JPS63154098A - Driver circuit for pulse motor - Google Patents

Driver circuit for pulse motor

Info

Publication number
JPS63154098A
JPS63154098A JP29987186A JP29987186A JPS63154098A JP S63154098 A JPS63154098 A JP S63154098A JP 29987186 A JP29987186 A JP 29987186A JP 29987186 A JP29987186 A JP 29987186A JP S63154098 A JPS63154098 A JP S63154098A
Authority
JP
Japan
Prior art keywords
phase
excitation
motor
current
phase winding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29987186A
Other languages
Japanese (ja)
Inventor
Toshiyuki Hirukawa
比留川 俊幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JANOME DENKI KK
Original Assignee
JANOME DENKI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JANOME DENKI KK filed Critical JANOME DENKI KK
Priority to JP29987186A priority Critical patent/JPS63154098A/en
Publication of JPS63154098A publication Critical patent/JPS63154098A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Stepping Motors (AREA)

Abstract

PURPOSE:To use only one unit for keeping currents constant, and to reduce the cost of a part by arranging an exciting coil in series between power supplies. CONSTITUTION:A switch S1 and a switch S3 are closed and an A phase winding and a B phase winding are connected in series to cause currents to flow for AB phase excitation in the two-phase excitation of a pulse motor. Switches S1 and S4 are closed and the A phase winding and a B' phase winding are connected in series to cause currents to flow for AB' phase excitation. Switches S2 and S4 are closed and an A' phase winding and the B' phase winding are connected in series to cause currents to flow for A'B' phase excitation. Switches S2 and S3 are closed and the A' phase winding and B phase winding are connected in series to cause currents to flow for A'B phase excitation.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、パルスモータの駆動回路に関する。[Detailed description of the invention] (Industrial application field) The present invention relates to a pulse motor drive circuit.

(従来の技術) 従来の技術を4相バイファイラ巻きを例にとり説明する
(Prior Art) The conventional technology will be explained by taking four-phase bifilar winding as an example.

4相バイファイラ巻のユニポーラ励磁は、第2図のよう
に各相AI人、Blfiに1つづつのスイッチング素子
31〜S4を設け、それらを電源間に並列接続して励磁
の組み合わせを変えていた。
In the unipolar excitation of the four-phase bifilar winding, as shown in FIG. 2, one switching element 31 to S4 is provided for each phase AI and BLfi, and these are connected in parallel between the power supplies to change the combination of excitation.

この従来例では、次のような問題点を包含していた。This conventional example includes the following problems.

(発明が解決しようとする問題点) 本発明が解決しようとする問題点を列挙すると、・角度
誤差の改善。
(Problems to be Solved by the Invention) The problems to be solved by the present invention are as follows: - Improvement of angular error.

・モータ駆動電源の高効率化・小型化。・Higher efficiency and smaller size of motor drive power supply.

・励磁電流の定電流化の容易化・高精度化。- Easier and more accurate excitation current constant current.

・保護回路付加の容易化。・Easy to add protection circuit.

・スルー領域の高域化。・High frequency through area.

等が挙げられる。etc.

(問題点を解決するための手段) 上述の問題点を解決するために本発明はなされたもので
、第1図に示す如く、励磁するコイルA2人とB、百を
電源間で直列に配置することを特徴としている。
(Means for Solving the Problems) The present invention has been made to solve the above-mentioned problems, and as shown in Fig. 1, two exciting coils A and B are arranged in series between the power sources. It is characterized by

(実施例) 以下に本発明を用いた場合について、前記従来例で問題
となっていた各項目がどのように改善或いは良化された
かを各項目毎に比較し説明する。
(Example) Hereinafter, in the case of using the present invention, how each item which was a problem in the conventional example was improved or improved will be explained by comparing each item.

先ず、最初に角度誤差の問題について説明すると、ステ
ッピングモータの角度誤差は、モータ自身に起因する分
とドライブ回路に起因する分とがある。
First, to explain the problem of angular errors, there are two types of angular errors in a stepping motor: those caused by the motor itself and those caused by the drive circuit.

モータ自身に起因する分は、モータの部品及び組付の機
械的精度と巻線の不均一性がその主な原因である。更に
巻線の不均一性は、具体的には、巻数、抵抗値、巻具台
等が挙げられる。
The main causes of the amount caused by the motor itself are the mechanical precision of the motor parts and assembly, and the non-uniformity of the windings. Further, specific examples of the non-uniformity of the winding include the number of turns, resistance value, winding tool base, etc.

閉ループの角度制御をしない一般的なパルスモータでは
、モータ内部にある原因を外部から取り除くことは不可
能であり、モータの実力を最大限に取り出すためには、
4つの励磁相の電流を一致させるのが最良の方法である
In general pulse motors that do not have closed-loop angle control, it is impossible to eliminate the cause internal to the motor from the outside, so in order to get the maximum potential from the motor,
It is best to match the currents of the four excitation phases.

しかし、ドライブ回路の終段に使われるスイッチング素
子のオン抵抗のバラツキ(例えばバイポーラトランジス
タのコレクタ・ニジツタ飽和電圧)も各巻線の電流値を
決める要因の1つであり、各相電流を一致させることは
ほぼ不可能であった。
However, variations in the on-resistance of the switching elements used in the final stage of the drive circuit (for example, the collector saturation voltage of bipolar transistors) are also one of the factors that determine the current value of each winding, and it is important to match the currents of each phase. was almost impossible.

上述のドライブ回路の終段に使われるスイッチング素子
のオン抵抗のバラツキが、前記したドライブ回路に起因
する分と考えられる。
It is thought that the variation in the on-resistance of the switching element used in the final stage of the drive circuit described above is caused by the drive circuit described above.

従って、モータの角度ネn度の実力値は現存しながら取
り出せないものとなっていた。
Therefore, although the actual value of the angle angle of the motor exists, it has not been possible to obtain it.

ところが、各相電流を一致させる目的は、第3図に示し
た2相励磁ベクトルの位相角乙■〜乙■を90度に近ず
けることにあったはずである。
However, the purpose of matching the phase currents must have been to bring the phase angles B1 to B2 of the two-phase excitation vectors shown in FIG. 3 closer to 90 degrees.

本発明の駆動方法では、励磁相の組合わせが変わって相
電流が変化しても第4図に示した如(、互いの電気的位
相角乙1−frVは常に90度に保たれるため、駆動回
路及びモータ巻線抵抗の相間のバラツキに起因する角度
誤差分を無くすことができる。
In the driving method of the present invention, even if the combination of excitation phases changes and the phase current changes, the mutual electrical phase angle (1-frV) is always maintained at 90 degrees, as shown in FIG. , it is possible to eliminate angular errors caused by phase-to-phase variations in the drive circuit and motor winding resistance.

次にモータ駆動電源の高効率化・小型化について説明す
る。
Next, we will explain how to make the motor drive power source more efficient and smaller.

従来、単一?1!源によりモータを駆動する場合、電源
の容量を決める電圧と電流の大きさは次の値を定格とし
ている。
Traditionally, single? 1! When driving a motor with a power source, the voltage and current magnitudes that determine the capacity of the power source are rated at the following values.

電圧は1相当りのモータ定格電圧Eであり、電流は1相
当りのモータ定格電流■の2倍となる。
The voltage is the motor rated voltage E per equivalent, and the current is twice the motor rated current ■ per equivalent.

これを式で表わすと    Ex21  となる。This can be expressed as follows: Ex21.

本発明の駆動回路では、同じモータを駆動するのに要す
る′W1源は、電圧が2Eであり、電流はIである。
In the drive circuit of the present invention, the 'W1 source required to drive the same motor has a voltage of 2E and a current of I.

これを式で表わすと    2EXI  となる。This can be expressed as 2EXI.

従って、モータ駆動電源は高効率化で且つ小型化するこ
とができる。
Therefore, the motor drive power source can be made more efficient and smaller.

3番目に定電流化の容易化・高精度化について説明する
Third, we will explain how to make constant current easier and more accurate.

パルスモータの動特性改善の方法の1つに、励磁電流の
定電流化がある。これは、モータの定格電圧の数倍ない
しはそれ以上のW源電圧から励磁@流を流し込むことで
その立上りを早くし、モータの応答周波数範囲を広く、
高トルクを得ようとするものである。
One method for improving the dynamic characteristics of a pulse motor is to make the excitation current a constant current. This is done by injecting an excitation current from a W source voltage several times or higher than the motor's rated voltage, which speeds up the start-up and widens the motor's response frequency range.
The purpose is to obtain high torque.

モータに高い電圧からの励磁を続ければ、コイルの温度
はいたずらに上昇してしまうため、一定の電流値迄上昇
した後はその電流値付近に電流を保持する必要がある。
If the motor continues to be excited with a high voltage, the temperature of the coil will rise unnecessarily, so once the current has risen to a certain value, it is necessary to maintain the current around that current value.

この具体的な方法として、他励や自動のチi! −)バ
がある。
Specific methods for this include external excitation and automatic chi! -) There is a bar.

従来の駆動回路では、2つの定電流ユニットを使用しト
ルクの相間アンバランスや角度精度確保のため、それ等
のバランス調整が必要であった。バランスiuaの方法
としては、調整部を調整するか、高精度部品の使用によ
ってアンバランスの発生を抑えるかであるが、どちらを
選択したにしても完全な一致が不可能なことは説明を要
しない。
Conventional drive circuits use two constant current units, and it is necessary to adjust the balance between them to prevent torque imbalance between phases and to ensure angular accuracy. The methods of balancing IUA are to adjust the adjustment part or to suppress the occurrence of unbalance by using high-precision parts, but it needs to be explained that no matter which method is chosen, perfect matching is impossible. do not.

本発明の駆動回路では、直列に接続された2つの巻線を
流れる電流は同一であるため、定電流化のユニットは1
つでよく、従って、部品コストを低減出来、おのずから
アンバランス調整が不要であり、2つの励磁電流を一致
させることができる。
In the drive circuit of the present invention, the current flowing through the two windings connected in series is the same, so the constant current unit is one
Therefore, component costs can be reduced, unbalance adjustment is naturally unnecessary, and two excitation currents can be matched.

4番目に保護回路付加の容易化について説明するう本発
明の駆動回路では、前項で説明したように定電流化のユ
ニットは一つでよいので、従って、駆動素子の保護も1
個所でよく、容易に確実に目的を達することが出来る。
Fourth, we will explain how to easily add a protection circuit.In the drive circuit of the present invention, as explained in the previous section, only one constant current unit is required, so the protection of the drive element can also be done with one unit.
You can achieve your goals easily and reliably in just a few places.

最期にモータのスルー領域化について以下に説明する。Finally, the formation of the motor into a through area will be explained below.

2相励磁の切替時について考えてみると、従来の2相励
磁の方法では、励磁の切替えを行なわない1つの相には
継続的に励磁電流が供給され、他の1相が切替え動作を
行なっていた。
Considering the switching of two-phase excitation, in the conventional two-phase excitation method, excitation current is continuously supplied to one phase whose excitation is not switched, and the other phase is switched. was.

この時励けされている相は電源とスイッチング牽子を通
じて閉ITU路を形成している。ロータマグネットの磁
束が回転し、励磁状態の相のコイルと鎖交すると電圧が
誘起されるが、回路が閉しているため交流電流が重畳さ
れて流れることになる。ここに生じる電流はロータの回
転に基づいて生じるからには、それを妨げる方向にトル
クを生じるものである。即ち、相励磁の切替時に1つの
相が励磁されていれば、ブレーキ効果を伴ってしまうこ
とになる。
The energized phase at this time forms a closed ITU path through the power supply and the switching gate. When the magnetic flux of the rotor magnet rotates and interlinks with the coil of the excited phase, a voltage is induced, but since the circuit is closed, a superimposed alternating current flows. Since the current generated here is generated based on the rotation of the rotor, a torque is generated in a direction that hinders the rotation of the rotor. That is, if one phase is excited when switching phase excitation, a braking effect will occur.

この現象は励磁電流が立上れる中速成造は問題とはなら
ない。しかし誘起する電圧は周波数に比例して増大し、
そこに発生するブレーキ力も増加するため、電流の立上
りが不十分となりトルクが低下することとあいまって応
答周波数を低く押さえることになる。
This phenomenon does not pose a problem in medium-speed fabrication where the excitation current rises. However, the induced voltage increases in proportion to the frequency,
Since the braking force generated there also increases, the rise of the current becomes insufficient and the torque decreases, which results in keeping the response frequency low.

1−2相励磁の駆動が回転の円滑化に効果を果たすのに
応答周波数が2相励磁の2侶でとまり、軸回転数として
は、同等となってしまうのはこのためである。
This is why, although driving with 1-2 phase excitation is effective in smoothing rotation, the response frequency remains at the two phases of 2-phase excitation, and the shaft rotational speeds are the same.

しかるに本発明の駆動回路では、励磁切替えの際に巻線
と電源を含む閉回路を形成せず、巻線に誘起する電圧に
よる電流を流れさげない。その結果、励磁方法に起因す
る以外のモータ固有の電気的時定数によって励磁電流の
立上りが抑制され、トルクが減少して応答不能になる迄
応答周波数を拡大することが出来る。
However, in the drive circuit of the present invention, a closed circuit including the winding and the power source is not formed during excitation switching, and no current due to voltage induced in the winding is caused to flow. As a result, the rise of the excitation current is suppressed by an electric time constant unique to the motor other than that caused by the excitation method, and the response frequency can be expanded until the torque decreases and response becomes impossible.

(発明の効果) 本発明によるパルスモータの駆動回路を用いることによ
り、 ■2相励磁の相電流が一致出来、モータの角度誤差をモ
ータ性能限界で使用できる。
(Effects of the Invention) By using the pulse motor drive circuit according to the present invention, (1) the phase currents of two-phase excitation can be matched, and the angle error of the motor can be used at the motor performance limit.

■モータの駆動電源をモータ定格電圧の2倍の電圧、定
格電流を1相分の電流の仕様にできるため、Ti源を効
率化・小型化出来る。
■Since the motor drive power supply can be set to a voltage twice the motor rated voltage and the rated current to the current equivalent to one phase, the Ti source can be made more efficient and smaller.

■励磁電流の定電流化において、ユニットが1つでよい
ので低コスト化が実現出来、相間のアンバランス調整の
不必要或いは高精度部品の使用が不要となる。
(2) In making the excitation current a constant current, only one unit is required, so costs can be reduced, and there is no need to adjust the unbalance between phases or use high-precision parts.

■ドライバー保護回路の付加が容易である。■It is easy to add a driver protection circuit.

■モータのスルー領域を高域化出来る。■The through area of the motor can be made higher frequency.

等の効果があり、本発明の属する作業分野において有用
な発明といえる。
This invention has the following effects and can be said to be a useful invention in the field of work to which the present invention pertains.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の駆動方法を説明する回路図、第2図は
従来の4相バイファイラ巻のユニポーラ励磁を説明する
回路間、第3図及び第4図は角度誤差の改善において、
2相励磁ベクトルの位相を説明するための図である。 図において、A、λ、B、nは各相のコイル、31〜s
4はスイッチング素子である。
FIG. 1 is a circuit diagram for explaining the driving method of the present invention, FIG. 2 is a circuit diagram for explaining unipolar excitation of a conventional four-phase bifilar winding, and FIGS. 3 and 4 are diagrams for improving angle errors.
FIG. 3 is a diagram for explaining the phase of a two-phase excitation vector. In the figure, A, λ, B, n are the coils of each phase, 31 to s
4 is a switching element.

Claims (1)

【特許請求の範囲】[Claims] 2相又は4相パルスモータを駆動する2相励磁の駆動回
路において、励磁する2つのコイルを常に直列に配する
ことを特徴とするパルスモータの駆動方法。
A method for driving a pulse motor, characterized in that in a two-phase excitation drive circuit that drives a two-phase or four-phase pulse motor, two exciting coils are always arranged in series.
JP29987186A 1986-12-18 1986-12-18 Driver circuit for pulse motor Pending JPS63154098A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29987186A JPS63154098A (en) 1986-12-18 1986-12-18 Driver circuit for pulse motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29987186A JPS63154098A (en) 1986-12-18 1986-12-18 Driver circuit for pulse motor

Publications (1)

Publication Number Publication Date
JPS63154098A true JPS63154098A (en) 1988-06-27

Family

ID=17877964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29987186A Pending JPS63154098A (en) 1986-12-18 1986-12-18 Driver circuit for pulse motor

Country Status (1)

Country Link
JP (1) JPS63154098A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5417218A (en) * 1977-07-08 1979-02-08 Fujitsu Ten Ltd Braking system for electrically driven vehicle

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5417218A (en) * 1977-07-08 1979-02-08 Fujitsu Ten Ltd Braking system for electrically driven vehicle

Similar Documents

Publication Publication Date Title
US6765321B2 (en) Three-phase toroidal coil type permanent magnet electric rotating machine
US20080272664A1 (en) Permanent magnet electro-mechanical device providing motor/generator functions
CN101197553B (en) Control of switched reluctance machine
JPH1146456A (en) Generator
US7342330B2 (en) Hybrid type double three-phase electric rotating machine
JPH11164591A (en) Three-phase motor
US6323574B1 (en) Polyphase motor and polyphase motor system for driving the same
Kusko et al. Definition of the brushless DC motor
JP2001268879A (en) Brushless motor and its drive controller
US4698563A (en) Semiconductor electric motor having a rotary transformer to excite a rotor
JP2000175478A (en) Device and method for driving polyphase motor
FI84681C (en) ROTERANDE ELMASKIN.
JP2000166292A (en) Switched reluctance motor and its driving circuit
JPH0880018A (en) Motor
US6107764A (en) Drive control for a switched reluctance motor
JPS63154098A (en) Driver circuit for pulse motor
Colby Classification of inverter driven permanent magnet synchronous motors
US20200059137A1 (en) Reluctance motor and motor system including reluctance motor
JPH0898488A (en) Three-phase brushless motor
JPH04173000A (en) Driving circuit for stepping motor
JP3544249B2 (en) Motor control circuit
JP3524821B2 (en) Structure of polyphase motor
JPH0646880B2 (en) Motor speed detector
JPS6321193Y2 (en)
Cooke Stepper motors: Principles and characteristics