been found that depending on the type of molding aid used, the (BH)max may be lowered. This is because the squareness of the hysteresis loop deteriorates depending on its type.

本発明の目的は、上記のような従来技術の欠点を解消し
、本発明者等が先に提案した時効処理する以前の保磁力
が6kOe以下の磁石粉体を用いて磁場中成形を行った
後に時効処理を施す方法を更に発展させて、充填率を向
上させ配向度を高め、且つ角形性を劣化させることのな
い成形助剤を用いてより一層磁気特性を向上させること
ができるようにしたボンド磁石の製造方法を提供するこ
とにある。
The purpose of the present invention is to eliminate the drawbacks of the prior art as described above, and to perform molding in a magnetic field using magnet powder with a coercive force of 6 kOe or less before aging treatment, as previously proposed by the present inventors. Later, the aging treatment method was further developed to improve the filling rate, increase the degree of orientation, and use a forming aid that did not deteriorate the squareness, making it possible to further improve the magnetic properties. An object of the present invention is to provide a method for manufacturing a bonded magnet.

[問題点を解決するための手段コ 上記のような目的を達成することのできる本発明は、時
効処理する以前の保磁力が6kOe以下の2−17系希
土類磁石粉体に、成形助剤として脂肪酸を混合し、磁場
中成形した後時効処理し、次いで結合剤を含浸させキュ
ア処理して固化するようにしたボンド磁石の製造方法で
ある。
[Means for Solving the Problems] The present invention, which can achieve the above objects, uses 2-17 rare earth magnet powder with a coercive force of 6 kOe or less before aging treatment as a forming aid. This is a method for manufacturing a bonded magnet in which fatty acids are mixed, molded in a magnetic field, aged, then impregnated with a binder, cured, and solidified.

原料となる2−17系の希土類磁石粉体は、Rz T 
M I 7 (但し、RはYを含むSm、Ce。
The raw material 2-17 rare earth magnet powder is Rz T
M I 7 (However, R is Sm or Ce containing Y.

Pr、Nd等の希土類元素の1種又は2種以上、TMは
Fe、Co、Ni等の遷移金属元素の1種又は2種以上
)で表される組成を主成分とするものである。このよう
な原料は通常、所定の組成を有する合金を粉砕した後、
一定の形状に成形し焼結し、また必要があればそれを所
定の条件で溶体化処理することによって得られる。
The main component is one or more rare earth elements such as Pr and Nd, and TM is one or more transition metal elements such as Fe, Co, and Ni. Such raw materials are usually produced by grinding an alloy with a predetermined composition;
It is obtained by molding into a certain shape, sintering it, and, if necessary, subjecting it to solution treatment under predetermined conditions.

2−17系希土類磁石は、時効処理により析出硬化が起
こり高保磁力が出現する。本発明はこの現象を有効に利
用している。
In 2-17 rare earth magnets, precipitation hardening occurs due to aging treatment and a high coercive force appears. The present invention effectively utilizes this phenomenon.

第1図に示すように本発明では上記のような原料焼結体
を先ず粉砕する。これにより得られた磁石粉体は時効処
理前であり6kOe以下の低保磁力状態である。このよ
うな低保磁力の磁石粉体を使用するのは、本発明者等が
磁場成形前の磁石粉体の保磁力と時効後のボンド磁石の
磁気特性の関係について種々の実験を行った結果、保磁
力が6kOe以下の磁石粉体を用いてボンド磁石を作製
すれば、本発明法の方が従来法により得られた同し保磁
力を有するボンド磁石に比べて極めて磁気特性、特にB
rと(B H)maxが良好になることを見出したこと
による。
As shown in FIG. 1, in the present invention, the raw material sintered body as described above is first pulverized. The magnet powder thus obtained has not been subjected to aging treatment and has a low coercive force of 6 kOe or less. The reason for using such low coercive force magnet powder is the result of various experiments conducted by the present inventors on the relationship between the coercive force of magnet powder before magnetic field forming and the magnetic properties of bonded magnets after aging. , if a bonded magnet is manufactured using magnet powder with a coercive force of 6 kOe or less, the method of the present invention has much better magnetic properties, especially B
This is due to the discovery that r and (B H)max become good.

そして成形助剤として脂肪酸を使用し、それと前記磁石
粉体とを混合する。脂肪酸はカルボキシル基(−COO
H)を持つ有機化合物R−CoolでRとして鎖状の炭
化水素基を有するものである。
Then, a fatty acid is used as a molding aid, and the fatty acid is mixed with the magnetic powder. Fatty acids have carboxyl groups (-COO
H) is an organic compound R-Cool in which R has a chain hydrocarbon group.

その代表例としてはカプロン酸、ラウリン酸、ミリスチ
ン酸、ステアリン酸、オレイン酸、リノール酸などがあ
る。成形助剤の量を磁石粉体の6重量%以下としたのは
、高磁気特性、ここでは高13r、高(BH)maxを
呈するボンド磁石を得るには、その磁石中での磁石粉体
が占める割合が大きいほど好ましくなるからである。
Typical examples include caproic acid, lauric acid, myristic acid, stearic acid, oleic acid, and linoleic acid. The reason why the amount of forming aid is 6% by weight or less of the magnet powder is that in order to obtain a bonded magnet exhibiting high magnetic properties, here high 13r and high (BH) max, the magnet powder in the magnet is This is because the larger the proportion occupied by , the more preferable it is.

因に6重量%を超える量を使用すると成形助剤を使用し
ない時よりも磁気特性が低下してしまう。
Incidentally, if the amount exceeds 6% by weight, the magnetic properties will be lower than when no molding aid is used.

次にこの混合物を磁場中で成形し、成形された形状を保
持したまま時効処理を行って高い保磁力を出現させる。
Next, this mixture is molded in a magnetic field and subjected to an aging treatment while maintaining the molded shape to develop a high coercive force.

その後エポキシ樹脂やフェノール樹脂、アクリル樹脂等
の熱硬化性合成樹脂を含浸させキュア処理する。
After that, it is impregnated with a thermosetting synthetic resin such as epoxy resin, phenol resin, or acrylic resin, and then cured.

[作用コ 本発明では成形前に成形助剤を混入したことにより、磁
石粉体間の間隙を充填すると共に滑剤的役目を果たす。
[Function] In the present invention, by mixing a molding aid before molding, it fills the gaps between the magnet powders and also serves as a lubricant.

このため磁石粉末間の摩擦が減少し、配向性が向上する
と共に磁石粉末を密に充填することが可能となる。
This reduces friction between the magnet powders, improves orientation, and makes it possible to densely pack the magnet powders.

また成形助剤として脂肪酸を使用しているから、磁石粉
体と同時に高温での時効処理を行っても、それらはスム
ーズに加熱飛散し、得られた製品の磁石特性に悪影響を
及ぼさない。
In addition, since fatty acids are used as molding aids, even if the magnet powder is aged at high temperatures at the same time, they will be smoothly heated and scattered and will not have any adverse effect on the magnetic properties of the resulting product.

更に本発明では時効処理前の低保磁力状態の磁石粉末を
用いて磁場中成形を行うから、一般に製造ラインで用い
られているような磁場プレス装置を用いても十分配向さ
せることができ、高い磁石特性を発生させることができ
る。
Furthermore, in the present invention, since magnetic field compaction is performed using magnet powder in a low coercive force state before aging treatment, sufficient orientation can be achieved even using a magnetic field press device that is generally used on a production line, and high Magnetic properties can be generated.

なお粒度調整がなされた磁石粉体を用いるならば本発明
の効果は更に大きくなる。
Note that the effects of the present invention will be even greater if magnetic powder whose particle size has been adjusted is used.

[実施例] 原料としてS m (Co o、68F e o、zo
Cuo、+。
[Example] S m (Co o, 68F e o, zo
Cuo, +.

Z r o、oz) q、qで示される低保磁力状態の
合金をショークラッシャーで粉砕し平均粒径200μm
の磁石粉体を得た。次にこの磁石粉体に対して成形助剤
として脂肪酸を2重量%加えて混合し、15kOeの磁
場中で3ton/am”で圧縮成形した。
Z r o, oz) The alloy in a low coercive force state indicated by q, q is crushed with a show crusher to an average particle size of 200 μm.
Magnet powder was obtained. Next, 2% by weight of fatty acid was added as a molding aid to this magnetic powder, mixed, and compression molded at 3 ton/am'' in a magnetic field of 15 kOe.

次にその成形体について800℃、1時間の時効処理を
行い高保磁力化した。その後エポキシ樹脂を含浸させ1
20℃で2時間のキュア処理を行いボンド磁石を得た。
Next, the molded body was subjected to an aging treatment at 800° C. for 1 hour to increase the coercive force. Then impregnated with epoxy resin 1
A bonded magnet was obtained by performing a curing treatment at 20° C. for 2 hours.

ここで成形助剤としてはオレイン酸とリノール酸を使用
した。
Here, oleic acid and linoleic acid were used as molding aids.

また比較例として成形助剤にエポキシ樹脂を用いた場合
と成形助剤を用いない場合についても同様の手順でボン
ド磁石を製作した。
Further, as comparative examples, bonded magnets were manufactured using the same procedure in cases where an epoxy resin was used as a molding aid and in cases where no molding aid was used.

更に従来例として同じ組成の合金について800℃で1
時間の時効処理を行い高保磁力化した後、ショークラッ
シャーで粉砕し、平均粒径200μmとし、エポキシ樹
脂と混練した後15kOeの磁場中で3ton/cm”
で圧縮成形し、120°Cで2時間のキュア処理を行い
ボンド磁石を製作した。
Furthermore, as a conventional example, 1 at 800℃ for an alloy with the same composition.
After aging to increase the coercive force, it is crushed with a show crusher to give an average particle size of 200 μm, and after kneading with epoxy resin, it is crushed to 3 tons/cm in a 15 kOe magnetic field.
A bonded magnet was produced by compression molding and curing at 120°C for 2 hours.

これら各試料について磁気特性と密度を測定した結果を
第1表に示す。
Table 1 shows the results of measuring the magnetic properties and density of each of these samples.

(以下余白) 第1表 この第1表の比較例から判るように、エポキシ樹脂を成
形助剤として混入した場合には、成形助剤を入れないも
のよりもかえって磁気特性が低下する。つまり成形助剤
を使用すれば密度はあがるものの、それだからといって
必ずしも磁気特性(BH)maxが向上するわけではな
い。
(The following is a blank space) Table 1 As can be seen from the comparative examples in Table 1, when an epoxy resin is mixed as a molding aid, the magnetic properties are rather lower than when no molding aid is added. In other words, although the density can be increased by using a molding aid, it does not necessarily improve the magnetic properties (BH) max.

それらに対して本発明方法を採用すれば、従来方法のみ
ならず比較例のものよりもはるかに優れた磁気特性を生
じさせることができる。
If the method of the present invention is applied to these, it is possible to produce magnetic properties that are far superior not only to the conventional method but also to those of the comparative example.

[発明の効果] 本発明は上記のように時効処理により析出硬化する磁石
粉体を析出硬化前の低保磁力状態の時に磁場中成形し、
その後その形状を保持したまま析出硬化させ高保磁力を
出現させる方法であり、成形助剤を使用しているため磁
石粉体の高充填高配向が可能となるし、また成形助剤と
して脂肪酸を使用しているため成形後に高温で時効処理
を行っても成形助剤が角形性に悪影響を及ぼずこともな
く、高い飽和磁化並びに残留磁束密度を持つボンド磁石
の製造が可能となるすぐれた効果が生じる。
[Effects of the Invention] The present invention comprises molding magnet powder that undergoes precipitation hardening through aging treatment in a magnetic field in a low coercive force state before precipitation hardening, as described above;
This method then hardens the magnetic powder by precipitation while retaining its shape, and produces a high coercive force.It uses a molding aid, making it possible to highly fill and highly orient the magnetic powder, and also uses fatty acids as a molding aid. Therefore, even if the molding aid is aged at high temperatures after molding, it will not have a negative effect on the squareness, and has the excellent effect of making it possible to manufacture bonded magnets with high saturation magnetization and residual magnetic flux density. arise.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法によるボンド磁石の製造工程の一例
を示す工程説明図、第2図は従来技術の一例を示す工程
説明図である。 特許出願人  富士電気化学株式会社 代  理  人     茂  見     穣第1図
   第2図 表 晶
FIG. 1 is a process explanatory diagram showing an example of the manufacturing process of a bonded magnet according to the method of the present invention, and FIG. 2 is a process explanatory diagram showing an example of the conventional technique. Patent applicant: Fuji Electrochemical Co., Ltd. Representative: Minoru Shigeru Figure 1: Figure 2: Akira

Claims (1)

【特許請求の範囲】[Claims] 1、時効処理する以前の保磁力が6kOe以下の2−1
7系希土類磁石粉体に、成形助剤として磁石粉体の6重
量%以下の脂肪酸を混合し、磁場中成形した後、得られ
た成形体を時効処理し、次いで結合剤を含浸させキュア
処理することを特徴とするボンド磁石の製造方法。
1. 2-1 with coercive force of 6 kOe or less before aging treatment
7 series rare earth magnet powder is mixed with 6% by weight or less of fatty acid of the magnet powder as a molding aid, and after molding in a magnetic field, the obtained molded body is aged, and then impregnated with a binder and cured. A method for manufacturing a bonded magnet, characterized by:
JP61302628A 1986-12-18 1986-12-18 Manufacture of bond magnet Granted JPS63155603A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61302628A JPS63155603A (en) 1986-12-18 1986-12-18 Manufacture of bond magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61302628A JPS63155603A (en) 1986-12-18 1986-12-18 Manufacture of bond magnet

Publications (2)

Publication Number Publication Date
JPS63155603A true JPS63155603A (en) 1988-06-28
JPH0531806B2 JPH0531806B2 (en) 1993-05-13

Family

ID=17911269

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61302628A Granted JPS63155603A (en) 1986-12-18 1986-12-18 Manufacture of bond magnet

Country Status (1)

Country Link
JP (1) JPS63155603A (en)

Also Published As

Publication number Publication date
JPH0531806B2 (en) 1993-05-13

Similar Documents

Publication Publication Date Title
EP0239031B2 (en) Method of manufacturing magnetic powder for a magnetically anisotropic bond magnet
US4063970A (en) Method of making permanent magnets
US4834812A (en) Method for producing polymer-bonded magnets from rare earth-iron-boron compositions
JPH01205403A (en) Rare earth iron resin coupling type magnet
JPH05152116A (en) Rare-earth bonded magnet and its manufacture
JPS63155603A (en) Manufacture of bond magnet
JP3883138B2 (en) Manufacturing method of resin bonded magnet
JPS63308904A (en) Manufacture of bond magnet
US5004499A (en) Rare earth-iron-boron compositions for polymer-bonded magnets
JPS63155602A (en) Manufacture of bond magnet
JPH0559572B2 (en)
JPH0450725B2 (en)
JP2709068B2 (en) Dust core
JPH10199717A (en) Anisotropic magnet and its manufacturing method
JPH06215967A (en) Manufacture of transferred integrally-molded magnetic circuit
JP2739329B2 (en) Method for producing alloy powder for polymer composite type rare earth magnet
JPS62261102A (en) Bonded magnet for starter motor
JPH0715124B2 (en) Method for producing magnetic composite material having excellent magnetic properties
JPH02109305A (en) Manufacture of polymer complex type rare earth magnet
JPH0786070A (en) Manufacture of bond magnet
JPH02155203A (en) Manufacture of polymer composite type rare earth magnet
JPS6167905A (en) Manufacture of permanent magnet
JPH0544161B2 (en)
JPS60224201A (en) Manufacture of rare earth cobalt magnet
JPH03129802A (en) Resin bonded rare-earth magnet