JPS63154632A - Production of halogenated benzene derivative - Google Patents

Production of halogenated benzene derivative

Info

Publication number
JPS63154632A
JPS63154632A JP61298994A JP29899486A JPS63154632A JP S63154632 A JPS63154632 A JP S63154632A JP 61298994 A JP61298994 A JP 61298994A JP 29899486 A JP29899486 A JP 29899486A JP S63154632 A JPS63154632 A JP S63154632A
Authority
JP
Japan
Prior art keywords
zeolite
reaction
catalyst
benzene derivative
halogenated benzene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61298994A
Other languages
Japanese (ja)
Inventor
Takanori Miyake
孝典 三宅
Kazuhiko Sekizawa
関沢 和彦
Kiyotaka Koyama
小山 清孝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP61298994A priority Critical patent/JPS63154632A/en
Publication of JPS63154632A publication Critical patent/JPS63154632A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PURPOSE:To selectively obtain a para-substituted halogenated benzene derivative in halogenating a benzene derivative by the use of faujasite type zeolite and/or L-type zeolite as a catalyst, by adding an organic phosphorus compound to a reaction system. CONSTITUTION:In producing a halogenated benzene derivative by halogenating reaction of a benzene derivative by the use of faujasite type zeolite and/or L-type zeolite as a catalyst, an organic phosphorus compound shown by formula I-formula V [R1-R3 are 1-20C hydrocarbon residue which may contain substituted group (OH, halogen, ester group or COOH); X and Y are halogen) in a ratio of 1X10<-5>-0.1g/g-zeolite, preferably 1X10<-4>-5X10<-2>g/g-zeolite calculated as phosphorus atom is added to the reaction system to give a para- substituted halogenated benzene derivative having abundant industrial demands in high selectivity while suppressing by-products of ortho-substituted halogenated benzene derivatives.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はベンゼン誘導体をハロゲン化してノ翫ロゲン化
ベンゼン誘導体を製造する方法に関するものである。更
に詳しくは、無修飾または金属塩で修飾した、フォージ
ャサイト型ゼオライト及び/またはL型ゼオライトを触
媒として用い、反応系中に有機リン化合物を共存させて
ベンゼン誘導体をハロゲン化してオルト置換ハロゲン化
ベンゼン誘導体等の副生を少なくし、パラ置換ハロゲン
化ベンゼン誘導体を選択的に製造する方法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for producing a halogenated benzene derivative by halogenating a benzene derivative. More specifically, unmodified or metal salt modified faujasite type zeolite and/or L type zeolite is used as a catalyst, an organic phosphorus compound is present in the reaction system, and benzene derivative is halogenated to ortho-substituted halogenation. The present invention relates to a method for selectively producing para-substituted halogenated benzene derivatives while reducing by-products such as benzene derivatives.

〔従来の技術〕[Conventional technology]

ハロゲン化ベンゼン誘導体は医薬、農薬をはじめ、有機
合成化学分野で工業的に重要な原料中間体である。
Halogenated benzene derivatives are industrially important raw material intermediates in the field of organic synthetic chemistry, including pharmaceuticals and agricultural chemicals.

モノ置換ベンゼン誘導体のハロゲン化によるジ置換ベン
ゼン誘導体の製造においては、生成物として1.2−ジ
置換体(オルト体)、1.3−ジ置換体(メタ体)、1
.4−ジ置換体(パラ体)の三種類の異性体が得られる
が、これらの各異性体の生成割合がモノ置換ベンゼン誘
導体である時の置換基の種類、触媒の種類等により決定
されることは良く知られている。例えば、従来より行わ
れている塩化第二鉄存在下でのモノクロロベンゼン(以
下、MOBと略称)の液相塩素化反応によるジクロロベ
ンゼン(以下、DCBと略称)の製造の際、生成する三
種類の異性体の生成割合は下記のようになる。
In the production of di-substituted benzene derivatives by halogenation of mono-substituted benzene derivatives, the products are 1,2-disubstituted (ortho), 1,3-disubstituted (meta), and 1.
.. Three types of 4-disubstituted (para) isomers are obtained, and the proportion of each isomer produced is determined by the type of substituent in the monosubstituted benzene derivative, the type of catalyst, etc. This is well known. For example, during the production of dichlorobenzene (hereinafter referred to as DCB) by the conventional liquid phase chlorination reaction of monochlorobenzene (hereinafter referred to as MOB) in the presence of ferric chloride, three types of The production ratio of isomers is as follows.

オルトジクロロベンゼン:30〜40チメタジクロロベ
ンゼン : 0〜5チ バラシクロロベンゼン :60〜70%この三種類の異
性体の中で工業的にはバラ置換ハロゲン化ベンゼン誘導
体が需要も多く最も重要である。このような場合、異性
化反応を行うことによりて目的物質をより多く生産する
方法が考えられるが、オルト置換ハロゲン化ベンゼン誘
導体からバラ置換ハロゲン化ベンゼン誘導体への異性化
反応は、非常に困難であり、通常行われていない。
Orthodichlorobenzene: 30-40 Thimetadichlorobenzene: 0-5 Thibaracychlorobenzene: 60-70% Among these three types of isomers, industrially, the rose-substituted halogenated benzene derivatives are in great demand and are the most important. In such cases, it is possible to produce more of the target substance by performing an isomerization reaction, but the isomerization reaction from an ortho-substituted halogenated benzene derivative to a rose-substituted halogenated benzene derivative is extremely difficult. Yes, but not normally done.

従ってバラ置換ハロゲン化ベンゼン誘導体をより選択的
に製造する方法がこれまで数多く提案されてきた。
Therefore, many methods have been proposed to more selectively produce halogenated benzene derivatives substituted with halogenated derivatives.

その一つとしてゼオライトを触媒として用いてベンゼン
誘導体をハロゲン化し、バラ置換ハロゲン化ベンゼン誘
導体を選択的に製造する方法が提案されている。
As one such method, a method has been proposed in which benzene derivatives are halogenated using zeolite as a catalyst to selectively produce rose-substituted halogenated benzene derivatives.

例えば、ジャーナル・オプ・キャタリシス(、Tour
nal of C!atalysis) ii、  1
10(1979)には、ハロゲン化ベンゼンの臭素化触
媒として、ゼオライトの使用が報告されている。
For example, Journal of Catalysis (, Tour
nal of C! analysis) ii, 1
10 (1979) reports the use of zeolite as a bromination catalyst for halogenated benzene.

本引用例において、ハロゲン化触媒として、各種イオン
交換ゼオライト、すなわち、X型、Y型ゼオライトが用
いられており、パラ置換ブロモベンゼン誘導体が高い選
択率で生成することが示されている。
In this cited example, various ion-exchange zeolites, ie, X-type and Y-type zeolites, are used as halogenation catalysts, and it has been shown that para-substituted bromobenzene derivatives are produced with high selectivity.

また、テトラヘドロン・レターズ(Tetrahear
onLetters) Lユ、3089(1980)に
は、ZSM−5,ZSM−11,モルデナイト、L型ゼ
オライト、Y型ゼオライト等を触媒とするベンゼンの塩
素化反応が報告されており、とくに、L型ゼオライトの
場合に高いバラジクロロベンゼン(以下、PDCBと略
称)選択率が得られることが述べられている。更に、例
えば特開昭59−130227号公報、同59−144
722号公報、同59−165529号公報等において
、L型ゼオライトやY型ゼオライトを触媒とするベンゼ
ンやアルキルベンゼンのハロゲン北方法カ開示されてい
る。
Also, Tetrahedron Letters (Tetrahear)
on Letters) L Yu, 3089 (1980) reports a benzene chlorination reaction using ZSM-5, ZSM-11, mordenite, L-type zeolite, Y-type zeolite, etc. as catalysts, and in particular, L-type zeolite. It is stated that a high selectivity to baladichlorobenzene (hereinafter abbreviated as PDCB) can be obtained in the case of Furthermore, for example, JP-A-59-130227, JP-A-59-144
No. 722, No. 59-165529, etc. disclose methods for producing halogens of benzene and alkylbenzene using L-type zeolite and Y-type zeolite as catalysts.

このようにゼオライトを触媒として用いることにより、
パラ置換I・ロゲン化ベンゼン誘導体は選択性よく製造
されるに至ったが、さらに選択性よく製造するために、
ゼオライト触媒の修飾1反応系への添加剤等の研究が進
められている。例えば特開昭60−188333号公報
、同60−197652号公報、同60−248651
号公報等には、トルエン等の液相ノ10ゲン化反応にお
いて、低級アシル化剤、脂肪族カルボン酸及びその金属
塩等で処理したゼオライトを触媒として用いると、パラ
置換ハロゲン化ベンゼン誘導体の選択率が向上すること
が報告されている。
By using zeolite as a catalyst in this way,
Para-substituted I-logenated benzene derivatives have been produced with good selectivity, but in order to produce them with even better selectivity,
Research is underway on additives for the zeolite catalyst modification 1 reaction system. For example, JP-A-60-188333, JP-A-60-197652, JP-A-60-248651.
No. 3, etc., states that when zeolite treated with a lower acylating agent, an aliphatic carboxylic acid, a metal salt thereof, etc. is used as a catalyst in a liquid-phase 10-genation reaction of toluene, etc., para-substituted halogenated benzene derivatives can be selected. It has been reported that the rate is improved.

ケミストリー・レターズ(C!hemistry Le
tters)第2007頁(1984年)には、臭素を
吸着したA型ゼオライトを用いるアニリンの臭素化反応
において、ピリジンまたは2.6−ルチジンを加えると
、臭素化活性およびバラブロモアニリンの選択率が向上
することが報告されている。
Chemistry Letters (C!chemistry Le
tters), p. 2007 (1984), in the bromination reaction of aniline using type A zeolite adsorbed with bromine, the addition of pyridine or 2,6-lutidine increases the bromination activity and selectivity of bromoaniline. It has been reported that it improves.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ベンゼン誘導体のハロゲン化反応において、バラ置換ハ
ロゲン化ベンゼン誘導体を選択的に製造するために触媒
としてゼオライトを用いることは有効な手段であるが、
副生ずるオルト置換ハロゲン化ベンゼン誘導体等の生成
量は、目的物質の分離精製の点で、できる限り少量であ
ることが好ましい。
In the halogenation reaction of benzene derivatives, using zeolite as a catalyst is an effective means for selectively producing rose-substituted halogenated benzene derivatives;
The amount of by-products such as ortho-substituted halogenated benzene derivatives is preferably as small as possible from the standpoint of separation and purification of the target substance.

よって副生成物の生成をさらに抑制し、バラ置換ハロゲ
ン化ベンゼン誘導体をより高い選択率をもって製造する
方法の開発が切望されている。
Therefore, there is a strong need for the development of a method for producing halogenated benzene derivatives with higher selectivity by further suppressing the production of by-products.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らは、この現状に鑑み、ベンゼン誘導体のハロ
ゲン化反応によるバラ置換ハロゲン化ベンゼン誘導体の
選択的製造方法について、とくにゼオライト触媒を使用
する反応について詳細に検討した。
In view of this current situation, the present inventors conducted a detailed study on a method for selectively producing a rose-substituted halogenated benzene derivative by a halogenation reaction of a benzene derivative, particularly a reaction using a zeolite catalyst.

その結果、本発明者らは、フォージャサイト型ゼオライ
ト及び/または、L型ゼオライトを触媒とした場合、反
応系中に有機リン化合物を共存させると、驚くべきこと
にハロゲン化の位置選択性が変化し、オルト置換ハロゲ
ン化ベンゼン等の副生成物の生成が低くおさえられ、パ
ラ置換ハロゲン化ベンゼン誘導体の選択率が向上するこ
とを見い出し、本発明を完成するに至った。
As a result, the present inventors found that when faujasite-type zeolite and/or L-type zeolite is used as a catalyst, the regioselectivity of halogenation is surprisingly reduced when an organic phosphorus compound is coexisting in the reaction system. The present inventors have discovered that the production of by-products such as ortho-substituted halogenated benzenes is suppressed, and the selectivity of para-substituted halogenated benzene derivatives is improved, leading to the completion of the present invention.

すなわち、本発明は、フォージャサイト型ゼオライト及
び/またはL型ゼオライトを触媒としてベンゼン誘導体
のハロゲン化反応によりハロゲン化ベンゼン誘導体を製
造するにあたり、有機リン化合物を反応系中に共存させ
ることを特徴とするハロゲン化ベンゼン誘導体を製造す
る方法を提供するものである。
That is, the present invention is characterized in that when a halogenated benzene derivative is produced by a halogenation reaction of a benzene derivative using faujasite-type zeolite and/or L-type zeolite as a catalyst, an organic phosphorus compound is allowed to coexist in the reaction system. The present invention provides a method for producing a halogenated benzene derivative.

本発明を更に詳細に説明する。The present invention will be explained in more detail.

本発明の方法においては触媒としてゼオライトが用いら
れるが、ゼオライトとは通常、結晶性アルミノシリケー
トと呼ばれるものである。ゼオライトはS10.四面体
及びAto、四面体から構成されているが、各四面体の
結合様式の相違により多くの種類が知られている。本発
明の方法において触媒として使用されるゼオライトはフ
ォージャサイト型ゼオライト及び/またはL型ゼオライ
トである。
Zeolite is used as a catalyst in the method of the present invention, and zeolite is usually called crystalline aluminosilicate. Zeolite is S10. Although it is composed of tetrahedrons, Ato, and tetrahedra, many types are known due to the differences in the bonding styles of each tetrahedron. The zeolites used as catalysts in the process of the invention are faujasite-type zeolites and/or L-type zeolites.

フォージャサイト型ゼオライトは天然にも存在するが公
知の方法により合成することも可能であり、合成7オー
ジヤサイト型ゼオライトは、X型ゼオライト及びY型ゼ
オライトとして広く知られている。本発明の方法におい
ては、フォージャサイト型ゼオライトの中でも不純物が
少な(、結晶化度の高い合成Y型ゼオライトが好ましい
。フォージャサイト型ゼオライトは特徴的な結晶構造を
有するので粉末X線回折を測定することにより他のゼオ
ライトと識別することが可能である。フォージャサイト
型ゼオライトの化学組成は酸化物のモル比で表わして、 a M、、O愉A403−b S i 02で示される
Faujasite-type zeolite exists naturally, but it can also be synthesized by known methods, and Synthesized 7-Oujasite-type zeolite is widely known as X-type zeolite and Y-type zeolite. In the method of the present invention, synthetic Y-type zeolite, which has fewer impurities (and has a higher degree of crystallinity) among faujasite-type zeolites, is preferred. Faujasite-type zeolite has a characteristic crystal structure, so powder X-ray diffraction is difficult. It is possible to distinguish it from other zeolites by measuring it.The chemical composition of faujasite-type zeolite is expressed as a molar ratio of oxides, and is shown as a M, , O A403-b S i 02.

L型ゼオライトも特徴的な結晶構造を有するので粉末X
線回折を測定することにより、他のゼオライトと識別す
ることが可能である。L型ゼオライトは合成ゼオライト
の一種であり、公知の方法により合成することができる
。L型ゼオライトの典型的な組成は酸化物のモル比で表
わして、a M、0 弓4o、 −b Si O。
L-type zeolite also has a characteristic crystal structure, so powder
It is possible to distinguish it from other zeolites by measuring line diffraction. L-type zeolite is a type of synthetic zeolite, and can be synthesized by a known method. A typical composition of L-type zeolite, expressed in molar ratios of oxides, is: a M, 0, -b SiO.

で示される。It is indicated by.

合成ゼオライトは、二股に合成されたままの状態では陽
イオンとしてナトリウムカチオン、カリウムカチオン等
を含んでいる。本発明の方法においてはゼオライトに含
有される陽イオンにとくに制限はない。即ち、合成時に
含有されるナトリウムカチオン、カリウムカチオン等を
有するものをそのまま触媒として使用することができる
が、他の陽イオンに交換したものを使用することもでき
る。この場合には、公知の方法、例えば交換したい陽イ
オンを含む水溶液中にゼオライトを浸漬しておくことに
よりイオン交換処理を実施すれば良い。
Synthetic zeolite contains sodium cations, potassium cations, etc. as cations in its bifurcated state. In the method of the present invention, there are no particular limitations on the cations contained in the zeolite. That is, catalysts containing sodium cations, potassium cations, etc. contained during synthesis can be used as catalysts as they are, but catalysts that have been exchanged with other cations can also be used. In this case, the ion exchange treatment may be carried out using a known method, for example, by immersing the zeolite in an aqueous solution containing the cations to be exchanged.

本発明の方法においては、前述の各種のイオン交換ゼオ
ライトをそのまま触媒として用いれば良いが、好ましく
はさらに金属塩により修飾されたゼオライトを用いる。
In the method of the present invention, the various ion-exchanged zeolites described above may be used as catalysts as they are, but preferably zeolites further modified with metal salts are used.

ゼオライトの金属塩による修飾は、例えば特開昭61−
189236号公報に記載されている方法に従って実施
すれば良い。
Modification of zeolite with metal salts is described, for example, in JP-A-61-
This may be carried out according to the method described in Japanese Patent No. 189236.

すなわち、ゼオライトと金属塩とを均密に接触させれば
良く、具体的には通常の含浸法、混合法。
That is, it is sufficient to bring the zeolite and the metal salt into intimate contact with each other, and specifically, the usual impregnation method or mixing method can be used.

混線法等を挙げることができる。金属塩による修飾の方
法にとくに制限はないが、ゼオライト粒子外表面だゆで
なく、細孔内も均密に修飾できること、更に、簡便であ
ることから、金属塩を所望の溶媒、例えば水等に溶かし
、これをゼオライトに含浸させる含浸法が好適である。
Examples include the crosstalk method. Although there are no particular limitations on the method of modification with metal salts, it is possible to homogeneously modify the inside of the pores of the zeolite particles, not just the outer surface of the zeolite particles, and it is also simple. An impregnation method in which the zeolite is dissolved and impregnated with the zeolite is suitable.

これらの修飾方法において用いられる金属塩についてと
くに制限はなく、アルカリ金属、アルカリ土類金属、希
土類金属等のハロゲン化物、炭酸塩、硫酸塩等を用いれ
ば良い。例えば、塩化ナトリウム、塩化カリウム、塩化
ストロンチウム、塩化バリウム、塩化ランタン、炭酸ナ
トリウム、炭酸カリウム、炭酸ストロンチウム、炭酸バ
リウム、硫酸ナトリウム。
There are no particular limitations on the metal salts used in these modification methods, and halides, carbonates, sulfates, etc. of alkali metals, alkaline earth metals, rare earth metals, etc. may be used. For example, sodium chloride, potassium chloride, strontium chloride, barium chloride, lanthanum chloride, sodium carbonate, potassium carbonate, strontium carbonate, barium carbonate, sodium sulfate.

硫酸カリウム、硫酸ストロンチウム、硫酸バリウム等を
挙げることができる。修飾に用いられる金属塩の使用量
は触媒に対する重量パーセントで表わして0.1N90
チで良く、好ましくは10〜80チである。
Examples include potassium sulfate, strontium sulfate, barium sulfate, and the like. The amount of metal salt used for modification is 0.1N90 expressed as a weight percent relative to the catalyst.
It may be 10 to 80 inches, preferably 10 to 80 inches.

本発明の方法においては触媒の形状についてはとくに制
限はなく、通常成型して触媒として用いれば良いが、粉
末のまま使用しても一部に差し支えない。成型方法は通
常の方法で良く、例えば、押出成型法、打錠成型法、噴
霧乾燥造粒法等を挙げることができる。成型する場合、
その機械的強度を高める等の目的で本反応に対して不活
性な物質を粘結剤あるいは成型助剤として添加しても良
い。例えば、シリカ、粘土類、グラファイト、ステアリ
ン酸、澱粉、ポリビニルアルコール等を0〜80重量%
、好ましくは2〜30重量%の範囲で添加できる。
In the method of the present invention, there is no particular restriction on the shape of the catalyst, and it may be used as a catalyst by being normally shaped, but it may also be used as a powder in some cases. The molding method may be a conventional method, and examples thereof include extrusion molding, tablet molding, spray drying granulation, and the like. When molding,
For the purpose of increasing the mechanical strength, etc., a substance inert to this reaction may be added as a binder or molding aid. For example, 0 to 80% by weight of silica, clay, graphite, stearic acid, starch, polyvinyl alcohol, etc.
, preferably in a range of 2 to 30% by weight.

このようにして得られた触媒は必要に応じて乾燥処理を
行なった後、空気流通下あるいは窒素。
The catalyst thus obtained is dried if necessary, and then dried under air flow or nitrogen.

ヘリウム等の不活性ガス流通下で10分〜24時間焼成
処理を行ないハロゲン化反応に用いる。焼成温度は20
0〜900℃の温度範囲で良く、好ましくは300〜8
50℃が良い。
A calcination treatment is performed for 10 minutes to 24 hours under the flow of an inert gas such as helium, and used for the halogenation reaction. The firing temperature is 20
The temperature range may be from 0 to 900°C, preferably from 300 to 8
50℃ is good.

本発明の方法においては前記のゼオライト触媒の存在下
に反応系中に有機リン化合物を共存させてベンゼン誘導
体のハロゲン化反応を実施するところに特徴がある。本
発明でいう有機リン化合物とは、炭素原子を含有する6
価または5価のリン化合物であり、以下のような一般式
(I)〜(V)で示すことができる。
The method of the present invention is characterized in that the halogenation reaction of benzene derivatives is carried out in the presence of the above-mentioned zeolite catalyst and in the presence of an organic phosphorus compound in the reaction system. The organophosphorus compound as used in the present invention refers to a 6-carbon compound containing carbon atoms.
It is a valent or pentavalent phosphorus compound, and can be represented by the following general formulas (I) to (V).

R,−P −R3・曲・(I) ■ R,O−p −oRs  −−−−−−(U)OR。R, -P -R3・Song・(I) ■ R, O-p -oRs -------(U)OR.

R,−P−0、、、、、、(IIQ ■ OR。R,-P-0, , , , (IIQ ■ OR.

R,O−P −0・・・・・・(M Rs s ここで、R1+ R9+ RBはそれぞれ炭素数1〜2
0で、水酸基、ハロゲノ基、エステル基あるいはカルボ
キシル基を含有するまたは含有しない炭化水素残基を表
わす。但し、R1−R8の一部または全部が同一の炭化
水素残基となることを妨げない。また、一般式(V)で
は、X、Yは同一または異なるハロゲン原子を表わす。
R, O-P -0... (M Rs s Here, R1+ R9+ RB each has 1 to 2 carbon atoms
0 represents a hydrocarbon residue containing or not containing a hydroxyl group, a halogeno group, an ester group, or a carboxyl group. However, this does not prevent part or all of R1 to R8 from being the same hydrocarbon residue. Furthermore, in the general formula (V), X and Y represent the same or different halogen atoms.

一般式(1)で示される有機リン化合物の例として、ジ
エチルブチルホスフィン、トリブチルホスフィン、ブチ
ルジフェニルホスフィン等のホスフィン類を挙げること
ができる。一般式(11)で示される有機リン化合物の
例としてトリプロピルホスファイト、トリフェニルホス
ファイト等のホスファイト類を、また(m)の例として
ジエチルプロピルホスフィンオキサイド、トリブチルホ
スフィンオキサイド。
Examples of the organic phosphorus compound represented by the general formula (1) include phosphines such as diethylbutylphosphine, tributylphosphine, and butyldiphenylphosphine. Examples of the organic phosphorus compound represented by the general formula (11) include phosphites such as tripropyl phosphite and triphenyl phosphite, and examples of (m) include diethylpropylphosphine oxide and tributylphosphine oxide.

ブチルジフェニルホスフィンオキサイド等のホスフィン
オキサイド類を、さらに(間の例として、トリゾロビル
ホスフェート、トリブチルホスフェート、プロピルブチ
ルフェニルホスフェート等のホスフェート類を挙げるこ
とができる。一般式(至)で示される有機リン化合物と
して、トリブチルホスフィンジクロライド、トリフェニ
ルホスフィンジクロライド等のホスフィンハライド類を
例として挙げることができる。
Examples include phosphine oxides such as butyl diphenylphosphine oxide, and phosphates such as trizolobyl phosphate, tributyl phosphate, and propyl butylphenyl phosphate. Examples of the compound include phosphine halides such as tributylphosphine dichloride and triphenylphosphine dichloride.

本発明の方法においては、上記の有機リン化合物のうち
、少なくとも一種類を使用することが必要であるが、2
種類以上用いても一部に差し支えない。
In the method of the present invention, it is necessary to use at least one type of the above-mentioned organic phosphorus compounds, but two
There is no problem even if more than one type is used in some cases.

有機リン化合物をハロゲン化反応の反応系中に共存させ
る方法としては種々のものが考えられるが、以下のいず
れの方法でもよく、とくに制限はない。すなわち、有機
リン化合物を反応系中に原料や触媒とは別に加えても良
いし、予め触媒であるゼオライトに吸着あるいは担持し
て触媒とともに反応系中に導入しても良い。
Although various methods can be considered for making the organic phosphorus compound coexist in the reaction system of the halogenation reaction, any of the following methods may be used, and there are no particular limitations. That is, the organic phosphorus compound may be added to the reaction system separately from the raw materials and the catalyst, or it may be adsorbed or supported on the zeolite catalyst in advance and introduced into the reaction system together with the catalyst.

有機リン化合物の共存量は添加方法、ゼオライトの種類
、有機リン化合物の種類等により影響を受けるため、一
義的に限定するのは困難であるが、有機リン化合物中に
含まれるリン原子の重量で規定することが可能である。
The amount of coexisting organic phosphorus compounds is affected by the addition method, the type of zeolite, the type of organic phosphorus compound, etc., so it is difficult to define it unambiguously, but it is determined by the weight of the phosphorus atoms contained in the organic phosphorus compound. It is possible to specify.

すなわち、触媒であるゼオライトの単位重量に対して、
有機リン化合物中に含まれるリン原子の重量としてI 
X 10−’9/9−ゼオライト〜α19/9−ゼオラ
イト、好ましくはI X 10−4 g/9−ゼオライ
ト〜5 X 10−” 9/9−ゼオライトの共存量が
必要である。有機リン化合物の共存量がI X 10=
 g/9−ゼオライト未満ではオルト置換ハロゲン化ベ
ンゼン誘導体等の副生成物の選択率を低下させる効果は
小さく、また、α19/9−ゼオライトを越えると触媒
活性に対して悪影響を及ぼす場合がある。
In other words, for the unit weight of zeolite, which is the catalyst,
I as the weight of phosphorus atoms contained in an organic phosphorus compound
A coexisting amount of X 10-'9/9-zeolite to α19/9-zeolite, preferably I X 10-4 g/9-zeolite to 5 X 10-''9/9-zeolite is required. The amount of coexistence is I x 10=
If the content is less than α19/9-zeolite, the effect of reducing the selectivity of by-products such as ortho-substituted halogenated benzene derivatives will be small, and if it exceeds α19/9-zeolite, it may have an adverse effect on the catalyst activity.

本発明の方法においてベンゼン誘導体とは、ベンゼンお
よびハロゲン化ベンゼン、アルキルベンゼン等のように
ベンゼンの水素がハロゲン、アルキル基等の置換基で置
換された化合物を意味し、例エバ、ベンゼン、モノフル
オロベンゼン。
In the method of the present invention, benzene derivatives refer to benzene, halogenated benzenes, alkylbenzenes, etc., in which the hydrogen of benzene is substituted with a substituent such as a halogen or an alkyl group, such as benzene, benzene, monofluorobenzene, etc. .

MCB、モノブロモベンゼン、モノヨードベンゼン、ト
ルエン、エチルベンゼン等を挙げることができる。また
、ハロゲン化剤は単体のハロゲンで良く、例えば、塩素
、臭素、ヨウ素を挙げることができる。
Examples include MCB, monobromobenzene, monoiodobenzene, toluene, and ethylbenzene. Further, the halogenating agent may be a single halogen, and examples thereof include chlorine, bromine, and iodine.

本発明の方法においては、反応は、気相でも液相でも実
施できるが、生産性等を考慮すると液相が好ましい。液
相での反応において、反応装置。
In the method of the present invention, the reaction can be carried out in either a gas phase or a liquid phase, but a liquid phase is preferable in consideration of productivity and the like. In reactions in the liquid phase, the reactor.

反応方法及び反応条件は、ベンゼン誘導体が液状で触媒
と接触する限り何ら制限はない。例えば、反応装置は回
分式、半回分式、あるいは連続式のいずれを用いても差
し支えない。触媒は、例えば固定床、懸濁床等の形で用
いれば良い。反応は、液状のベンゼン誘導体自身な液相
媒体とするか、又はハロゲン化反応に関与しない溶媒、
例えば、四塩化炭素等を媒体として、その存在下で行な
うことができる。溶媒を用いる場合には、ベンゼン誘導
体の濃度は5〜99重量%が良く、20〜99重量%が
好ましい。5重量−未満では、原料が触媒と接触する機
会が少なくなり、十分な転化率が得られない。ハロゲン
化剤を連続的に供給する場合には、窒素、ヘリウム等の
不活性ガスを同伴しても良い。同伴ガスを用いる場合に
は、ハロゲン化剤の濃度は5〜99容量係が良く、20
〜99容量係が好ましい。回分式、半回分式反応装置を
用いた場合、触媒は主に反応液に懸濁させた形で用いる
が、単位反応液容積あたりの触媒量はα001〜1に9
/lが良く、[1005〜r1.1に9/lが好ましい
。(1,001)cg/ 1未満では触媒の負荷が大き
く、十分な転化率が得られない。また、1に9/lを越
えると触媒量を増加する効果は小さくなる。ハロゲン化
剤の供給量は触媒重量に対する単位時間あたりのハロゲ
ン化剤の量で表わすことができ、1〜1500 moL
/kg−cata’1yst−hrが良く、1o 〜a
 o o mot/に9−cata’1yst−h、r
が好ましい。1 mo々句−catalysthr未満
では十分なハロゲン化ベンゼン誘導体生成速度が得られ
ず、1500 mo々句−catalysthrを越え
る場合には、未反応のハロゲン化剤の量が増加し、経済
的でない。連続式反応装置を用いた場合、ベンゼン誘導
体の供給量は、使用する触媒に対する単位時間あたりの
量で表わすことができ、IIL5〜300t/Q−ca
tal−yst−hrで良く、2〜100 t/に9−
cata’1yst *hrが好ましい。その他の反応
条件は、回分式あるいは半回分式反応装置を用いた場合
と同様である。
There are no restrictions on the reaction method and reaction conditions as long as the benzene derivative is in a liquid state and comes into contact with the catalyst. For example, the reactor may be of a batch type, semi-batch type, or continuous type. The catalyst may be used in the form of, for example, a fixed bed or a suspended bed. The reaction is carried out using a liquid phase medium such as the liquid benzene derivative itself, or a solvent that does not participate in the halogenation reaction.
For example, it can be carried out in the presence of carbon tetrachloride or the like as a medium. When a solvent is used, the concentration of the benzene derivative is preferably 5 to 99% by weight, preferably 20 to 99% by weight. If it is less than 5% by weight, there will be fewer opportunities for the raw material to come into contact with the catalyst, making it impossible to obtain a sufficient conversion rate. When the halogenating agent is continuously supplied, an inert gas such as nitrogen or helium may be included. When using an accompanying gas, the concentration of the halogenating agent is preferably 5 to 99% by volume, and 20% by volume.
~99 capacity ratio is preferred. When using a batch type or semi-batch type reactor, the catalyst is mainly used in the form of suspension in the reaction liquid, but the amount of catalyst per unit reaction liquid volume is α001~19.
/l is good, and [9/l is preferable for 1005 to r1.1. If it is less than (1,001) cg/1, the load on the catalyst will be large and a sufficient conversion rate will not be obtained. Furthermore, when the ratio exceeds 1 to 9/l, the effect of increasing the amount of catalyst becomes small. The amount of halogenating agent supplied can be expressed as the amount of halogenating agent per unit time relative to the weight of the catalyst, and is 1 to 1500 moL.
/kg-cata'1yst-hr is good, 1o ~ a
o o mot/ni9-cata'1yst-h, r
is preferred. If it is less than 1 catalyst, a sufficient rate of production of the halogenated benzene derivative cannot be obtained, and if it exceeds 1500 catalysts, the amount of unreacted halogenating agent increases, which is not economical. When a continuous reactor is used, the amount of benzene derivative supplied can be expressed as the amount per unit time for the catalyst used, and is approximately 5 to 300 t/Q-ca.
tal-yst-hr is sufficient, and 9-yst-hr is sufficient for 2 to 100 t/
cata'lyst *hr is preferred. Other reaction conditions are the same as in the case of using a batch type or semi-batch type reactor.

本発明の方法において、液相で反応を行なう場合、反応
温度および反応圧力はベンゼン誘導体又はその溶液が液
相である限り、何ら制限はない。
In the method of the present invention, when the reaction is carried out in a liquid phase, there are no restrictions on the reaction temperature and reaction pressure as long as the benzene derivative or its solution is in a liquid phase.

反応温度がベンゼン誘導体等の沸点より高い場合には、
反応圧力を高めることにより液相でのハロゲン化反応を
行なうことができるが、反応温度は0〜200℃が好ま
しく、20〜150℃が更に好ましい。0℃未満では、
十分な反応速度が得られず、また、200℃を越えると
パラ置換ハロゲン化ベンゼン誘導体の選択率が低下する
。気相で反応を行なう場合には、ベンゼン誘導体及び有
機リン化合物が気化した状態で触媒と接触する反応ら4
00℃の範囲が良い。この温度範囲より低い反応温度の
場合には、十分な反応速度が得られず、この温度範囲よ
り高い反応温度の場合には、パラ置換ハロゲン化ベンゼ
ン誘導体等の選択率が低下する。
When the reaction temperature is higher than the boiling point of benzene derivatives, etc.
Although the halogenation reaction can be carried out in a liquid phase by increasing the reaction pressure, the reaction temperature is preferably 0 to 200°C, more preferably 20 to 150°C. Below 0℃,
A sufficient reaction rate cannot be obtained, and if the temperature exceeds 200°C, the selectivity of para-substituted halogenated benzene derivatives decreases. When the reaction is carried out in the gas phase, the benzene derivative and the organic phosphorus compound are brought into contact with the catalyst in a vaporized state.
A range of 00°C is good. In the case of a reaction temperature lower than this temperature range, a sufficient reaction rate cannot be obtained, and in the case of a reaction temperature higher than this temperature range, the selectivity of para-substituted halogenated benzene derivatives etc. is reduced.

〔発明の効果〕〔Effect of the invention〕

本発明の方法によれば、ベンゼン誘導体ノハロゲン化反
応においてオルト置換ハロゲン化ベンゼン誘導体等の副
生を少なくし、工業的に価値の高いパラ置換ハロゲン化
ベンゼン誘導体を従来の方法に比べてより高い選択率で
製造することができる。置換ハロゲン化ベンゼン誘導体
の製造方法において、オルト置換ハロゲン化ベンゼン誘
導体からパラ置換ハロゲン化ベンゼン誘導体への異性化
反応は非常に困難であるため、通常、工業的には行われ
ていない。従ってパラ置換ハロゲン化ベンゼン誘導体の
選択率がわずかでも上昇すれば、副生ずる工業的価値の
低いオルト置換ハロゲン化ベンゼン誘導体の生成量を大
巾に減少させることができ、パラ置換ハロゲン化ベンゼ
ン誘導体の分離精製も容易となり、結果的に製造コスト
を低下させることかできる。例えば本発明方法によりパ
ラ置換ハロゲン化ベンゼン誘導体の選択率が比較例10
85%から実施例1〜4086チ以上に向上されたこと
は、副生ずるオルト置換ハロゲン化ベンゼン誘導体等の
生成量が、7チ以上減少されたことになる。
According to the method of the present invention, by-products such as ortho-substituted halogenated benzene derivatives are reduced in the benzene derivative nohalogenation reaction, and para-substituted halogenated benzene derivatives, which are industrially valuable, are selected more highly than in conventional methods. can be manufactured at a high rate. In the method for producing a substituted halogenated benzene derivative, the isomerization reaction from an ortho-substituted halogenated benzene derivative to a para-substituted halogenated benzene derivative is very difficult and is therefore not usually carried out industrially. Therefore, if the selectivity of para-substituted halogenated benzene derivatives increases even slightly, the amount of by-product ortho-substituted halogenated benzene derivatives with low industrial value can be greatly reduced, and Separation and purification becomes easy, and as a result, manufacturing costs can be reduced. For example, the selectivity of para-substituted halogenated benzene derivatives in Comparative Example 10 by the method of the present invention
The improvement from 85% to 86% or more in Examples 1 to 4086 means that the amount of by-products such as ortho-substituted halogenated benzene derivatives was reduced by 7% or more.

よって本発明は、工業的にみて極めて有意義なものであ
る。
Therefore, the present invention is extremely significant from an industrial perspective.

〔実施例〕〔Example〕

以下に実施例により本発明を更に詳細に説明するが、本
発明は、これらの実施例のみに限定されるものではない
EXAMPLES The present invention will be explained in more detail with reference to Examples below, but the present invention is not limited to these Examples.

なお、実施例中に示される転化率及び選択率とは以下の
式により計算された数値を表わす。
Note that the conversion rate and selectivity shown in the examples represent numerical values calculated by the following formula.

全生成物の生成量の和(mot) 実施例1 1tの磁製ビーカーに12.87G+の塩化ナトリウム
(NaCt)を入れ、これを300dの蒸留水で溶解し
た。温浴を用いてこの溶液を95℃に保ち、ガラス製の
攪拌羽根で十分にかきまぜながら、ここに5iOy’A
40s比5.5のナトリウムカチオン含有Y型ゼオライ
ト(東洋曹達工業■製)30りを加えた。湯浴上で水分
がなくなるまで蒸発乾固し、130℃に保った乾燥器中
で15時間乾燥したのち、空気流通下で540℃にて5
時間焼成して、30重量%のMaClを含むナトリウム
カチオン含有Y型ゼオライトを得た。
Sum of production amounts of all products (mot) Example 1 12.87G+ sodium chloride (NaCt) was placed in a 1t porcelain beaker and dissolved in 300d distilled water. Keep this solution at 95°C using a hot bath, and add 5iOy'A to it while stirring thoroughly with a glass stirring blade.
30 liters of sodium cation-containing Y-type zeolite (manufactured by Toyo Soda Kogyo ■) with a 40s ratio of 5.5 was added. Evaporate to dryness on a hot water bath until all moisture is gone, dry in a dryer kept at 130°C for 15 hours, and then dry at 540°C under air circulation for 5 hours.
After firing for a period of time, a sodium cation-containing Y-type zeolite containing 30% by weight of MaCl was obtained.

この触媒と、有機リン化合物としてトリブチルホスフィ
ンを用いモノクロロベンゼン(MCB)の液相塩素化及
芯を実施した。反応は通常の半回分式反応装置を用いて
行なった。ガス吹き込み管。
Liquid phase chlorination of monochlorobenzene (MCB) was carried out using this catalyst and tributylphosphine as an organic phosphorus compound. The reaction was carried out using a conventional semi-batch reactor. gas blowing pipe.

冷却管を装着した容積100−のパイレックス製反応器
(内径40fi、高さ100隨)に409のMOB及び
[10829のトリブチルホスフィンを充填し、更に、
1.439の上記ゼオライト触媒な加え懸濁液とした。
A 100-volume Pyrex reactor (inner diameter 40 fi, height 100 mm) equipped with a cooling tube was filled with 409 MOB and [10829 tributylphosphine, and further,
1.439% of the above zeolite catalyst was added to form a suspension.

この場合、ゼオライト単位重量あたりのトリブチルホス
フィンの共存量はリン原子の重量に換算して1.5 X
 10−2g/9−ゼオライトである。
In this case, the amount of coexisting tributylphosphine per unit weight of zeolite is 1.5
10-2 g/9-zeolite.

反応混合物をマグネチック・スターラーで十分に攪拌し
ながら、30 dl minの供給速度で塩素ガス(等
量の窒素ガスを同伴)を吹き込んだ。反応温度は反応器
の周囲をオイルバスによりコントロールし、100℃と
した。塩素ガスを吹き込みはじめてから3時間経過後、
生成物をガスクロマトグラフィーにより分析した。その
結果を表1に示す。
While stirring the reaction mixture well with a magnetic stirrer, chlorine gas (accompanied by an equal amount of nitrogen gas) was bubbled in at a feed rate of 30 dl min. The reaction temperature was controlled at 100° C. by using an oil bath around the reactor. Three hours after starting to blow chlorine gas,
The product was analyzed by gas chromatography. The results are shown in Table 1.

実施例2〜6 実施例1と同様に調製したNaO4により修飾したナト
リウムカチオン含有Y型ゼオライトを触媒として用い、
有機リン化合物として、トリブチルホスフィンの代りに
、トリオクチルホスフィン0.159.)リプチルホス
ファイト0.10g、)リブチルホスフェ−)(Lll
g、)リフェニルホスフィン0.529.)リフェニル
ホスフィンジクロライド11159をそれぞれ用いたほ
かは、実施例1と全く同様にMCBの液相塩素化反応を
行なった。結果を表1に示す。
Examples 2 to 6 Using sodium cation-containing Y-type zeolite modified with NaO4 prepared in the same manner as in Example 1 as a catalyst,
As an organic phosphorus compound, instead of tributylphosphine, trioctylphosphine 0.159. ) liptyl phosphite 0.10 g,) butyl phosphite) (Lll
g,) Riphenylphosphine 0.529. ) A liquid phase chlorination reaction of MCB was carried out in exactly the same manner as in Example 1, except that Riphenylphosphine dichloride 11159 was used in each case. The results are shown in Table 1.

比較例1 実施例1で、トリブチルホスフィンを共存させなかった
以外は全く同様の方法でMCBの液相塩素化反応を行な
った。その結果を表1に示す。
Comparative Example 1 A liquid phase chlorination reaction of MCB was carried out in exactly the same manner as in Example 1, except that tributylphosphine was not allowed to coexist. The results are shown in Table 1.

表1より、有機リン化合物を反応系中に共存させた場合
、副生成物の生成が著しく抑制されていることが理解さ
れる。
From Table 1, it is understood that when the organic phosphorus compound is co-present in the reaction system, the production of by-products is significantly suppressed.

実施例7 触媒として5iOt/A403比がZOのカリウムカチ
オン含有り型ゼオライト(東洋曹達工業■製)1.09
を用い、トリブチルホスフィンα033りを共存させ、
反応温度を70℃とした以外は実施例1と全く同様にし
てMOBの液相塩素化反応を行なった。この場合、トリ
ブチルホスフィンの共存量は、ゼオライト単位重量あた
りのリン原子の重量で5.IXl 0″−”9/9−ゼ
オライトであった。
Example 7 As a catalyst, a potassium cation-containing zeolite with a ZO 5iOt/A403 ratio (manufactured by Toyo Soda Kogyo ■) of 1.09
using tributylphosphine α033,
A liquid phase chlorination reaction of MOB was carried out in the same manner as in Example 1 except that the reaction temperature was 70°C. In this case, the coexisting amount of tributylphosphine is 5.5% by weight of phosphorus atom per unit weight of zeolite. IXl 0''-''9/9-zeolite.

塩素ガスを吹き込み始めて3時間後のMOB転化率は、
6α1%、0DOB等の副生成物選択率4.1チ、FD
OB選択率は95.9チであった。
The MOB conversion rate 3 hours after starting to blow chlorine gas is as follows:
6α1%, by-product selectivity such as 0DOB 4.1ch, FD
The OB selection rate was 95.9ch.

比較例2 実施例7で、トリブチルホスフィンを共存させなかった
他は全(同様の方法で、MCBの液相塩素化反応を行な
った。反応を開始して3時間後のMCB転化率は6α3
チ、0DCB等の副生成物選択率9.4係、PDC:B
選択率は9Q、6チであった。
Comparative Example 2 A liquid phase chlorination reaction of MCB was carried out in the same manner as in Example 7 except that tributylphosphine was not allowed to coexist. The MCB conversion rate 3 hours after starting the reaction was 6α3
H, by-product selectivity such as 0DCB, 9.4, PDC:B
The selection rate was 9Q, 6Q.

実施例7及び比較例2より、L型ゼオライトにおいても
有機リン化合物の共存効果が著しいことが理解される。
From Example 7 and Comparative Example 2, it is understood that the effect of the coexistence of organic phosphorus compounds is remarkable even in L-type zeolite.

実施例8 MoBをトルエンに代えたほかは実施例1と全(同様に
してトルエンの液相塩素化反応を行なった。塩素ガスを
吹き込み始めて3時間後のトルエン転化率は5五9チ、
オルトクロルトルエン等の副生成物選択率315%、パ
ラクロルトルエン選択率は6 &7%であった。オルト
クロルトルエン以外の副生成物には、少量のメタクロル
トルエン、ジクロロトルエン類が確認された。
Example 8 A liquid phase chlorination reaction of toluene was carried out in the same manner as in Example 1 except that MoB was replaced with toluene. The toluene conversion rate 3 hours after starting to blow chlorine gas was 5.59 cm,
The selectivity for by-products such as orthochlorotoluene was 315%, and the selectivity for parachlorotoluene was 6 & 7%. Small amounts of methachlorotoluene and dichlorotoluenes were confirmed as by-products other than orthochlorotoluene.

比較例3 トリブチルホスフィンを共存させなかった以外は、実施
例8と全く同様にしてトルエンの液相塩素化反応を行な
った。反応を開始して3時間口の) /l/ :L 7
 転化率ハ54.6%、オルトクロルトルエン等の副生
成物選択率57.6tl、、パラクロルトルエン選択率
は62.4%であった。
Comparative Example 3 A liquid phase chlorination reaction of toluene was carried out in exactly the same manner as in Example 8 except that tributylphosphine was not present. 3 hours after starting the reaction) /l/ :L 7
The conversion rate was 54.6%, the selectivity for by-products such as orthochlorotoluene was 57.6 tl, and the selectivity for parachlorotoluene was 62.4%.

Claims (1)

【特許請求の範囲】[Claims] フォージャサイト型ゼオライト及び/またはL型ゼオラ
イトを触媒としてベンゼン誘導体のハロゲン化反応によ
りハロゲン化ベンゼン誘導体を製造するにあたり、有機
リン化合物を反応系中に共存させることを特徴とするハ
ロゲン化ベンゼン誘導体の製造方法。
A halogenated benzene derivative characterized in that an organic phosphorus compound is allowed to coexist in the reaction system when the halogenated benzene derivative is produced by a halogenation reaction of a benzene derivative using faujasite type zeolite and/or L type zeolite as a catalyst. Production method.
JP61298994A 1986-12-17 1986-12-17 Production of halogenated benzene derivative Pending JPS63154632A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61298994A JPS63154632A (en) 1986-12-17 1986-12-17 Production of halogenated benzene derivative

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61298994A JPS63154632A (en) 1986-12-17 1986-12-17 Production of halogenated benzene derivative

Publications (1)

Publication Number Publication Date
JPS63154632A true JPS63154632A (en) 1988-06-27

Family

ID=17866852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61298994A Pending JPS63154632A (en) 1986-12-17 1986-12-17 Production of halogenated benzene derivative

Country Status (1)

Country Link
JP (1) JPS63154632A (en)

Similar Documents

Publication Publication Date Title
EP0248931B1 (en) Process for producing p-chlorobenzenes
EP0118851B1 (en) Process for producing a chlorohalobenzene
EP0171265B1 (en) Process for preparing halogenated benzene derivatives
US4794201A (en) Process for preparation of p-halogeno-monoalkylbenzenes
JP2583483B2 (en) Method for producing halogenated benzene derivatives
JPS63154632A (en) Production of halogenated benzene derivative
EP0225723B1 (en) Process for producing a halogenated benzene derivative using an improved zeolite catalyst
CA1288780C (en) Process for producing halogenated benzene derivative using zeolite catalyst
JPH0720894B2 (en) Method for producing halogenated benzene derivative
JP2595650B2 (en) Highly selective production method of para-substituted chlorinated benzene derivatives
JPH01128946A (en) Production of p-substituted halogenated benzene derivative
JP2595637B2 (en) Highly selective production of p-dichlorobenzene
JPH07330665A (en) Production of halogenated aromatic compound
JPS62153234A (en) Production of para-substituted halogenated benzene derivative
JP3760530B2 (en) Aromatic halide isomerization catalyst and aromatic halide isomerization method
JPH0521896B2 (en)
JPS6334129B2 (en)
JPH08309199A (en) Acid type zeolite catalyst, manufacture thereof, and isomerization of aromatic halide
JPH0576933B2 (en)
JPH08104657A (en) Isomerization of polyhalogenated alkylbenzene
JPH02200647A (en) Preparation of 4-chloro-4&#39;-halogenodiphenyls
JPH0344347A (en) Production of 4,4&#39;-dichlorodiphenyl ether
JPS61171444A (en) Production of halogenated benzene derivative
JPH01128947A (en) Production of para-substituted halogenated benzene derivative
JPH04103545A (en) Production of 1,3,5-trichlorobenzene