JPS62153234A - Production of para-substituted halogenated benzene derivative - Google Patents

Production of para-substituted halogenated benzene derivative

Info

Publication number
JPS62153234A
JPS62153234A JP60292431A JP29243185A JPS62153234A JP S62153234 A JPS62153234 A JP S62153234A JP 60292431 A JP60292431 A JP 60292431A JP 29243185 A JP29243185 A JP 29243185A JP S62153234 A JPS62153234 A JP S62153234A
Authority
JP
Japan
Prior art keywords
sulfur
type zeolite
reaction
catalyst
benzene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60292431A
Other languages
Japanese (ja)
Other versions
JPH0651648B2 (en
Inventor
Takanori Miyake
孝典 三宅
Kazuhiko Sekizawa
関沢 和彦
Toshio Hironaka
弘中 敏夫
Yukihiro Tsutsumi
堤 幸弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Toyo Soda Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Soda Manufacturing Co Ltd filed Critical Toyo Soda Manufacturing Co Ltd
Priority to JP60292431A priority Critical patent/JPH0651648B2/en
Priority to DE8686310169T priority patent/DE3670074D1/en
Priority to US06/947,306 priority patent/US4861929A/en
Priority to CA000526399A priority patent/CA1288780C/en
Priority to EP86310169A priority patent/EP0231662B1/en
Publication of JPS62153234A publication Critical patent/JPS62153234A/en
Publication of JPH0651648B2 publication Critical patent/JPH0651648B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PURPOSE:In the liquid-phase halogenation reaction of benzene and/or benzene derivative in the presence of a faujasite type zeolite catalyst, a sulfur compound is added to the reaction system to give the title compound in high yield. CONSTITUTION:A faujasite type zeolite, especially X-type or Y-type zeolite modified by an alkali, alkaline earth or rare-earth metal salt, is used as a catalyst to effect the liquid-phase halogenation of benzene and/or benzene deriva tive to give the title compound. At this time, a sulfur compound, preferably elementary sulfur, halogenated sulfur, thiophene, sulfide, sulfoxide or sulfone is added to the reaction system in an amount of 0.001-0.5g/g-faujastie to increase the reaction yield.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ベンゼン及び/又はベンゼン誘4体を液相ハ
ロゲン化して、ハロゲン化ベンゼン誘導体を製造する方
法に関するものである。更に詳しくは、フォージャサイ
ト型ゼオライトを触媒として用い、反応系中に含硫黄化
合物を共存させて、ベンゼン及び/又はベンゼン誘導体
を液相ハロゲン化してパラ置換ハロゲン化ベンゼン誘導
体を製造する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for producing a halogenated benzene derivative by liquid-phase halogenation of benzene and/or a benzene derivative. More specifically, it relates to a method for producing para-substituted halogenated benzene derivatives by liquid-phase halogenation of benzene and/or benzene derivatives using faujasite-type zeolite as a catalyst and coexisting a sulfur-containing compound in the reaction system. It is.

〔従来の技術〕[Conventional technology]

ハロゲン化ベンゼン誘導体は医薬、農薬をはじめ有機合
成化学分野で、工業的に重要な原料中間体であり、一般
的には、塩化第二鉄や塩化アンチモン等のルイス酸を触
媒として、ベンゼン及び/又はベンゼン誘導体を液相ハ
ロゲン化して製造されている。例えば、ジクロロベンゼ
ン(以下、DCBと略称する)は、塩化第二鉄の存在下
、ベンゼンあるいはモノクロロベンゼン(以下、MCB
と略称する)に塩素ガスを吹きこむことにより製造され
ている。
Halogenated benzene derivatives are industrially important raw material intermediates in the field of organic synthetic chemistry, including medicines and agricultural chemicals. Generally, they are produced by using benzene and/or Alternatively, it is produced by liquid phase halogenation of benzene derivatives. For example, dichlorobenzene (hereinafter abbreviated as DCB) is converted into benzene or monochlorobenzene (hereinafter referred to as MCB) in the presence of ferric chloride.
It is manufactured by blowing chlorine gas into

モノ置換ベンゼン誘導体の液相ハロゲン化によるジ置換
ベンゼン誘導体の製造においては、生成物として12−
ジ置換体(オルト体)、1.3−ジー置換体(メタ体)
、1,4−ジ置換体(パラ体)の三種類の異性体が得ら
れるが、これらの各異性体の生成割合が、既に存在する
置換基の種類、触媒の種類等により決定されることは良
く知られている。例えば、塩化第二鉄存在下でのMCB
O液相塩素化反応によるDCBの製造の際、生成する三
種類の異性体の生成割合は下記のようになる。
In the production of disubstituted benzene derivatives by liquid phase halogenation of monosubstituted benzene derivatives, 12-
Di-substituted product (ortho form), 1,3-di-substituted product (meta form)
Three types of isomers are obtained: , 1,4-disubstituted product (para-isomer), but the production ratio of each of these isomers is determined by the type of substituents already present, the type of catalyst, etc. is well known. For example, MCB in the presence of ferric chloride
During the production of DCB by O liquid phase chlorination reaction, the proportions of the three types of isomers produced are as follows.

オルトジクロロベンゼン:3o〜40%メタジクロロベ
ンゼン 二 〇〜 5%パラジクロロベンゼン :6o
〜70%三種類の異性体の中で、工業的にはパラ置換ハ
ロゲン化ベンゼン誘導体が最も重要であり、需要も多い
。従って、バラ置換ハロゲン化ベンゼン誘導体を選択的
に製造する方法がこれまで数多(提案されてきた。
Orthodichlorobenzene: 3o~40% Metadichlorobenzene 20~5% Paradichlorobenzene: 6o
~70% Among the three isomers, para-substituted halogenated benzene derivatives are the most important industrially and are in high demand. Therefore, a large number of methods have been proposed for selectively producing halogenated benzene derivatives.

バラ置換ハロゲン化ベンゼン誘導体を選択的に製造する
。方法のひとつとして、ルイス酸触媒を使用しないで、
ゼオライトを触媒として用いる方法が最近見い出されて
いる。例えば、ジャーナル・オプ・キャタリシス(Jo
urnal of Catalysis )60.1)
0(1979)には、ハロゲン化ベンゼンの臭素化触媒
として、ゼオライトの使用が報告されている、本引用例
において、ハロゲン化触媒として、各種イオン交換ゼオ
ライト、すなわちX型、Y型ゼオライトが用いられてお
り、パラ置換ブロモベンゼン誘導体が選択的に生成する
ことが示されている。
Selectively producing halogenated benzene derivatives. As one method, without using Lewis acid catalyst,
Recently, methods have been discovered to use zeolites as catalysts. For example, Journal of Catalysis (Jo
60.1)
0 (1979), the use of zeolite as a bromination catalyst for halogenated benzene is reported. In this cited example, various ion-exchange zeolites, namely X-type and Y-type zeolites, are used as halogenation catalysts. It has been shown that para-substituted bromobenzene derivatives are selectively produced.

また、テトラヘドロン・レターズ(Tetrahedr
onLetters ) 21.3809(1980)
  には、ZSM−5、ZSM−1)、モルデナイト、
L型ゼオライト、Y型ゼオライト等を触媒とするベンゼ
ンの塩素化反応が報告されており、特に、L型ゼオライ
トの場合に尚いパラジクロロベンゼン(以下、PDCB
と略称する)選択率が得られることが述べられている。
Also, Tetrahedron Letters (Tetrahedr)
onLetters) 21.3809 (1980)
ZSM-5, ZSM-1), mordenite,
The chlorination reaction of benzene using L-type zeolite, Y-type zeolite, etc. as a catalyst has been reported, and in particular, in the case of L-type zeolite, paradichlorobenzene (hereinafter referred to as PDCB)
It is stated that the selectivity (abbreviated as ) can be obtained.

更に、例えば特開昭59−130227号公報、同59
−144722号公報、同59−163329号公報等
において、L型ゼオライトやY型ゼオライトを触媒とす
るベンゼンやアルキルベンゼンのハロゲン化方法が開示
されている。
Furthermore, for example, JP-A-59-130227;
JP-144722, JP-A No. 59-163329, etc. disclose a method for halogenating benzene or alkylbenzene using L-type zeolite or Y-type zeolite as a catalyst.

これらに加えて、本出願人は、Y型ゼオライトやL型ゼ
オライト等を金属塩により修飾することにより、バラ置
換ハロゲン化ベンゼン誘導体の選択率が向上することを
見い出し、先に出願した。
In addition to these, the present applicant has discovered that the selectivity of rose-substituted halogenated benzene derivatives can be improved by modifying Y-type zeolite, L-type zeolite, etc. with a metal salt, and has previously filed an application.

C特願昭60−28466号) 一方、塩化第二鉄等のルイス酸を触媒とした場合に、各
種の含硫黄化合物を助触媒として反応系に加えると、パ
ラ置換ベンゼン誘導体の選択率が向上することは公知で
ある。例えば、米国特許第3226447号にはベンゼ
ン、MCB等の塩素化反応において、塩化第二鉄等のル
イス酸に2価の硫黄を含む有機硫黄化合物を助触媒とし
て加えルトパラ置換ハロゲン化ベンゼン誘導体の選択率
が向上することが報告されている。すなわち、本引用例
では、触媒として鉄及びチオグリコール酸を用いて、ぺ
/ゼ/の塩素化反応を行うと、生成するDCB中のPD
CHの比率が77%に達することが示されている。また
、アルキルベンゼン類等の塩素化反応において、塩化第
二鉄や三塩化アンチモン等のルイス酸とともに、単体の
硫黄や無機硫黄化合物を触媒として使用し、バラ置換ハ
ロゲン化ベンゼン誘導体を製造する例として、例えば米
国特許第1946040号、英国特許第1)53746
号等を挙げることができる。
On the other hand, when a Lewis acid such as ferric chloride is used as a catalyst, adding various sulfur-containing compounds as co-catalysts to the reaction system improves the selectivity of para-substituted benzene derivatives. It is known to do so. For example, in US Pat. No. 3,226,447, in the chlorination reaction of benzene, MCB, etc., an organic sulfur compound containing divalent sulfur is added to a Lewis acid such as ferric chloride as a cocatalyst to select a rutpara-substituted halogenated benzene derivative. It has been reported that the rate is improved. That is, in this cited example, when the chlorination reaction of Pe/Ze/ is carried out using iron and thioglycolic acid as catalysts, PD in the generated DCB
It has been shown that the proportion of CH reaches 77%. In addition, in the chlorination reaction of alkylbenzenes etc., as an example of producing a partially substituted halogenated benzene derivative using elemental sulfur or an inorganic sulfur compound as a catalyst together with a Lewis acid such as ferric chloride or antimony trichloride, For example, US Patent No. 1946040, British Patent No. 1) 53746
You can list the number etc.

しかし、これらの公知の方法では、触媒としてルイス酸
が必須であることは、当業者において、良く知られてい
る。
However, it is well known to those skilled in the art that these known methods require a Lewis acid as a catalyst.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ベンゼン及び/又はベンゼン誘導体の液相・・ロゲン化
反応において、ゼオライトを触媒として用いることによ
り、従来の塩化第二鉄等のルイス酸を触媒とする場合に
比較して、パラ置換ハロゲン化ベンゼン誘導体を選択的
に製造しうろことは、先行技術より明らかである。
By using zeolite as a catalyst in the liquid phase halogenation reaction of benzene and/or benzene derivatives, para-substituted halogenated benzene derivatives It is clear from the prior art that scales can be selectively produced.

しかし、これらの先行技術においても、パラ置換ハロゲ
ン化ベンゼン誘導体の選択率は、十分とは言い難く、更
に高い選択率でパラ置換ノ・ロゲン化ベンゼン酵導体を
製造する方法の開発が切望されている。
However, even in these prior art techniques, the selectivity of para-substituted halogenated benzene derivatives is far from sufficient, and there is a strong need for the development of a method for producing para-substituted halogenated benzene enzyme derivatives with even higher selectivity. There is.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らは、この現状に鑑み、ベンゼン及び/又はベ
ンゼン誘導体の液相ハロゲン化反応によるパラ置換ハロ
ゲン化ベンゼン誘導体の選択的製造方法について、特に
、ゼオライト触媒を使用する反応について詳細に検討し
た。
In view of this current situation, the present inventors conducted a detailed study on a method for selectively producing para-substituted halogenated benzene derivatives by liquid-phase halogenation reaction of benzene and/or benzene derivatives, and in particular, a reaction using a zeolite catalyst. .

その結果、本発明者らは、フォージャサイト型ゼオライ
トを触媒とした場合、反応系中に含硫黄化合物を共存さ
せると、驚くべきことに、活性はほとんど低下せずに、
ハロゲン化の位置選択性が変化し、パラ置換ハロゲン化
ベンゼン誘導体の選択率が向上することを見い出した。
As a result, the present inventors found that, surprisingly, when faujasite-type zeolite was used as a catalyst and a sulfur-containing compound was coexisting in the reaction system, the activity hardly decreased.
It was found that the regioselectivity of halogenation changes and the selectivity of para-substituted halogenated benzene derivatives is improved.

前述したように、ベンゼン及び/又はベンゼン誘導体の
ハロゲン化反応において、塩化第二鉄等のルイス酸を触
媒として使用した場合、含硫黄化合物を助触媒として添
加すると、パラ置換ハロゲン化ベンゼン誘導体の選択率
が向上することは公知であり、これは、含硫黄化合物が
ルイス酸を変性することによると考えられる。すなわち
、ルイス酸触媒による液相ハロゲン化反応においては、
ルイス酸は反応溶液中に溶解して触媒作用を示すいわゆ
る均一系触媒であり、従って含硫黄化合物による助触媒
効果の理由は、ルイス酸と同様に反応溶液中に溶解して
いる含硫黄化合物がルイス酸に配位等することによって
、ルイス酸の性質を変化させることであると推定される
As mentioned above, when a Lewis acid such as ferric chloride is used as a catalyst in the halogenation reaction of benzene and/or benzene derivatives, when a sulfur-containing compound is added as a cocatalyst, the selection of para-substituted halogenated benzene derivatives is improved. It is known that the rate is improved, and this is believed to be due to the sulfur-containing compound modifying the Lewis acid. That is, in a liquid phase halogenation reaction using a Lewis acid catalyst,
Lewis acids are so-called homogeneous catalysts that exhibit catalytic action when dissolved in the reaction solution. Therefore, the reason for the cocatalytic effect of sulfur-containing compounds is that, like Lewis acids, the sulfur-containing compounds dissolved in the reaction solution It is presumed that the properties of the Lewis acid are changed by coordinating with the Lewis acid.

これに対し、ゼオライト触媒による液相ハロゲン化反応
においては、触媒であるゼオライトは反応溶液中には全
く溶解せず、ゼオライトは固液不均一触媒として働いて
おり、ゼオライト触媒の作用機構はルイス酸触媒の場合
とは全く異なっている。更に、ゼオライト触媒による含
硫黄化合物の共存効果がゼオライトの中でもフォージャ
サイト型ゼオライトについて特異的であることを考え合
わせると、含硫黄化合物の共存効果はルイス酸触媒にお
ける助触媒効果とは全く異なるものであり、本発明は新
しい事実の発見にもとづき構成されたものである。
On the other hand, in the liquid phase halogenation reaction using a zeolite catalyst, the zeolite catalyst does not dissolve at all in the reaction solution, and the zeolite acts as a solid-liquid heterogeneous catalyst, and the action mechanism of the zeolite catalyst is a Lewis acid This is completely different from the case of catalysts. Furthermore, considering that the coexistence effect of sulfur-containing compounds on zeolite catalysts is specific to faujasite zeolites among zeolites, the coexistence effect of sulfur-containing compounds is completely different from the promoter effect on Lewis acid catalysts. The present invention is constructed based on the discovery of new facts.

すなわち、本発明は、フォージャサイト型ゼオライトを
触媒として、ベンゼン及び/又はベンゼン誘導体の液相
ハロゲン化反応によりハロゲン化ベンゼン誘導体を製造
するにあたり、含硫黄化合物を反応系中に共存させるこ
とを特徴とする、ハロゲン化ベンゼン誘導体の製造法を
提供するものである。
That is, the present invention is characterized in that when a halogenated benzene derivative is produced by a liquid phase halogenation reaction of benzene and/or a benzene derivative using a faujasite type zeolite as a catalyst, a sulfur-containing compound is allowed to coexist in the reaction system. The present invention provides a method for producing a halogenated benzene derivative.

本発明の方法においては、触媒としてゼオライトが用い
られるが、ゼオライトとは通常、結晶性アルミノシリケ
ートと呼ばれるものである。ゼオライトは5i04四面
体およびMO4四面体から構成されているが、各四面体
の結合様式の相違により多くの種類が知られている。本
発明の方法において触媒として使用されるゼオライトは
フォージャサイト型ゼオライトである。フォージャサイ
ト型ゼオライトは天然にも存在するが、公知の方法によ
り合成することも可能であり、合成フォージャサイト型
ゼオライトは、X型ゼオライトおよびY型ゼオライトと
して広(知られている。本発明の方法においては、フォ
ージャサイト型ゼオライトの中でも不純物が少なく結晶
化度の高い合成フォージャサイト型ゼオライトが好まし
く、Y型ゼオライトが特に好ましい。フォージャサイト
型ゼオライトは特徴的な結晶構造を有するので粉末X線
回折スペクトルを測定することにより、他のゼオライト
と識別することが可能である。
In the method of the present invention, zeolite is used as a catalyst, and zeolite is usually called crystalline aluminosilicate. Zeolite is composed of 5i04 tetrahedrons and MO4 tetrahedra, and many types are known due to differences in the bonding modes of each tetrahedron. The zeolite used as a catalyst in the process of the invention is a faujasite type zeolite. Faujasite-type zeolite exists naturally, but it can also be synthesized by known methods, and synthetic faujasite-type zeolite is widely known as X-type zeolite and Y-type zeolite.The present invention In the method, synthetic faujasite zeolites with few impurities and high crystallinity among faujasite zeolites are preferred, and Y-type zeolites are particularly preferred.Faujasite zeolites have a characteristic crystal structure. It is possible to distinguish it from other zeolites by measuring the powder X-ray diffraction spectrum.

フォージャサイト型ゼオライトの化学的組成は酸化物の
モル比で表わすと、 8M2/no−AJ203・bSi02で示される。合
成フォージャサイト型ゼオライト、すなわちX型ゼオラ
イトおよびX型ゼオライトは、一般に、合成されたまま
の状態では陽イオンとしてNaイオンを含んでいる。
The chemical composition of faujasite type zeolite is expressed as 8M2/no-AJ203.bSi02 in terms of the molar ratio of oxides. Synthetic faujasite-type zeolites, ie, type-X zeolites and type-X zeolites, generally contain Na ions as cations in the as-synthesized state.

本発明の方法においては、フォージャサイ)!ゼオライ
トに含有される陽イオンに特に制限はなく、合成時に含
有されるNaイオンを有するものを触媒として使用すれ
ば良いが、必要に応じて、他の陽イオンに交換したもの
を使用しても差し支えない。この場合には、交換したい
陽イオンを含む水溶液を用いて、公知の方法によりイオ
ン交換処理を実施すれば良い。
In the method of the present invention, Fujasai)! There are no particular restrictions on the cations contained in zeolite, and zeolites containing Na ions during synthesis may be used as catalysts, but if necessary, zeolites exchanged with other cations may also be used. No problem. In this case, ion exchange treatment may be performed by a known method using an aqueous solution containing the cations to be exchanged.

本発明の方法においては、各種のイオン交換フォージャ
サイト型ゼオライトをそのまま、触媒として用いれば良
いが、好ましくは、金属塩により修飾されたフォージャ
サイト型ゼオライトを用いる。フォージャサイト型ゼオ
ライトの金属塩による修飾は、例えば特願昭60−28
466号@気に記載されている方法に従って実施すれば
良い。
In the method of the present invention, various ion-exchanged faujasite zeolites may be used as catalysts as they are, but faujasite zeolites modified with metal salts are preferably used. For example, the modification of faujasite type zeolite with metal salts is
It can be carried out according to the method described in No. 466@Ki.

すなわち、フォージャサイト型ゼオライトと金属塩とを
均密に接触させれば良く、具体的には、通常の含浸法、
混合法、混練法等を挙げることができる。金属塩による
修飾の方法に特に制限はないが、フォージャサイト型ゼ
オライトの粒子外表面だけでなく、細孔内も均密に修飾
できること、更K、簡便であることから、金属塩を所望
の溶媒、例えば水等に溶かし、これをフォージャサイト
型ゼオライトに含浸させる通常の含浸法が好適である。
In other words, it is sufficient to bring the faujasite type zeolite and the metal salt into intimate contact with each other, and specifically, the usual impregnation method,
Examples include a mixing method and a kneading method. There are no particular restrictions on the method of modification with metal salts, but it is possible to homogeneously modify not only the outer surface of faujasite-type zeolite particles but also the inside of the pores, and it is easy to use. A conventional impregnation method in which faujasite-type zeolite is impregnated with a solution dissolved in a solvent such as water is suitable.

この場合、修飾に使用する金属塩について特に制限はな
く、アルカリ金属、アルカリ土類金属、希土類金属等の
ハロゲン化物、硫酸塩、炭酸塩等を用いれば良い。例え
ば、塩化ナトリウム、塩化カリウム、塩化ストロンチウ
ム、塩化バリウム、塩化ランタン、炭酸ナトリウム、炭
酸カリウム、炭酸ストロンチウム、炭酸バリウム、硫酸
ナトリウム、硫酸カリウム、硫酸ストロンチウム、硫酸
バリウム等を挙げることができる。
In this case, there are no particular restrictions on the metal salt used for modification, and halides, sulfates, carbonates, etc. of alkali metals, alkaline earth metals, rare earth metals, etc. may be used. Examples include sodium chloride, potassium chloride, strontium chloride, barium chloride, lanthanum chloride, sodium carbonate, potassium carbonate, strontium carbonate, barium carbonate, sodium sulfate, potassium sulfate, strontium sulfate, barium sulfate, and the like.

修飾に用いられる金属塩の使用量はフォージャサイト型
ゼオライトに対する重量パーセントで表わして、0.1
〜90%で良く、好しくは、10〜80%である。
The amount of the metal salt used for modification is 0.1% by weight based on the faujasite type zeolite.
It may be 90%, preferably 10 to 80%.

本発明の方法においては、触媒の形状については特に制
限はなく、通常成型して触媒として用いれば良いが、粉
末のまま使用しても一向に差し支えない。成型方法は通
常の方法で良く、例えば、押出成型法、打錠成型法、噴
霧乾燥造粒法等を挙げることができる。成型する場合、
その機械的強度を高める等の目的で、本反応に対して不
活性な物質を粘結剤あるいは成型助剤として添加しても
良い。例えば、シリカ、粘土類、グラファイト、ステア
リン酸、殿粉、ポリビニルアルコール等を0−80 w
t%、好ましくは、2−30 wt%の範囲で添加でき
る。
In the method of the present invention, there is no particular restriction on the shape of the catalyst, and it may be used as a catalyst by being normally shaped, but there is no problem in using it as a powder. The molding method may be a conventional method, and examples thereof include extrusion molding, tablet molding, spray drying granulation, and the like. When molding,
For the purpose of increasing the mechanical strength, etc., a substance inert to this reaction may be added as a binder or molding aid. For example, silica, clays, graphite, stearic acid, starch, polyvinyl alcohol, etc.
It can be added in an amount of t%, preferably in the range of 2-30 wt%.

このようにして得られた触媒は、必要に応じて、乾燥処
理を行なったのち、空気流通下あるいは窒素、ヘリウム
等の不活性ガス流通下で10分〜24時間焼成処理を行
い、液相ハロゲン化反応に用いる。焼成温度は200〜
900℃の温度範囲で良く、好ましくは600〜850
℃が良い。
The catalyst obtained in this manner is dried if necessary, and then calcined for 10 minutes to 24 hours under air flow or an inert gas flow such as nitrogen or helium. Used for chemical reactions. Firing temperature is 200~
The temperature range may be 900°C, preferably 600 to 850°C.
℃ is good.

本発明の方法においては、反応系中に含硫黄化合物を共
存させてベンゼン及び/又はベンゼン誘導体の液相ハロ
ゲン化反応を実施する。含硫黄化合物とは、単体の硫黄
、結合原子価が2価である硫黄原子を含有する無機化合
物又は硫黄を含有する有機化合物を意味する。ここで、
結合原子価とは、ひとつの硫黄原子が他の原子(他の硫
黄原子も含む)と結合している結合数を指す。結合原子
価が2価である硫黄原子を含有する無機化合物の場合、
非金属性元素、例えば、水素又は、周期表で炭素族、窒
素族、ハロゲン族の元素と結合原子価が2価である硫黄
原子からなる化合物が好ましい1 無機化合物の例としては、単体の硫黄のほか、−塩化硫
黄、二塩化硫黄、−臭化硫黄、二硫化炭素、硫化水素、
二硫化ケイ素、窒化硫黄類、硫化リン類を挙げることが
でき、特に単体の硫黄、−塩化硫黄および二塩化硫黄が
好ましい。
In the method of the present invention, the liquid phase halogenation reaction of benzene and/or benzene derivatives is carried out in the presence of a sulfur-containing compound in the reaction system. The sulfur-containing compound means an inorganic compound containing simple sulfur, a sulfur atom with a divalent bond, or an organic compound containing sulfur. here,
Bond valence refers to the number of bonds that one sulfur atom has with other atoms (including other sulfur atoms). In the case of an inorganic compound containing a sulfur atom whose bond valence is divalent,
Compounds consisting of a nonmetallic element, such as hydrogen, or a sulfur atom whose bond valence is divalent to an element of the carbon group, nitrogen group, or halogen group in the periodic table are preferable1. Examples of inorganic compounds include simple sulfur. In addition, -sulfur chloride, sulfur dichloride, -sulfur bromide, carbon disulfide, hydrogen sulfide,
Silicon disulfide, sulfur nitrides, and phosphorus sulfides can be mentioned, and elemental sulfur, -sulfur chloride, and sulfur dichloride are particularly preferred.

含硫黄有機化合物としては、メチルメルカプタン、エチ
ルメルカプタン、プロピルメルカプタン、フェニルメル
カプタン等のメルカプタン類、ジメチルスルフィト、ジ
エチルスルフィト、ジフェニルスルフィド等のスルフィ
ド類、チオフェン、メチルチオフェン、クロロチオフェ
ン等のチオフェン類、ジメチルジスルフィド、シフ1ニ
ルジスルフイド等のジスルフィド類、ジメチルスルホキ
シド、ジフェニルスルホキシド等のスルホキシド類、ジ
メチルスルホン、ジフェニルスルホン等のスルホン類を
挙げることができ、特にジフェニルスルフィド等のスル
フィド類、チオフェン等のチオフェン類、ジフェニルス
ルホキシド等のスルホキシド類およびジフェニルスルホ
ン等のスルホン類が好ましい。
Examples of sulfur-containing organic compounds include mercaptans such as methyl mercaptan, ethyl mercaptan, propyl mercaptan, and phenyl mercaptan; sulfides such as dimethyl sulfite, diethyl sulfite, and diphenyl sulfide; thiophenes such as thiophene, methylthiophene, and chlorothiophene; Examples include disulfides such as dimethyl disulfide and Schiffenyl disulfide, sulfoxides such as dimethyl sulfoxide and diphenyl sulfoxide, and sulfones such as dimethyl sulfone and diphenyl sulfone.In particular, sulfides such as diphenyl sulfide, thiophenes such as thiophene, Sulfoxides such as diphenyl sulfoxide and sulfones such as diphenyl sulfone are preferred.

これらの含硫黄化合物は、液相ノ・ロゲン化反応液中に
共存すれば良く、添加方法等について特に制限はない。
These sulfur-containing compounds only need to coexist in the liquid phase rogogenation reaction solution, and there are no particular restrictions on the method of addition.

すなわち、含硫黄化合物を反応系中に原料や触媒とは別
に加えても良いし、予め触媒であるフォージャサイト型
ゼオライ)K吸着あるいは担持して、触媒とともに反応
系中に導入しても良い。また、連続反応においては、原
料中に含硫黄化合物を含有させて、例えば、液体原料圧
これらの含硫黄化合物を溶解させる等して、原料ととも
に反応系中に供給すれば良い。
That is, the sulfur-containing compound may be added to the reaction system separately from the raw materials and catalyst, or the sulfur-containing compound may be adsorbed or supported on faujasite-type zeolite (K), which is the catalyst, and introduced into the reaction system together with the catalyst. . In a continuous reaction, a sulfur-containing compound may be contained in the raw material and, for example, the sulfur-containing compound may be dissolved under the pressure of a liquid raw material, and then supplied together with the raw material into the reaction system.

含硫黄化合物は多岐に亘り、更に添加方法等の影響を受
けるため、その共存量を一義的に限定するのは困難であ
るが、含硫黄化合物中に含まれる硫黄原子のitで規定
することが可能である。本発明の方法において、含硫黄
化合物の共存量は、触媒であるフォージャサイト型ゼオ
ライトの単位重量に対してlX10  I!/、?−フ
ォージャサイト〜t o y/g−フォージャサイト、
好ましくは1×101)/Ii−フォージャサイトル0
.51カーフオージヤサイトである。含硫黄化合物の共
存量が1 x 10 1/1)−フォージャサイト未満
ではパラ置換ハロゲン化ベンゼン誘導体の選択率向上の
効果は得られず、また、t o ti7tt−フォージ
ャサイトより多いと共存量を大きくした効果はなく、不
経済である。
There are a wide variety of sulfur-containing compounds, and they are affected by the addition method, etc., so it is difficult to unambiguously limit the amount of sulfur-containing compounds. It is possible. In the method of the present invention, the amount of the sulfur-containing compound present is 1×10 I! per unit weight of the faujasite zeolite that is the catalyst. /,? - faujasite ~ t o y/g - faujasite,
Preferably 1×101)/Ii-Faujacytol 0
.. 51 calf ossia site. If the coexisting amount of the sulfur-containing compound is less than 1 x 10 1/1)-faujasite, the effect of improving the selectivity of para-substituted halogenated benzene derivatives cannot be obtained, and if the coexisting amount is more than t o ti7tt-faujasite, There is no effect of increasing the amount, and it is uneconomical.

本発明の方法において、ベンゼン誘導体とは、ハロゲン
化ベンゼン、アルキルベンゼン等のように、ベンゼンの
水素がハロゲン、アルキル基等の置換基で置換された化
合物を意味し、例えばモノフルオロベンゼン、MCB、
モノブロモベンゼン、モノヨードベンゼン、トルエン、
エチルベンゼン等を挙げることができる。また、ハロゲ
ン化剤は単体のハロゲンで良く、例えば、塩素、臭素、
ヨウ素を挙げることができる。
In the method of the present invention, the benzene derivative refers to a compound in which the hydrogen of benzene is substituted with a substituent such as a halogen or an alkyl group, such as halogenated benzene, alkylbenzene, etc., such as monofluorobenzene, MCB,
Monobromobenzene, monoiodobenzene, toluene,
Examples include ethylbenzene. Further, the halogenating agent may be a single halogen, such as chlorine, bromine,
Iodine can be mentioned.

本発明の方法において、反応装置、反応方法および反応
条件は、ベンゼン及び/又はベンゼン誘導体が液状で触
媒と接触する限り、何ら制限はない。例えば、反応装置
は回分式、半回分式あるいは連続式のいずれを用いても
差し支えない。触媒は、例えば、固定床、懸濁床等の形
で用いれば良L’。
In the method of the present invention, there are no restrictions on the reaction apparatus, reaction method, and reaction conditions as long as benzene and/or benzene derivatives are brought into contact with the catalyst in a liquid state. For example, the reactor may be of a batch type, semi-batch type, or continuous type. The catalyst can be used, for example, in the form of a fixed bed or suspended bed.

反応は、ハロゲン化反応に関与しない溶媒、例えば、四
塩化炭素等の存在下で行なっても良い。
The reaction may be carried out in the presence of a solvent that does not participate in the halogenation reaction, such as carbon tetrachloride.

溶媒を用いる場合には、ベンゼン及び/又はベンゼン誘
導体の濃度は5〜99wt%が良く、20〜99wt%
が好ましい。5wt%以下では、原料が触媒と接触する
機会が少なくなり、十分な転化率が得られない。ハロゲ
ン化剤を連続的に供給する場合には、窒素、ヘリウム、
二酸化炭素等の不活性ガスを同伴しても良い。同伴ガス
を用いる場合には、ハロゲン化剤の濃度は5〜99vo
1.%が良く、20〜99 vol、チが好ましい。
When using a solvent, the concentration of benzene and/or benzene derivatives is preferably 5 to 99 wt%, and 20 to 99 wt%.
is preferred. If it is less than 5 wt%, there will be fewer opportunities for the raw material to come into contact with the catalyst, making it impossible to obtain a sufficient conversion rate. When continuously supplying the halogenating agent, nitrogen, helium,
An inert gas such as carbon dioxide may be included. When using an entrained gas, the concentration of the halogenating agent is 5 to 99 vol.
1. %, preferably 20 to 99 vol.

回分式、半回分式反応装置を用いた場合、触媒は主に溶
液KM濁させた形で用いるが、単位反応液容槓当たりの
触媒量は0.001〜1Vlが良く、0、005〜α1
kV/lが好ましい。o、 o o i啜々未満では、
触媒の負荷が大きく、十分な転化率を得られない。また
、1 kg/jより多いと触媒量を増加する効果が小さ
くなる。ハロゲン化剤を連続的に供給する場合、ハロゲ
ン化剤の供給量は、ゼオライト重量に対する単位時間当
たりのハロゲン化剤の量で表わすことができ、  1〜
1500 mol/kiJ −cat、hrが良く、1
0〜800 matAII−cat、hrが好ましい。
When using a batch type or semi-batch type reactor, the catalyst is mainly used in the form of a turbid solution, but the amount of catalyst per unit reaction liquid volume is preferably 0.001 to 1 Vl, and 0.005 to α1.
kV/l is preferred. o, o o i less than a sip,
The load on the catalyst is large and a sufficient conversion rate cannot be obtained. Furthermore, if the amount is more than 1 kg/j, the effect of increasing the amount of catalyst will be reduced. When the halogenating agent is continuously supplied, the amount of the halogenating agent supplied can be expressed as the amount of the halogenating agent per unit time relative to the weight of the zeolite, and is 1 to 1.
1500 mol/kiJ-cat, hr is good, 1
0 to 800 matAII-cat, hr is preferred.

j rnol/kII−cat、hr未満では十分なハ
ロゲン化ベンゼン生成速度が得られず、1500mos
/5qi−cat、hrを越える場合には、未反応のハ
ロゲン化剤の量が増加し、経済的でない。
jrnol/kII-cat, if it is less than hr, a sufficient halogenated benzene production rate cannot be obtained, and 1500mos
If it exceeds /5qi-cat,hr, the amount of unreacted halogenating agent increases, which is not economical.

連続式反応装置を用いた場合、ベンゼン及び/又はベン
ゼン誘導体の供給量は、使用するゼオライトに対する単
位時間当たりの量で表わすことができ、0.5〜500
1/kit −cat、hrで良く、2〜10017k
l−Cai、)lrが好ましい。その他の反応条件は、
回分式あるいは半回分式反応装置を用いた場合と同様で
ある。
When a continuous reactor is used, the amount of benzene and/or benzene derivatives supplied can be expressed as the amount per unit time relative to the zeolite used, and is 0.5 to 500.
1/kit-cat, hr is enough, 2-10017k
l-Cai, )lr is preferred. Other reaction conditions are:
This is the same as when a batch type or semi-batch type reactor is used.

本発明の方法において、反応温度および反応圧力はベン
ゼン及び/又はベンゼン誘導体が液相である限り、何ら
制限はない。反応温度がベンゼン及び/又はベンゼン誘
導体の沸点より高い場合には、反応圧力を高めることに
より液相でのハロゲン化反応を行なうことができるが、
反応温度は0〜200℃が好ましく、20〜150’C
が更に好ましい。0℃未満では、十分な反応速度が併ら
れず、また、200℃より高いとパラ置換ハロゲン化ベ
ンゼン誘導体の選択率が低下する。
In the method of the present invention, there are no restrictions on the reaction temperature and reaction pressure as long as benzene and/or benzene derivatives are in a liquid phase. When the reaction temperature is higher than the boiling point of benzene and/or benzene derivatives, the halogenation reaction can be carried out in the liquid phase by increasing the reaction pressure.
The reaction temperature is preferably 0 to 200°C, preferably 20 to 150'C.
is even more preferable. If it is less than 0°C, a sufficient reaction rate will not be achieved, and if it is higher than 200°C, the selectivity of the para-substituted halogenated benzene derivative will decrease.

〔発明の効果〕〔Effect of the invention〕

本発明の方法によれば、ベンゼン及び/又はベンゼン誘
導体の液相ハロゲン化反応において、工業的に価値の高
いパラ置換ハロゲン化ベンゼン誘導体を公知の方法に比
べて、高収率で取得することができ、従って、本発明は
工業的にみて、極めて有意義なものである。
According to the method of the present invention, industrially valuable para-substituted halogenated benzene derivatives can be obtained in higher yields than known methods in the liquid phase halogenation reaction of benzene and/or benzene derivatives. Therefore, the present invention is extremely significant from an industrial perspective.

〔実施 例〕〔Example〕

以下に、実施例により本発明を更に詳細に説明するが、
本発明は、これらの実施例のみに限定されるものではな
い。なお、実施例中に示される転化率および選択率とは
以下の式により計算された数値を表わす。
Below, the present invention will be explained in more detail with reference to Examples.
The present invention is not limited only to these examples. Note that the conversion rate and selectivity shown in the examples represent numerical values calculated using the following formula.

×100 実施例1〜6 1)の磁性ビーカーに4.29.9の塩化ナトリウムを
入れ、これを150dの蒸留水に溶解させた。
×100 Examples 1 to 6 4.29.9 ml of sodium chloride was placed in the magnetic beaker of 1), and this was dissolved in 150 d of distilled water.

温浴を用いて、この溶液を95℃に保ち、ガラス製の攪
拌羽根で十分にかきまぜながら、ここにS io 27
kl 203比5.5のNa −Y型ゼオライト(東洋
曹達工業■l!8り10gを加えた。温浴上で水分がな
くなるまで蒸発乾固し、130℃に保った乾燥器中で、
15時間乾燥したのち、空気流通下で540℃で3時間
焼成してNaC1を30!−It%担持したNa −Y
型ゼオライト触媒を得た7、この触媒と含硫黄化合物と
して一塩化硫黄を用い、MCBの液相塩素化反応を実施
した。反応はレックス製反応器(内径40m、高さ10
0++a+)に40.9のMCBおよび0.016.9
.0.035g、0.0691).0.140g、0.
245.9.0.574’#、の−塩化硫黄を充填し、
更に、1,4Iの上記ゼオライト触媒を加え、懸濁液と
した。
This solution was kept at 95°C using a hot bath, and stirred thoroughly with a glass stirring blade.
10 g of Na-Y type zeolite (Toyo Soda Kogyo ■l!8) with a kl 203 ratio of 5.5 was added. Evaporated to dryness on a hot bath until the water disappeared, and then heated in a dryer kept at 130°C.
After drying for 15 hours, it was calcined at 540°C for 3 hours under air circulation to reduce NaCl to 30! -It% supported Na-Y
A type zeolite catalyst was obtained, and a liquid phase chlorination reaction of MCB was carried out using this catalyst and sulfur monochloride as a sulfur-containing compound. The reaction was carried out in a Rex reactor (inner diameter 40 m, height 10 m).
0++a+) with an MCB of 40.9 and 0.016.9
.. 0.035g, 0.0691). 0.140g, 0.
245.9.0.574'#, - filled with sulfur chloride,
Furthermore, the above 1,4I zeolite catalyst was added to form a suspension.

反応混合物をマグネチック・スターラで充分に攪拌しな
がら、30吟−の供給速度で塩素ガス(等址の窒素ガス
を同伴)を吹き込んだ。反応温度は反応器の周囲をオイ
ルバスによりコントロールし、100℃とした。塩素ガ
スを吹き込みはじめてから3時間経過後、生成物をガス
クロマトグラフにより分析した。その結果を第1表に示
す。     ′比較例1 実施例1と同様な方法で調製したNaCl!により修飾
したNa −Y型ゼオライトを触媒として用い、反旧糸
中に含硫黄化合物を共存させなかった以外は、実施例1
と全く同様にMCBの液相塩素化反応を行った。塩素ガ
スを吹き込みはじめてから3時間経過後の反応結果を第
1表に示す。
While thoroughly stirring the reaction mixture with a magnetic stirrer, chlorine gas (along with constant nitrogen gas) was blown in at a feed rate of 30 min. The reaction temperature was controlled at 100° C. by using an oil bath around the reactor. Three hours after the start of blowing chlorine gas, the product was analyzed by gas chromatography. The results are shown in Table 1. 'Comparative Example 1 NaCl! prepared in the same manner as in Example 1. Example 1 except that Na-Y type zeolite modified by was used as a catalyst and no sulfur-containing compound was allowed to coexist in the old yarn.
A liquid phase chlorination reaction of MCB was carried out in exactly the same manner as described above. Table 1 shows the reaction results 3 hours after the start of chlorine gas blowing.

実施例7 単体の硫黄0.07 、fを二硫化炭素15jljに溶
解させ、その溶液に実施例1で調製したNaC1により
修飾したNa −Y型ゼオライト3gを加え、二硫化炭
素をエバポレータを用いて留去し、硫黄を担持したNa
C1修飾Na −Y型ゼオライト触媒を調製した。この
場合、フォージャサイト単位重量当たりの硫黄の重量は
o、 0331/9−フォージャサイトである。
Example 7 Elemental sulfur 0.07,f was dissolved in 15jlj of carbon disulfide, 3g of Na-Y type zeolite modified with NaCl prepared in Example 1 was added to the solution, and carbon disulfide was dissolved using an evaporator. Distilled and sulfur-supported Na
A C1 modified Na-Y type zeolite catalyst was prepared. In this case, the weight of sulfur per unit weight of faujasite is o, 0331/9-faujasite.

この触媒1.52.9を用い、−塩化硫黄を共存させな
かった以外は、実施例1と全く同様にMCBの液相塩素
化反応を行った。塩素ガスを吹き込みはじめてから6時
間経過後、MCB転化率は65.0%PDCB選択率は
88.8 %であった。
Using this catalyst 1.52.9, a liquid phase chlorination reaction of MCB was carried out in exactly the same manner as in Example 1, except that -sulfur chloride was not allowed to coexist. Six hours after the start of blowing chlorine gas, the MCB conversion rate was 65.0% and the PDCB selectivity was 88.8%.

実施例8 実施例1と同様な方法で調製したNaC1修飾Na−Y
型ゼオライトを触媒として用い、−塩化硫黄の代わりに
チオフェン0. OB 3 gを共存させ、反応温度8
0℃でMCBの液相塩素化反応を行った。
Example 8 NaCl-modified Na-Y prepared in the same manner as Example 1
type zeolite as a catalyst, and 0.0% thiophene instead of sulfur chloride. 3 g of OB was allowed to coexist, and the reaction temperature was 8.
A liquid phase chlorination reaction of MCB was carried out at 0°C.

この場合、フォージャサイト単位重量当たりの硫黄の重
量は0.0321)79−フォージャサイトであった。
In this case, the weight of sulfur per unit weight of faujasite was 0.0321)79-faujasite.

なお、上記以外の反応条件は実施例1と全く同様である
Note that the reaction conditions other than those described above are completely the same as in Example 1.

塩素ガスを吹き込みはじめてから3時間経過後の反応結
果を第2表に示す。
Table 2 shows the reaction results 3 hours after the start of chlorine gas blowing.

実施例9〜1) 実施例1と同様な方法で調製したNaC#修飾Na−Y
型ゼオライトを触媒として用い、−塩化硫黄の代わりに
0.108 #のジフェニルスルフィド、又は0.12
1#のジフェニルスルホキシドアルイは0.131 #
のジフェニルスルホンを共存させた以外は実施例1と全
く同様にMCBの液相塩素化反応を行った。塩素ガスを
吹き込みはじめてから6時間経過後の反応結果を第2表
に示す。
Examples 9-1) NaC# modified Na-Y prepared in the same manner as Example 1
type zeolite as catalyst, - 0.108 # diphenyl sulfide instead of sulfur chloride, or 0.12
1# diphenyl sulfoxide aluminum is 0.131#
A liquid phase chlorination reaction of MCB was carried out in exactly the same manner as in Example 1, except that diphenyl sulfone was allowed to coexist. Table 2 shows the reaction results 6 hours after the start of chlorine gas blowing.

実施例12 触媒として、1.OIのNa−Y型ゼオライト(東洋曹
達工業■製)を用い、−塩化硫黄を0.540I共存さ
せた以外は実施例1と全く同様にMCBの液相塩素化反
応を行った。塩素ガスを吹き込みはじめてから3時間経
過後の反応結果を第3表に示す。
Example 12 As a catalyst, 1. A liquid phase chlorination reaction of MCB was carried out in exactly the same manner as in Example 1, except that OI Na-Y type zeolite (manufactured by Toyo Soda Kogyo ■) was used and 0.540 I of sulfur chloride was allowed to coexist. Table 3 shows the reaction results 3 hours after the start of chlorine gas blowing.

比較例2 一塩化硫黄を共存させなかった以外は実施例12と全く
同様にMCBの液相塩素化反応を行った。塩素ガスを吹
き込みはじめてから、3時間経過後の反応結果を第3表
に示す。
Comparative Example 2 A liquid phase chlorination reaction of MCB was carried out in exactly the same manner as in Example 12 except that sulfur monochloride was not present. Table 3 shows the reaction results 3 hours after the start of chlorine gas blowing.

第3表 t)ODCB−オルトジクロロベンゼン2)メタジクロ
ロベンゼン、トリクロロベンゼン類等実施例16 触媒として、S iov’Ahos比が2.5のNa−
X型ゼオライト(東洋曹達工業■製)を用いた以外は実
施例12と全く同様にMCBの液相塩素化反応を行った
。塩素ガスを吹き込みはじめてから5時間経過後、MC
B転化率は38.1%PDCB選択率は73.8%であ
った。
Table 3 t) ODCB-ortho dichlorobenzene 2) Metadichlorobenzene, trichlorobenzenes, etc. Example 16 As a catalyst, Na- with a Siov'Ahos ratio of 2.5
A liquid phase chlorination reaction of MCB was carried out in exactly the same manner as in Example 12, except that X-type zeolite (manufactured by Toyo Soda Kogyo ■) was used. 5 hours after starting to blow chlorine gas, MC
The B conversion rate was 38.1%, and the PDCB selectivity was 73.8%.

比較例3 一塩化硫黄を共存させなかった以外は、実施例13と全
く同様にMCBO液相塩素化反応を行った。塩素ガスを
吹き込みはじめてから5時間経過後、MCB転化率ハ3
7.2 %、PDCB選択率は72.0%であった。
Comparative Example 3 An MCBO liquid phase chlorination reaction was carried out in exactly the same manner as in Example 13, except that sulfur monochloride was not present. Five hours after starting to blow chlorine gas, the MCB conversion rate was 3.
7.2%, and the PDCB selectivity was 72.0%.

比較例4.5 黄の共存下あるいは非共存下で、実施例12と同様にM
CBの液相塩素化反応を行った。塩素ガスを吹きこみは
じめてから3時間経過後の反応結果を第4表に示す。
Comparative Example 4.5 M in the same manner as in Example 12 in the presence or absence of yellow.
A liquid phase chlorination reaction of CB was performed. Table 4 shows the reaction results 3 hours after the start of chlorine gas blowing.

比較例6.7 米国特許3.790.471号に記載されている方法に
準じてZSM−5ゼオライトを合成した。得られたゼオ
ライトがZSM−5であることは、銅のにα二重線を用
いた粉末X線回折により確認した。このZSM−5を空
気流通下、540℃で焼成したのち、塩化ナトリウム水
溶液を用いてイオン交換処理を行い、Na−ZSM−5
ゼオライトを得た。このNa−ZSM−5は酸化物のモ
ル比で表わすと次のような組成を有していた。
Comparative Example 6.7 ZSM-5 zeolite was synthesized according to the method described in US Pat. No. 3,790,471. It was confirmed that the obtained zeolite was ZSM-5 by powder X-ray diffraction using a copper alpha doublet. After firing this ZSM-5 at 540°C under air circulation, ion exchange treatment was performed using an aqueous sodium chloride solution to form Na-ZSM-5.
Obtained zeolite. This Na-ZSM-5 had the following composition expressed in molar ratio of oxides.

180°5 Na2O・AJ203・23.35i02
触媒として、上記のNa  Z S M −5を用いて
、−塩化硫黄の共存下あるいは非共存下で実施例12と
同様にMCBの液相塩素化反応を行なった。塩素ガスを
吹きこみはじめてから、3時間経過後の反応結果を第4
表に示す。
180°5 Na2O・AJ203・23.35i02
A liquid phase chlorination reaction of MCB was carried out in the same manner as in Example 12 in the presence or absence of -sulfur chloride using the above NaZSM-5 as a catalyst. The reaction results after 3 hours from the start of blowing chlorine gas are shown in the fourth column.
Shown in the table.

実施例14 MCBをトルエンに代えた以外は実施例1と全く同様に
してトルエンの液相塩素化反応を行なった。塩素ガスを
吹き込みはじめてから3時間経過後、トルエン転化率は
54.2%、パラクロロトルエン選択率は66.8%で
あった。
Example 14 A liquid phase chlorination reaction of toluene was carried out in the same manner as in Example 1 except that MCB was replaced with toluene. Three hours after starting to blow chlorine gas, the toluene conversion rate was 54.2% and the parachlorotoluene selectivity was 66.8%.

比較例8 一塩化硫黄を添加しなかった以外は、実施例14と全く
同様にトルエンの液相塩素化反応を行なった。塩素ガス
を吹き込みはじめてから3時間経過後、トルエン転化率
は54.6%、パラクロロトルエン選択率は62.4%
であった。
Comparative Example 8 A liquid phase chlorination reaction of toluene was carried out in exactly the same manner as in Example 14, except that sulfur monochloride was not added. Three hours after starting to blow chlorine gas, the toluene conversion rate was 54.6% and the parachlorotoluene selectivity was 62.4%.
Met.

比較例9 触媒として、ゼオライト触媒の代りに塩化第二鉄0.4
gを用いた以外は、実施例1と全く同様にして、MCB
の液相塩素化反応を行なった。塩素ガスを吹きこみはじ
めてから3時間経過後、MCB転化率は64.7%、P
DCB選択半は68,5%であった。
Comparative Example 9 As a catalyst, 0.4 ferric chloride was used instead of a zeolite catalyst.
MCB
A liquid phase chlorination reaction was carried out. Three hours after starting to blow chlorine gas, the MCB conversion rate was 64.7%, P
The percentage who chose DCB was 68.5%.

Claims (6)

【特許請求の範囲】[Claims] (1)フォージャサイト型ゼオライトを触媒として、ベ
ンゼン及び/又はベンゼン誘導体の液相ハロゲン化反応
によりハロゲン化ベンゼン誘導体を製造するにあたり、
含硫黄化合物を反応系中に共存させることを特徴とする
、ハロゲン化ベンゼン誘導体の製造法。
(1) In producing a halogenated benzene derivative by a liquid phase halogenation reaction of benzene and/or a benzene derivative using a faujasite-type zeolite as a catalyst,
A method for producing a halogenated benzene derivative, which comprises coexisting a sulfur-containing compound in a reaction system.
(2)フォージャサイト型ゼオライトが、X型ゼオライ
トまたはY型ゼオライトである特許請求の範囲第(1)
項記載の方法。
(2) Claim No. 1, wherein the faujasite-type zeolite is an X-type zeolite or a Y-type zeolite.
The method described in section.
(3)フォージャサイト型ゼオライトがアルカリ金属、
アルカリ土類金属または希土類金属の塩により修飾され
たX型ゼオライトまたはY型ゼオライトである特許請求
の範囲第(1)項記載の方法。
(3) Faujasite-type zeolite is an alkali metal,
The method according to claim 1, wherein the zeolite is X-type zeolite or Y-type zeolite modified with an alkaline earth metal or rare earth metal salt.
(4)含硫黄化合物が単体の硫黄、結合原子価が2価で
ある硫黄原子を含有する無機化合物である特許請求の範
囲第(1)項記載の方法。
(4) The method according to claim (1), wherein the sulfur-containing compound is an inorganic compound containing elemental sulfur or a sulfur atom with a divalent bond valence.
(5)含硫黄化合物が、硫黄原子を含有する有機化合物
である特許請求の範囲第(1)項記載の方法。
(5) The method according to claim (1), wherein the sulfur-containing compound is an organic compound containing a sulfur atom.
(6)含硫黄化合物が、単体の硫黄、ハロゲン化硫黄類
、チオフェン類、スルフィド類、スルホキシド類または
スルホン類である特許請求の範囲第(1)項記載の方法
(6) The method according to claim (1), wherein the sulfur-containing compound is elemental sulfur, halogenated sulfurs, thiophenes, sulfides, sulfoxides, or sulfones.
JP60292431A 1985-12-27 1985-12-27 Process for producing para-substituted halogenated benzene derivative Expired - Lifetime JPH0651648B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP60292431A JPH0651648B2 (en) 1985-12-27 1985-12-27 Process for producing para-substituted halogenated benzene derivative
DE8686310169T DE3670074D1 (en) 1985-12-27 1986-12-29 METHOD FOR THE PRODUCTION OF HALOGENED BENZOLINE COLLECTORS IN THE PRESENCE OF A ZEOLITE CATALYST.
US06/947,306 US4861929A (en) 1985-12-27 1986-12-29 Process for producing halogenated benzene derivative using zeolite catalyst
CA000526399A CA1288780C (en) 1985-12-27 1986-12-29 Process for producing halogenated benzene derivative using zeolite catalyst
EP86310169A EP0231662B1 (en) 1985-12-27 1986-12-29 Process for producing halogenated benzene derivative using zeolite catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60292431A JPH0651648B2 (en) 1985-12-27 1985-12-27 Process for producing para-substituted halogenated benzene derivative

Publications (2)

Publication Number Publication Date
JPS62153234A true JPS62153234A (en) 1987-07-08
JPH0651648B2 JPH0651648B2 (en) 1994-07-06

Family

ID=17781699

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60292431A Expired - Lifetime JPH0651648B2 (en) 1985-12-27 1985-12-27 Process for producing para-substituted halogenated benzene derivative

Country Status (1)

Country Link
JP (1) JPH0651648B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996041788A1 (en) * 1995-06-13 1996-12-27 Kureha Kagaku Kogyo K. K. Process for the production of 2,6-dichloro-3,5-di(secondary or tertiary alkyl)toluene

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996041788A1 (en) * 1995-06-13 1996-12-27 Kureha Kagaku Kogyo K. K. Process for the production of 2,6-dichloro-3,5-di(secondary or tertiary alkyl)toluene
US6271426B1 (en) 1995-06-13 2001-08-07 Kureha Kagaku Kogyo K.K. Process for the production of 2,6-dichloro-3,5-di(secondary or tertiary alkyl)toluene

Also Published As

Publication number Publication date
JPH0651648B2 (en) 1994-07-06

Similar Documents

Publication Publication Date Title
EP0171265B1 (en) Process for preparing halogenated benzene derivatives
US4822933A (en) Process for producing a chlorohalobenzene
US4754086A (en) Process for preparation of nuclear halides of monoalkylbenzenes
US4849560A (en) Process for preparation of halogenated benzene derivatives
US4778940A (en) Process for preparing iodinated substituted aromatic compounds
JPS62153234A (en) Production of para-substituted halogenated benzene derivative
US4861929A (en) Process for producing halogenated benzene derivative using zeolite catalyst
US4740641A (en) Producing a halogenated benzene derivative using zeolite catalyst treated with alkali solution of pH 11 or more
KR100188339B1 (en) Catalyst for preparing para-isomers of aromatic chlorides
JPH01502825A (en) Liquid phase isomerization of iodinated aromatic compounds
US4210766A (en) Process for producing 2-halo-4-bromophenols
JPS62298541A (en) Production of halogenated benzene derivative
JPH01128946A (en) Production of p-substituted halogenated benzene derivative
JPS63154632A (en) Production of halogenated benzene derivative
JPH07330665A (en) Production of halogenated aromatic compound
JP2595650B2 (en) Highly selective production method of para-substituted chlorinated benzene derivatives
KR0177052B1 (en) The manufacturing process of para-chloro aromatic compounds using formulated zeolite
JPH0723330B2 (en) Method for producing dichlorobenzene
JPS60248631A (en) Preparation of halogenated benzene
HU216061B (en) Process for regioselective sulphonylation of substituted aromatic compounds
JPH02200647A (en) Preparation of 4-chloro-4'-halogenodiphenyls
JPH0381235A (en) Production of p-halogenated monosubstituted benzene derivative
JPH11193253A (en) Direct production of styrene
JP2001026557A (en) Conversion of aromatic compound and catalyst therefor
JP2004051532A (en) Method for producing halogenated benzene derivative