JPS6315486A - Semiconductor laser - Google Patents

Semiconductor laser

Info

Publication number
JPS6315486A
JPS6315486A JP16030086A JP16030086A JPS6315486A JP S6315486 A JPS6315486 A JP S6315486A JP 16030086 A JP16030086 A JP 16030086A JP 16030086 A JP16030086 A JP 16030086A JP S6315486 A JPS6315486 A JP S6315486A
Authority
JP
Japan
Prior art keywords
laser
resonators
laser element
beat
waveguide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16030086A
Other languages
Japanese (ja)
Inventor
Morichika Yano
矢野 盛規
Hiroshi Hayashi
寛 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP16030086A priority Critical patent/JPS6315486A/en
Publication of JPS6315486A publication Critical patent/JPS6315486A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/062Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes
    • H01S5/06209Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes in single-section lasers
    • H01S5/0622Controlling the frequency of the radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/1053Comprising an active region having a varying composition or cross-section in a specific direction
    • H01S5/106Comprising an active region having a varying composition or cross-section in a specific direction varying thickness along the optical axis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • H01S5/125Distributed Bragg reflector [DBR] lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/223Buried stripe structure
    • H01S5/2232Buried stripe structure with inner confining structure between the active layer and the lower electrode
    • H01S5/2234Buried stripe structure with inner confining structure between the active layer and the lower electrode having a structured substrate surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/223Buried stripe structure
    • H01S5/2237Buried stripe structure with a non-planar active layer

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To obtain a semiconductor laser that is easily made and is equipped with sufficiently stabilized oscillation wavelengths by composing a mechanism so that the oscillation wavelengths can be selected according to beat which is produced on the basis of an interference phenomenon of laser beams emitted between resonators consisting of a laser element part and a waveguide. CONSTITUTION:When the first clad layer 12 and an active layer 13 are formed on a substrate 11, recessed parts, corresponding to grooves 9 and 10 formed at the GaAs substrate 11, are formed in the first clad layer 12 on the grooves 9 and 10 and the active layer 13 is formed while it is being pulled in the recessed parts located in the first clad layer 12. Oscillating operations of laser elements 1 and 2 are formed by two kinds of resonators comprising laser element 1-waveguide 7laser element 2 and laser element 1-waveguide 8-laser element 2. Thus, beat is produced by an interference phenomenon of laser beams developed between the resonators having different lengths and wavelength selectivity is obtained by a mechanism of beat and accordingly a semiconductor laser performs the laser oscillating operations having stable selected wavelengths.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 この発明は、通信、品1測、情報処理などの分野に利用
される発振波長の安定化された半導体レーザ装置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application This invention relates to a semiconductor laser device with a stabilized oscillation wavelength, which is used in fields such as communications, product inspection, and information processing.

(ロ)従来の技術 光計測をはじめ光通信、光情報処理などの光応用分野に
おいて、半導体レーザの用途が拡大され−るにつれて、
発振波長の安定化が重要な課題となってきている。発振
波長の安定化された半導体し一ザとして従来より分布帰
還型し〜ザや干渉レーザが提案されてきた。
(b) Conventional technology As the use of semiconductor lasers expands in optical application fields such as optical measurement, optical communication, and optical information processing,
Stabilizing the oscillation wavelength has become an important issue. Distributed feedback lasers and interference lasers have been proposed as semiconductor lasers with stabilized oscillation wavelengths.

(ハ)発明が解決しようとする問題点 しかしながら、このような従来の半導体レーザにおいて
は、素子構造上製作が困難であることや、発振波長の十
分な安定性が得られにくいという問題点が残されている
(c) Problems to be solved by the invention However, such conventional semiconductor lasers still have problems such as difficulty in manufacturing due to the element structure and difficulty in obtaining sufficient stability of the oscillation wavelength. has been done.

この発明はこのような事情を考慮してなされたもので、
製作が容易でかつ充分に発振波長が安定化された半導体
レーザ装置を提供するものである。
This invention was made in consideration of these circumstances,
It is an object of the present invention to provide a semiconductor laser device that is easy to manufacture and whose oscillation wavelength is sufficiently stabilized.

(ニ)問題点を解決するための手段 この発明は、2つのレーザ素子部とそれらのレーザ素子
部間を結ぶ光路長の異なる複数の導波路とを備えて、前
記レーザ素子部と前記各導波路からなる複数の共振器を
形成し、各共振器間のレーザ光の干渉に基くビートの発
生により発振波長が選択されることを特徴とする半導体
レーザ装置である。
(d) Means for Solving the Problems This invention comprises two laser element parts and a plurality of waveguides having different optical path lengths connecting the laser element parts, and the laser element part and each of the waveguides are provided with a plurality of waveguides having different optical path lengths. This semiconductor laser device is characterized in that a plurality of resonators formed of wave paths are formed, and an oscillation wavelength is selected by generating a beat based on interference of laser light between the resonators.

(ホ)作 用 半導体レーザ装置のレーザ素子部と光路長の異なる複数
の導波路からなる各共振器によって発振が形成されると
、異なる光路長の共振器間のレーザ光の干渉により、ビ
ートが生じ、波長選択性が得られる。
(E) Operation When oscillation is formed by the laser element part of the semiconductor laser device and each resonator made up of a plurality of waveguides with different optical path lengths, the beat is caused by the interference of the laser light between the resonators with different optical path lengths. wavelength selectivity.

(へ)実施例 以下、図面に示す実施例に基づいてこの発明を詳述する
。なお、これによってこの発明が限定されるものではな
い。
(f) Examples Hereinafter, the present invention will be described in detail based on examples shown in the drawings. Note that this invention is not limited to this.

第1図はこの発明の一実施例の半導体レーザ装置の平面
的な配置を示す説明図、第2図は第1図のA−A矢視断
面を模式的に示す説明図である。
FIG. 1 is an explanatory diagram showing a planar arrangement of a semiconductor laser device according to an embodiment of the present invention, and FIG. 2 is an explanatory diagram schematically showing a cross section taken along the line A--A in FIG.

第1図にJ5いてレーザ素子1および2が平行に配置さ
れており、それらはそれぞれ2つの導波路7および8で
結合されている。3および4は回折格子によって形成さ
れたハーフミラ−15および6は回折格子によって形成
された完全ミラー、9゜10は第2図に示すGaASM
板11に形成された溝、16はレーザ素子1の端部に設
けられた反射膜である。
At J5 in FIG. 1, laser elements 1 and 2 are arranged in parallel and are coupled by two waveguides 7 and 8, respectively. 3 and 4 are half mirrors formed by diffraction gratings, 15 and 6 are full mirrors formed by diffraction gratings, and 9 and 10 are GaASMs shown in FIG.
The groove 16 formed in the plate 11 is a reflective film provided at the end of the laser element 1.

第2図において、12はGaAS基板上に形成されたQ
a AI AS第1クラッド層、13はGaAl’As
活性層、14はQa At As第2クラッド層、15
は電極形成用の(3a Asである。導波路部7.8で
はこの電極形成用のGa Asがホトリソグラフィ法で
除去され、回折格子3および5が第2クラッド層14に
形成される。
In FIG. 2, 12 is a Q formed on a GaAS substrate.
a AI AS first cladding layer, 13 is GaAl'As
active layer, 14 Qa At As second cladding layer, 15
is (3a As) for forming electrodes. In the waveguide section 7.8, this GaAs for forming electrodes is removed by photolithography, and diffraction gratings 3 and 5 are formed on the second cladding layer 14.

ここで、基板11の上に第1クラッド層12および活性
層13が形成される際には、第1クラッド層12にはG
aAS基板11に形成された溝9゜10に対応して、そ
れらの上部に凹部が形成され、活性層13は、第1クラ
ッド層12の四部に引込まれ′つつ形成される。従って
、導波路7および8における活性層13は、レーザ素子
1および2における活性層13より十分に薄く形成され
、導波路7および8でのレーク“光の吸収損失は無視出
来る程度に減少する。
Here, when the first cladding layer 12 and the active layer 13 are formed on the substrate 11, the first cladding layer 12 has G
Recesses are formed above the grooves 9 and 10 formed in the aAS substrate 11, and the active layer 13 is formed while being drawn into the four parts of the first cladding layer 12. Therefore, the active layers 13 in the waveguides 7 and 8 are formed sufficiently thinner than the active layers 13 in the laser elements 1 and 2, and the absorption loss of Rake light in the waveguides 7 and 8 is reduced to a negligible extent.

このような構成において、レーザ素子1,2の発振は、
レーザ索子1−導波路7−レーザ素子2と、レーザ素子
1−導波路8−レーザ素子2の2つの共振器によって形
成されることになる。従つて、異った長さの共振器間の
レーザ光の干渉によりビートが生じ、このビートの作用
で波長選択性が得られる。即ち半導体レーザは安定した
選択波長のレーザ発振を行なうことになる。。なお、こ
のように構成された半導体レーザ装置の発振波長が選択
されかつ安定化するのは、異なる共振器の共振条件を両
者とも満足した波長のみが優先するためである。
In such a configuration, the oscillation of the laser elements 1 and 2 is as follows.
It is formed by two resonators: laser cable 1 - waveguide 7 - laser element 2 and laser element 1 - waveguide 8 - laser element 2. Therefore, a beat is generated by the interference of laser light between resonators of different lengths, and wavelength selectivity is obtained by the action of this beat. That is, the semiconductor laser performs stable laser oscillation at the selected wavelength. . The reason why the oscillation wavelength of the semiconductor laser device configured in this manner is selected and stabilized is that only wavelengths that satisfy the resonance conditions of different resonators are prioritized.

この実施例の半導体レーザ装置を発振させると、周囲温
度を室温から50℃まで変えても発振縦モードの跳びが
なく、発振波長の変化は0.65人/℃稈度Cあり、波
長の安定性にすぐれていることが確認された。
When the semiconductor laser device of this example is oscillated, there is no jump in the oscillation longitudinal mode even if the ambient temperature is changed from room temperature to 50°C, the oscillation wavelength changes by 0.65 people/°C, and the wavelength is stable. It was confirmed that it has excellent sex.

(ト)発明の効果 この発明によれば、製作が容易でかつ簡単な構成であり
ながら、発振波長が充分に安定化された半導体レーザ装
置が提供される。
(G) Effects of the Invention According to the present invention, a semiconductor laser device is provided which is easy to manufacture and has a simple configuration, and whose oscillation wavelength is sufficiently stabilized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例の平面を示す説明図、第2
図は第1図のA−△矢視断面を示す説明図である。 1.2・・・・・・レーザ素子、 3.4・・・・・・ハーフミラ−回折格子、5.6・・
・・・・完全ミラー回折格子、7.8・・・・・・導波
路、      9,10・・・・・・溝、11・・・
・・・Ga AS基板、 12・・・・・・Ga AI As第1クラッド層、1
3・・・・・・Ga AI As活性層、14・・・・
・・Ga AI As第2クラッド層、15・・・・・
・電極形成用GaAs、16・・・・・・反r11膜。
FIG. 1 is an explanatory diagram showing a plane of an embodiment of the present invention, and FIG.
The figure is an explanatory diagram showing a cross section taken along the line A-△ in FIG. 1. 1.2... Laser element, 3.4... Half mirror diffraction grating, 5.6...
...Full mirror diffraction grating, 7.8...Waveguide, 9,10...Groove, 11...
...Ga AS substrate, 12...Ga AI As first cladding layer, 1
3...Ga AI As active layer, 14...
...Ga AI As second cladding layer, 15...
- GaAs, 16... anti-r11 film for electrode formation.

Claims (1)

【特許請求の範囲】[Claims] 1、2つのレーザ素子部とそれらのレーザ素子部間を結
ぶ光路長の異なる複数の導波路とを備えて、前記レーザ
素子部と前記各導波路からなる複数の共振器を形成し、
各共振器間のレーザ光の干渉に基くビートの発生により
発振波長が選択されることを特徴とする半導体レーザ装
置。
1, comprising two laser element parts and a plurality of waveguides having different optical path lengths connecting the laser element parts, forming a plurality of resonators made of the laser element part and each of the waveguides;
A semiconductor laser device characterized in that an oscillation wavelength is selected by generating a beat based on interference of laser light between each resonator.
JP16030086A 1986-07-08 1986-07-08 Semiconductor laser Pending JPS6315486A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16030086A JPS6315486A (en) 1986-07-08 1986-07-08 Semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16030086A JPS6315486A (en) 1986-07-08 1986-07-08 Semiconductor laser

Publications (1)

Publication Number Publication Date
JPS6315486A true JPS6315486A (en) 1988-01-22

Family

ID=15711982

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16030086A Pending JPS6315486A (en) 1986-07-08 1986-07-08 Semiconductor laser

Country Status (1)

Country Link
JP (1) JPS6315486A (en)

Similar Documents

Publication Publication Date Title
JP5764875B2 (en) Semiconductor optical device
JPH01184971A (en) Slab guiding light emission semiconductor laser
JPS62229105A (en) Multi-wavelength semiconductor light source
JP2011086714A (en) Wavelength tunable laser
JPS63164382A (en) Semiconductor laser device
JP2002303904A (en) Light wavelength converting device and its adjusting method
JPH09162490A (en) Light emitting element module
JPS645474B2 (en)
JPS622478B2 (en)
JPS6315486A (en) Semiconductor laser
JPS6315487A (en) Semiconductor laser
JPH051989B2 (en)
JPH1117286A (en) Tunable laser device
JP5034572B2 (en) Light source device
JP3814495B2 (en) Tunable mode-locked laser
JPS6032381A (en) Surface light emitting semiconductor laser device
JP2965013B2 (en) Light emitting module structure
JPS6159554B2 (en)
JPH084179B2 (en) Semiconductor laser
JPS6255983A (en) External light feedback semiconductor laser using optical fiber
JPS62136890A (en) Semiconductor laser device
JPH02253675A (en) Lasing device
JPH11261163A (en) Light-emitting element module
JPH07105566B2 (en) Semiconductor laser and manufacturing method thereof
JPH05121837A (en) Semiconductor laser