JPS6315412A - Chemical vapor growth method - Google Patents

Chemical vapor growth method

Info

Publication number
JPS6315412A
JPS6315412A JP15923286A JP15923286A JPS6315412A JP S6315412 A JPS6315412 A JP S6315412A JP 15923286 A JP15923286 A JP 15923286A JP 15923286 A JP15923286 A JP 15923286A JP S6315412 A JPS6315412 A JP S6315412A
Authority
JP
Japan
Prior art keywords
chemical vapor
wafer
high speed
reaction vessel
susceptor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15923286A
Other languages
Japanese (ja)
Inventor
Keitaro Fujimori
啓太郎 藤森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP15923286A priority Critical patent/JPS6315412A/en
Publication of JPS6315412A publication Critical patent/JPS6315412A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To accelerate the effective flow velocity of a gas, to form a laminar flow, to increase a Reynold's number and to enable chemical vapor growth having excellent uniformity by moving a wafer and a susceptor at high speed. CONSTITUTION:A susceptor 3 takes a shape that a wafer can be held with revolution at high speed. A shaft 4 functioning as a raw-material gas introducing port can be turned at high speed. When using a reaction vessel having approximately 60(cmphi) at that time, effective flow velocity can be increased when the reaction vessel is rotated at approximately 20-200 (rpm) even when a gate flow rate is small as 10SLM. Accordingly, Reynold's numbers of decuple or centuple times as high as the wafer is not shifted can easily be acquired.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は薄膜形成方法のひとつである化学気相成長方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a chemical vapor deposition method which is one of thin film forming methods.

〔従来の技術〕[Conventional technology]

化学気相成長方法に於いては原料の種類、加熱方法、炉
の形状等、種々のものが実用化されておシ、ここで述べ
るまでもないが、AMT社のキロ’a、X’a、、≠7
6’ll、箋等のものがあった。
Various types of chemical vapor deposition methods have been put into practical use, including the types of raw materials, heating methods, and shapes of furnaces. ,,≠7
There were things like 6'll, paper notes, etc.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

化学気相成長方法に於ける物質移動論的解析は横型炉に
於いてはKverstyn  らが、バレル型炉に関し
ては藤井らが行っているが、形成する膜のガス流方向へ
の均一性を向上させるためにはレイノルズ数を大きくす
る必要がある。すなわち、ガスの流速をあげる、あるい
は成長圧力を下げることが有効である。しかし、量産用
の大型の気相成長装置において、例えば、前述のAMT
社≠760X等では、IXX〜2X箋Sl、Mの流量が
必要であり、レイノルズ数も数十程度しか確保できない
という問題点を有する。
Mass transfer theoretical analysis in chemical vapor deposition methods has been carried out by Kverstyn et al. for horizontal furnaces and by Fujii et al. for barrel furnaces, but it is important to improve the uniformity of the formed film in the gas flow direction. In order to achieve this, it is necessary to increase the Reynolds number. That is, it is effective to increase the gas flow rate or lower the growth pressure. However, in large-scale vapor phase growth equipment for mass production, for example, the above-mentioned AMT
760X, etc., requires a flow rate of IXX to 2X Sl, M, and has the problem that the Reynolds number can only be secured on the order of several dozen.

そこで本発明はこのような問題点を解決するもので、そ
の目的とするところは、実効的なガスの流量を増加させ
、レイノルズ数を大きくすることによυ、均一性のよい
化学気相成長方法を提供するところにある。
Therefore, the present invention is intended to solve these problems, and its purpose is to increase the effective gas flow rate and increase the Reynolds number to achieve chemical vapor deposition with good uniformity. It's about providing a method.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の化学気相成長方法は、ウエノ・−及びサセプタ
を高速に移動することによシ、実効的なガスの流速を大
きくして層流を作り、レイノルズ数を大きくすることを
特徴とする。
The chemical vapor deposition method of the present invention is characterized in that the effective gas flow rate is increased to create a laminar flow and the Reynolds number is increased by moving the Ueno gas and the susceptor at high speed. .

〔実施例〕〔Example〕

第1図は、本発明の実施例における反応容器の断面模式
図であって、1は赤外加熱ランプ、2はウェハである。
FIG. 1 is a schematic cross-sectional view of a reaction vessel in an example of the present invention, where 1 is an infrared heating lamp and 2 is a wafer.

3はサセプタであり、高速回転でのウェハ保持が可能な
形状となっている。4は原料ガス導入口かつ、回転軸で
あり、高速回転が可能である。もちろん、原料ガス導入
口を別に設けることは可能である。5はガス排気口、6
は反応容器である。化学気相成長方法では、流速として
、5〜5\(、/−)程度がよく用いられるが、本発明
の実施例で、6 X(anφ)程度の反応容器であれば
、ガス流量がI X S L Mと小さくても、2\〜
2XX(rpm )程の回転を与えれば、実効的な流速
を犬きくすることができる。
3 is a susceptor, which has a shape capable of holding a wafer at high speed rotation. 4 is a raw material gas inlet and a rotating shaft, which is capable of high-speed rotation. Of course, it is possible to provide a separate source gas inlet. 5 is a gas exhaust port, 6
is the reaction vessel. In the chemical vapor deposition method, a flow rate of about 5 to 5\(,/-) is often used, but in the embodiment of the present invention, if the reaction vessel is about 6X (anφ), the gas flow rate is I Even if it is small as X S L M, 2\~
By applying a rotation of about 2XX (rpm), the effective flow velocity can be increased.

第2図も本発明の実施例であるが、サセプタを多層構造
として、処理速度の増大を図ったものである。第1図の
サセプタを積層したものであり、基本的には同じである
が、加熱方法は高周波透導加熱、あるいは抵抗加熱であ
る。1〜6は第1図と同じ、7は加熱用コイルあるいは
ヒーターである。
FIG. 2 also shows an embodiment of the present invention, in which the susceptor has a multilayer structure to increase the processing speed. It is a stack of the susceptors shown in FIG. 1, and is basically the same, but the heating method is high frequency transmission heating or resistance heating. 1 to 6 are the same as in FIG. 1, and 7 is a heating coil or heater.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明によれば、ウエノ・−を移動さ
せない場合に比べて、1X倍から100倍のレイノルズ
数を容易に得ることが可能である。
As described above, according to the present invention, it is possible to easily obtain a Reynolds number that is 1X to 100 times that of the case where the Ueno-- is not moved.

特に、量産用装置でガスの流速を現状よりも増大するこ
とは、不可能であったが、不発明では、従来以下のガス
の流量で、従来以上の実効的ガス流速を得ることができ
る。さらに、通常1”ll\SLM以上のキャリアガス
を用いていた装置では、ガスの流量を大幅に小さくする
ことが可能で、コスト的にも、安全上の点からも大きな
効果がちる。
In particular, it has been impossible to increase the gas flow rate higher than the current level with a mass-production device, but with the present invention, an effective gas flow rate higher than the conventional one can be obtained with a gas flow rate lower than the conventional one. Furthermore, in an apparatus that normally uses a carrier gas of 1"ll\SLM or more, it is possible to significantly reduce the gas flow rate, which has great effects in terms of cost and safety.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の化学気相成長方法を用いた反応容器の
断面模式図。 第2図は、処理枚数を向上した本発明の化学気相成長方
法を用いた反応容器の断面模式図。 1・・・赤外線加熱ランプ 2・・・ウェハー 5・・・サセプタ 4・・・原料ガス導入口、兼、回転軸 5・・・ガス排気口 6・・・反応容器 7・・・加熱用コイル 以   上 出願人 セイコーエプソン株式会社 ら十
FIG. 1 is a schematic cross-sectional view of a reaction vessel using the chemical vapor deposition method of the present invention. FIG. 2 is a schematic cross-sectional view of a reaction vessel using the chemical vapor deposition method of the present invention that increases the number of substrates processed. 1... Infrared heating lamp 2... Wafer 5... Susceptor 4... Raw material gas inlet, rotating shaft 5... Gas exhaust port 6... Reaction vessel 7... Heating coil Applicants: Seiko Epson Corporation et al.

Claims (1)

【特許請求の範囲】[Claims]  半導体あるいは絶縁体あるいは金属薄膜を成長する半
導体素子製造工程に於いて、ウェハーを高速に移動する
ことにより、原料及びキャリアガスに対してウェハー表
面に数十程度のレイノルズ数を有する層流を作ることを
特徴とする化学気相成長方法。
In the semiconductor device manufacturing process of growing semiconductors, insulators, or metal thin films, by moving the wafer at high speed, a laminar flow with a Reynolds number of about several dozen is created on the wafer surface for raw materials and carrier gas. A chemical vapor deposition method characterized by:
JP15923286A 1986-07-07 1986-07-07 Chemical vapor growth method Pending JPS6315412A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15923286A JPS6315412A (en) 1986-07-07 1986-07-07 Chemical vapor growth method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15923286A JPS6315412A (en) 1986-07-07 1986-07-07 Chemical vapor growth method

Publications (1)

Publication Number Publication Date
JPS6315412A true JPS6315412A (en) 1988-01-22

Family

ID=15689226

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15923286A Pending JPS6315412A (en) 1986-07-07 1986-07-07 Chemical vapor growth method

Country Status (1)

Country Link
JP (1) JPS6315412A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102576669A (en) * 2009-07-16 2012-07-11 圆益Ips股份有限公司 Apparatus for manufacturing semiconductors
CN103184434A (en) * 2011-12-31 2013-07-03 北京北方微电子基地设备工艺研究中心有限责任公司 Tray apparatus, tray and semiconductor processing apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102576669A (en) * 2009-07-16 2012-07-11 圆益Ips股份有限公司 Apparatus for manufacturing semiconductors
JP2012533876A (en) * 2009-07-16 2012-12-27 ウォニク アイピーエス カンパニ リミテッド Semiconductor manufacturing equipment
CN103184434A (en) * 2011-12-31 2013-07-03 北京北方微电子基地设备工艺研究中心有限责任公司 Tray apparatus, tray and semiconductor processing apparatus

Similar Documents

Publication Publication Date Title
TWI486480B (en) Pallet devices, reaction chambers and metal organic compounds Chemical vapor deposition (MOCVD) equipment
CN1958841A (en) Growth of very uniform silicon carbide epitaxial layers
CN102719809A (en) Thin film deposition system
TWI687538B (en) Carousel batch epitaxy system
JPH08186079A (en) Surface treatment device for substrate
JPH0786173A (en) Film deposition
US20130276707A1 (en) Vertical furnace with circumferentially distributed gas inlet system
JPH03270126A (en) Method of semiconductor vapor phase growth and device therefor
JPS6315412A (en) Chemical vapor growth method
CN110875167B (en) Cooling chamber and semiconductor processing equipment
JP2013004956A (en) Rotation system for forming thin film and method for the same
JPS6365639B2 (en)
EP0203616B1 (en) Chemical vapor deposition method for the thin film of semiconductor
JPH088257B2 (en) Atmospheric pressure CVD equipment
WO2013143241A1 (en) Chemical vapour deposition method for organic metal compound and apparatus therefor
JPH04354119A (en) Substrate retaining structure of vapor growth equipment
JPS6252200A (en) Device for gaseous-phase epitaxial growth
TW201301423A (en) Rotation system for thin film formation
JPS63208211A (en) Method of operating vapor phase epitaxy apparatus
JPH06349748A (en) Vapor growth device for semiconductor
JPH03164688A (en) Vertical heat treatment device
JPS625994B2 (en)
JPS60170233A (en) Manufacturing device for semiconductor
JPH02146725A (en) Organic metal vapor growth device
JP2003257869A (en) Method for manufacturing silicon wafer and for silicon epitaxial wafer