JPS63153433A - Acoustic power level measuring method - Google Patents

Acoustic power level measuring method

Info

Publication number
JPS63153433A
JPS63153433A JP30100586A JP30100586A JPS63153433A JP S63153433 A JPS63153433 A JP S63153433A JP 30100586 A JP30100586 A JP 30100586A JP 30100586 A JP30100586 A JP 30100586A JP S63153433 A JPS63153433 A JP S63153433A
Authority
JP
Japan
Prior art keywords
sound
measured
sound pressure
measurement
power level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30100586A
Other languages
Japanese (ja)
Inventor
Motoi Miyawaki
基 宮脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP30100586A priority Critical patent/JPS63153433A/en
Publication of JPS63153433A publication Critical patent/JPS63153433A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

PURPOSE:To measure the titled level while reducing a measurement error by placing a pair of microphones in two symmetrical parts to a vertical axis of a hemispherical space for surrounding a sound source to be measured, and deriving an acoustic power level. CONSTITUTION:The surface of a hemispherical space 3a for surrounding a sound source to be measured 1 is axially symmetrical around a vertical axis 3b. At two positions on the surface of the hemispherical space that are axially symmetric with respect to the vertical axis, a pair of microphones 2a, 2b are placed, and an acoustic intensity at the respective positions is determined simultaneously. A simultaneous measurement at such two symmetrical position is executed with regard to all split points which are set to the hemispherical space surface. Measured values of sound pressure levels which are measured, respectively are inputted to frequency analyzers 5a, 5b, respectively, in which a sound pressure level is derived at every frequency contained in the sound pressure level, a sound pressure level is derived at every frequency contained in this sound pressure level, and this sound pressure level is inputted to a computing element 6 and synthesized at every same frequency, and the acoustic intensity is calculated at every frequency.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、音響強度を用いて音響パワーレベルを測定
する方法であって、2個のマイクロホンを微小間隔を隔
てて結合したマイクロホン対を、被測定音源を囲む閉空
間表面に垂直に設置して該2個のマイクロホンによりそ
れぞれ音圧を検出し、次いでこの検出されたそれぞれの
音圧と空気密度とを用いて被測定音源の音響強度を演算
し、この音響強度と前記閉空間の表面積とから音響ノく
ワーレベルを測定する方法に関する・ 〔従来技術〕 音響パワーレベルは、被測定音源が設置されている環境
によって大きく影響される音圧レベルと異なり、音源か
ら放射される音の全エネルギを表わすもので、機器騒音
の絶対評価尺度として今後広く普及していく情勢にある
[Detailed Description of the Invention] [Industrial Application Field] The present invention is a method for measuring sound power level using sound intensity, in which a microphone pair in which two microphones are coupled with a small interval between them is used. The two microphones are installed vertically on the surface of a closed space surrounding the sound source to detect the sound pressure, and then the sound pressure of the sound source to be measured is calculated using the detected sound pressure and air density. [Prior art] Sound power level is a sound pressure level that is greatly affected by the environment in which the sound source to be measured is installed. Unlike , it represents the total energy of sound radiated from a sound source, and is likely to become widely used as an absolute evaluation measure of equipment noise.

音響パワーレベルの測定は、従来より無響室や残響室に
被測定音源を持ち込み、音圧レベルを測定することによ
って行なわれている。しかし、大型機械や現場に据え付
けられた製品などに対しては、暗騒音や音の反射の影響
による測定誤差が避けられない環境で測定していたため
、精度良い測定ができなかった。
The measurement of sound power level has conventionally been carried out by bringing a sound source to be measured into an anechoic chamber or a reverberation chamber and measuring the sound pressure level. However, it was not possible to accurately measure large machines or products installed on-site because they were being measured in an environment where measurement errors due to background noise and sound reflections were unavoidable.

ところが、周知の如く最近では、音響強度を容易に求め
ることが可能になったため、これを利用して暗騒音レベ
ルが大きい現場でも比較的精度良い音響パワーレベルが
求まるようになった。この方法を以下に説明する。
However, as is well known, recently it has become possible to easily determine the sound intensity, and this has been used to determine the sound power level with relatively high accuracy even at sites with high background noise levels. This method will be explained below.

第3図に示すように、被測定音源1から放射されている
音響パワーWは、2個のマイクロホンが微小間隔を隔て
て結合したマイクロホン対2を用いて、被測定音源1を
囲む閉空間表面3における音圧レベルを検出し、この音
圧レベルさ空気密度との関係により演算された音響強度
■を閉空間表面で積分して得られる、すなわち、 W = ff5I −dA = ff=、 In −d
A ・・・・・・・・・・・・・・・・・・(1)実際
には、多数に分割された閉空間表面の面積素dAと、こ
の面積累の中心位置で求められた。空間表面に垂直な音
響強度Inとの積を(21式のような形で総和すること
により音響パワーが求まる。
As shown in FIG. 3, the acoustic power W radiated from the sound source 1 to be measured is transmitted to the surface of a closed space surrounding the sound source 1 by using a microphone pair 2 in which two microphones are coupled with a small distance between them. Detect the sound pressure level at 3, and integrate the acoustic intensity ■ calculated from the relationship between the sound pressure level and the air density on the surface of the closed space, that is, W = ff5I - dA = ff =, In - d
A ・・・・・・・・・・・・・・・・・・(1) Actually, the area element dA of the surface of the closed space divided into many parts and the center position of this area cumulative are found. . The acoustic power can be found by summing the product with the acoustic intensity In perpendicular to the spatial surface in a form such as (Equation 21).

W=、りI i @ dAi ・・・・・・・・・・・
・・・・・・・・・・・・・・・・・・・・・・・・・
・・・・・・・・・(2)l暉1 ここでnは閉空間表面の分割数である。また、音響パワ
ーレベルは、閉空間表面がN個に等分割されて測定され
たとすれば、 10LOglo N   ・・・・・・・・・・・・・
・・・・・・・・・・・・・・・・・・・・・・・・・
・・・・(3)で示される。ただし ■#:各測各点定点響強度 θν賃) IO=基進の音響強度 (1pW/ゴ)S :音源を取
り囲む半球の表面積(2πr2.rは半球の半径) So : 1ゴ である。
W=, riI i @ dAi ・・・・・・・・・・・・
・・・・・・・・・・・・・・・・・・・・・・・・
・・・・・・・・・(2)l暉1 Here, n is the number of divisions of the closed space surface. Also, if the sound power level is measured by dividing the surface of the closed space into N equal parts, then 10LOglo N ・・・・・・・・・・・・・・・
・・・・・・・・・・・・・・・・・・・・・・・・
...It is shown in (3). However, ■#: Fixed point acoustic intensity at each measurement point θν rent) IO = Basic sound intensity (1 pW/go) S: Surface area of the hemisphere surrounding the sound source (2πr2.r is the radius of the hemisphere) So: 1 Go.

そこで、第4図に示すような、暗騒音源4から生ずる暗
騒音下において音響パワーレベル測定を行う場合、マイ
クロホン対2aでは負、また半球空間の180°対向位
置に設置したマイクロホン対2bでは正の暗騒音による
測定誤差が現われるが、(2)。
Therefore, when measuring the acoustic power level under background noise generated from the background noise source 4 as shown in FIG. However, measurement errors due to background noise appear (2).

(31式に示すように、それぞれの測定点における音響
強度を総和するために、この誤差が相殺される。
(As shown in Equation 31, this error is canceled out in order to sum up the sound intensity at each measurement point.

このようなことから、音響強度による音響パワーレベル
測定は、暗騒音の影響による測定誤差を小さくすること
ができるという特長がある。
For this reason, sound power level measurement based on sound intensity has the advantage that measurement errors due to the influence of background noise can be reduced.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、前記従来の測定方法においてもっぎのような問
題点がある。すなわち、前記従来の測定方法においては
測定点数として10〜40点が選定され、また1測定点
あたりの測定時間は数十秒である。このため全測定点に
おける測定が完了するまでにはかなり長時間を必要とす
る。しかし、測定に用いられるマイクロホン対2 、2
a # 2b (第3 +4図)や周波数分析器5や演
算器6が高価であり、従ってこれらの機器を多数備えて
測定を短時間に完了させようとすると測定設備が著しく
高価にかつ大損りになるため、従来は1測定点づつ順次
測定していた。このため次のような問題点を生じていた
However, the conventional measuring method has several problems. That is, in the conventional measurement method, 10 to 40 points are selected as the number of measurement points, and the measurement time per measurement point is several tens of seconds. Therefore, it takes a considerable amount of time to complete measurements at all measurement points. However, the microphone pair 2, 2 used for measurement
a # 2b (Fig. 3+4), frequency analyzer 5, and computing unit 6 are expensive, so if you try to complete measurements in a short time by equipping a large number of these devices, the measurement equipment will become extremely expensive and you will suffer a lot of damage. Conventionally, measurements were taken one measurement point at a time. This has caused the following problems.

第5図に、暗騒音レベルと、N分割した空間表面におけ
る第1測定点から第N測定点に到るまでの測定経過時間
との関係の代表的パターンを示す。
FIG. 5 shows a typical pattern of the relationship between the background noise level and the measurement elapsed time from the first measurement point to the Nth measurement point on the N-divided spatial surface.

図において、ialのように、測定時間中に暗騒音レベ
ルの変化がない場合は、従来の測定方法により容易に誤
差の小さい測定結果が得られ、またiblのように、暗
騒音レベルの変化が短時間だけ生ずるような場合は、測
定点の数を多くすることにより測定誤差を小さくするこ
とができる。ところが、暗騒音レベルの時間変化として
最も一般的に現われる[clの場合には、暗騒音レベル
が測定点ごとに異なるため、測定誤差を前記(al 、
 (blのように相殺することができず測定誤差が大き
くなるという問題を生ずる。この問題を解決する1つの
方法として、暗騒音レベルの変動分が小さいうちに測定
を終了させることが考えられるが、この変動分の時間変
化はあらかじめ把握することができないこと、また、被
測定音源が大形機械である場合や5作業性の悪い現場測
定の場合には、マイクロホン対2(第3図)の移動が容
易でないことなどのため、このような方法によって問題
を普遍的に解決することは困難である。
In the figure, when there is no change in the background noise level during the measurement time, as in ial, measurement results with small errors can be easily obtained using the conventional measurement method, and as in ibl, when there is no change in the background noise level. If it only occurs for a short time, the measurement error can be reduced by increasing the number of measurement points. However, in the case of [cl], which most commonly appears as a time change in the background noise level, the background noise level differs from measurement point to measurement point, so the measurement error is calculated using the above (al,
(The problem arises that the measurement error increases because it cannot be canceled out like bl.) One way to solve this problem is to end the measurement while the fluctuation in the background noise level is small. However, the time change of this variation cannot be known in advance, and in cases where the sound source to be measured is a large machine or in the case of on-site measurement where workability is poor, microphone pair 2 (Fig. 3) should be used. Because it is not easy to move, it is difficult to universally solve the problem using this method.

本発明の目的は、マイクロホン対を用いて得られた音響
強度とマイクロホンが設置された閉空間表面の面積とか
ら音響パワーレベルを測定する方法において、測定環境
の暗騒音レベルの変動分の幅の大小にかかわらず、かつ
暗騒音レベルの時間変化があらかじめ不明であっても、
測定誤差を小ならしめつる測定方法を提供することであ
る。
An object of the present invention is to provide a method for measuring a sound power level from the sound intensity obtained using a pair of microphones and the area of the surface of a closed space where the microphones are installed. Regardless of the size, and even if the temporal change in background noise level is unknown in advance,
It is an object of the present invention to provide a measurement method that reduces measurement errors.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的を達成するために、この発明によれば、2個の
マイクロホンを微小間隔を隔てて結合したマイクロホン
対を、被測定音源を囲む閉空間表面に垂直に設置して該
2個のマイクロホンによりそれぞれ音圧を検出し、次い
でこの検出されたそれぞれの音圧と空気密度とを用いて
被測定音源の音響強度を演算し、この音響強度と前記閉
空間の表面積とから音響パワーレベルを測定する方法に
おいて、被測定音源を囲む閉空間を半球空間とするとと
もに該半球空間の垂直軸に対して対称な半球空間表面の
適宜の2個所に前記マイクロホン対を設置し、この2個
所で同時に、あるいは1個所づつかつ実質的に時間間隔
をおくことなく時系列に音圧を検出するものとする。
In order to achieve the above object, according to the present invention, a pair of microphones in which two microphones are coupled with a small interval is installed perpendicularly on the surface of a closed space surrounding a sound source to be measured, Each sound pressure is detected, and then the sound intensity of the sound source to be measured is calculated using each of the detected sound pressures and air density, and the sound power level is measured from this sound intensity and the surface area of the closed space. In the method, the closed space surrounding the sound source to be measured is a hemispherical space, and the microphone pair is installed at two appropriate locations on the surface of the hemispherical space that is symmetrical with respect to the vertical axis of the hemispherical space, and the microphone pair is set at two appropriate locations at these two locations simultaneously or It is assumed that the sound pressure is detected at each location in time series without substantially any time interval.

〔作用〕[Effect]

このように、被測定音源を囲む半球空間の垂直軸に対し
て対称な半球空間表面の適宜の2個所にマイクロホン対
を設置し、この2個所で同時に音響強度を求めると、こ
の音響強度中に含まれる暗騒音レベルは実質的に大きさ
が等しくかつ極性が反対になるから、このようなマイク
ロホン対の対称配置による同時測定を半球空間の全表面
について行ない、前述の(2)、(3)式に従って音響
パワーもしくは音響パワーレベルを求めると、暗騒音分
は対称2個所ごとに相殺され、全体として暗騒音分がほ
ぼ消去された。被測定音源のみの音響パワーレベルが得
られることになる。また、暗騒音レベルの時間変化は通
常さほど速くはないから、対称2個所で同時に測定せず
、1個所づつ、かつ実質的に時間間隔をおくことなく時
系列に測定しても。
In this way, if a pair of microphones is installed at two appropriate locations on the surface of the hemispherical space that is symmetrical with respect to the vertical axis of the hemispherical space surrounding the sound source to be measured, and the sound intensity is determined simultaneously at these two locations, the sound intensity will be Since the background noise levels involved are substantially equal in magnitude and opposite in polarity, simultaneous measurements using such a symmetrical arrangement of microphone pairs are performed on the entire surface of the hemispheric space, and the above-mentioned (2) and (3) are carried out. When the sound power or sound power level was calculated according to the formula, the background noise component was canceled out at every two symmetrical locations, and the background noise component was almost completely eliminated as a whole. The sound power level of only the sound source to be measured can be obtained. Furthermore, since the background noise level usually does not change very quickly over time, instead of measuring at two symmetrical locations at the same time, it may be measured one location at a time and chronologically without any substantial time interval.

暗騒音分による測定誤差は実用上無視しつる程度に小さ
くなる。
Measurement errors due to background noise are so small that they can be ignored in practice.

〔実施例〕〔Example〕

第1図に本発明による音響パワーレベル測定方法の一実
施例を示す。図において、3aは被測定音源1を囲む半
球空間を示し、 3bはこの半球空間の底面に垂直な垂
直軸であって、半球空間表面はこの垂直軸のまわりに軸
対称である。この垂直軸に対して軸対称となる半球空間
表面上の位置2個所にマイクロホン対2a、2bを配置
し、それぞれの位置における音響強度を同時に求める。
FIG. 1 shows an embodiment of the sound power level measuring method according to the present invention. In the figure, 3a indicates a hemispherical space surrounding the sound source 1 to be measured, 3b is a vertical axis perpendicular to the bottom surface of this hemispherical space, and the hemispherical space surface is axially symmetrical around this vertical axis. A pair of microphones 2a and 2b is placed at two positions on the surface of the hemispherical space that are axially symmetrical with respect to this vertical axis, and the sound intensity at each position is determined simultaneously.

このような対称2個所における同時測定を半球空間表面
に設定した全分割点について行なう。
Such simultaneous measurements at two symmetrical locations are performed at all dividing points set on the hemispherical space surface.

このようにして対称2個所でそれぞれ測定された音圧レ
ベルの測定値はそれぞれ周波数分析器5a。
The sound pressure levels measured at two symmetrical locations in this way are each measured by a frequency analyzer 5a.

5bに入力され、ここで音圧レベル中に含まれる周波数
ごとに音圧レベルが求められ、この音圧レベルが演算器
6に人力されて同一周波数ごとに合成され音響強度が周
波数ごとに演算される。したがって音響パワーレベル算
出時にはすでに暗騒音分による誤差が相殺されて小さく
なっている。
5b, where the sound pressure level is determined for each frequency included in the sound pressure level, and this sound pressure level is manually input to the calculator 6, where the same frequency is synthesized and the sound intensity is calculated for each frequency. Ru. Therefore, when calculating the sound power level, the error due to the background noise has already been canceled out and reduced.

第2図に、従来の測定方法と、本発明による測に方法と
による測定精度の比較を示す。第5図は、被測定音源を
囲む半球空間の垂直軸に垂直な1断面の円周の約にの円
弧をlO分割したときに、名分割点て求めた音響強度と
、被測定音源近くで測定された暗騒音との関係を示す。
FIG. 2 shows a comparison of measurement accuracy between the conventional measurement method and the measurement method according to the present invention. Figure 5 shows the sound intensity found at the dividing points when the arc of the circumference of one section perpendicular to the vertical axis of the hemispherical space surrounding the sound source to be measured is divided into 10 parts, and the sound intensity near the sound source to be measured. The relationship with measured background noise is shown.

図において(alは各分割点における測定時の暗騒音レ
ベルの大きさを示し、イはいずれの分割点においても暗
騒音レベルの大きさが同一の場合、口は分割点ごとに測
定時の暗騒音レベルが異なることを示す。(blはこの
ような暗騒音の下で従来の測定方法によって求めた音響
強度を示す。曲線ハは暗騒音が直線イのように時間的な
変化のない場合に対するものであり、この場合には暗騒
音に基づく測定誤差は極めて小さい。一方、曲線二は暗
騒音が曲線口のように変化した場合に対するものであり
、測定時点ごとに暗騒音レベルが変化しているから、対
称2点の音圧レベルを合成したときに暗騒音レベルが相
殺しきれず誤差が残る。telは本発明に基づき、対称
2点における測定を同時に行なった場合の音響強度を示
す。この場合には曲線ホに示すように暗騒音レベルがほ
ぼ完全に相殺され、曲線二に対し実質的に差異を生じな
い。
In the figure, (al indicates the magnitude of the background noise level at the time of measurement at each division point, and b indicates the magnitude of the background noise level at the time of measurement at each division point. This shows that the noise level is different. (bl shows the sound intensity determined by the conventional measurement method under such background noise. Curve C shows the sound intensity when the background noise does not change over time like straight line A.) In this case, the measurement error based on background noise is extremely small.On the other hand, curve 2 is for the case where the background noise changes like a curved line, and the background noise level changes at each measurement point. Therefore, when the sound pressure levels at two symmetrical points are combined, the background noise level cannot be canceled out and an error remains. tel indicates the sound intensity when measurements at two symmetrical points are performed simultaneously based on the present invention. In this case, as shown in curve E, the background noise level is almost completely canceled out, and there is no substantial difference from curve II.

なお、第1図において、周波数分析器5a、5bの前に
簡単な切換え器を用いれば、1台の周波数分析器で短時
間に対称2個所の測定が可能になり。
In addition, in FIG. 1, if a simple switch is used in front of the frequency analyzers 5a and 5b, it becomes possible to measure two symmetrical locations in a short time with one frequency analyzer.

同様に測定誤差が小さくなる。Similarly, measurement errors are reduced.

〔発明の効果〕〔Effect of the invention〕

以上に述べたように、本発明によれば、被測定音源の音
響パワーレベルを求めるのに、被測定音源を囲む半球空
間表面における音響強度を求めるべく、マイクロホン対
を半球の垂直軸に対称2個所に配置し、この2個所で同
時に、あるいは1個所づつかつ実質的に時間間隔をおく
ことなく時系列に測定するようにしたので、 (1)無響室に持ち込むことのできないような大型機器
に対しても、この機器が据え付けられている現場におい
て簡易にかつ信頼性の高い音響パワーレベルの測定がで
きる。
As described above, according to the present invention, in order to obtain the acoustic power level of a sound source to be measured, the microphone pair is arranged symmetrically with respect to the vertical axis of the hemisphere in order to obtain the sound intensity on the surface of the hemispherical space surrounding the sound source to be measured. (1) Large equipment that cannot be brought into an anechoic chamber. The sound power level can be easily and reliably measured at the site where this equipment is installed.

(21半球空間表面の全測定位置に同時にマイクロホン
対を設置することなく高い測定精度が得られるから、測
定設備が安価になる。
(Since high measurement accuracy can be obtained without simultaneously installing microphone pairs at all measurement positions on the spatial surface of the 21 hemispheres, the measurement equipment becomes inexpensive.

(3)暗騒音レベルの時間的変化だけでなく、・暗騒音
の流れの方向が変化している環境下、すなわち暗騒音源
の位置が移動している場合や暗騒音源の数が変化してい
る場合でも、精度良い音響パワーレベル測定が可能であ
る。
(3) In addition to temporal changes in the background noise level, - In an environment where the direction of the flow of background noise is changing, that is, when the position of the background noise source is moving or the number of background noise sources is changing. Accurate sound power level measurement is possible even when

など、多くの効果がある。There are many effects such as.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例による音響パワーレベル測定
方法説明図、第2図は本発明の方法による測定誤差の低
減効果を従来の方法と比較して示す線図、第3図は本発
明が対象とする、音響強度による音響パワーレベル測定
方法を示す説明図。 第4図は第3図の方法が暗騒音による測定誤差を小さく
できることを示す説明図、第5図は暗騒音レベルの時間
変化の例を示す線図である。 波数分析器56・・・音響強度演算器。 第1図 1≧ ’   −τR’12イ!    ” 第3図 第4図 (G)     (b)    (C)第5図
FIG. 1 is an explanatory diagram of a sound power level measuring method according to an embodiment of the present invention, FIG. 2 is a diagram showing the effect of reducing measurement errors by the method of the present invention in comparison with a conventional method, and FIG. FIG. 2 is an explanatory diagram showing a sound power level measuring method using sound intensity, which is the object of the present invention. FIG. 4 is an explanatory diagram showing that the method of FIG. 3 can reduce measurement errors due to background noise, and FIG. 5 is a diagram showing an example of a temporal change in the background noise level. Wavenumber analyzer 56...Sound intensity calculator. Fig. 1 1≧ '-τR'12i! ” Figure 3 Figure 4 (G) (b) (C) Figure 5

Claims (1)

【特許請求の範囲】[Claims] 1)2個のマイクロホンを微小間隔を隔てて結合したマ
イクロホン対を、被測定音源を囲む閉空間表面に垂直に
設置して該2個のマイクロホンによりそれぞれ音圧を検
出し、次いでこの検出されたそれぞれの音圧と空気密度
とを用いて被測定音源の音響強度を演算し、この音響強
度と前記閉空間の表面積とから音響パワーレベルを測定
する方法において、被測定音源を囲む閉空間を半球空間
とするとともに該半球空間の垂直軸に対して対称な半球
空間表面の適宜の2個所に前記マイクロホン対を設置し
、この2個所で同時に、あるいは1個所づつかつ実質的
に時間間隔をおくことなく時系列に音圧を検出すること
を特徴とする音響パワーレベル測定方法。
1) A microphone pair consisting of two microphones coupled with a small distance between them is installed vertically on the surface of a closed space surrounding the sound source to be measured, and the sound pressure is detected by each of the two microphones, and then this detected sound pressure is In this method, the sound intensity of the sound source to be measured is calculated using each sound pressure and air density, and the sound power level is measured from this sound intensity and the surface area of the closed space. The microphone pair is installed at two appropriate locations on the surface of a hemispherical space that is a space and is symmetrical with respect to the vertical axis of the hemispherical space, and the microphone pairs are placed at two locations simultaneously or at one location at a time substantially apart from each other in time. A sound power level measuring method characterized by detecting sound pressure in time series without any noise.
JP30100586A 1986-12-17 1986-12-17 Acoustic power level measuring method Pending JPS63153433A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30100586A JPS63153433A (en) 1986-12-17 1986-12-17 Acoustic power level measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30100586A JPS63153433A (en) 1986-12-17 1986-12-17 Acoustic power level measuring method

Publications (1)

Publication Number Publication Date
JPS63153433A true JPS63153433A (en) 1988-06-25

Family

ID=17891680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30100586A Pending JPS63153433A (en) 1986-12-17 1986-12-17 Acoustic power level measuring method

Country Status (1)

Country Link
JP (1) JPS63153433A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008541654A (en) * 2005-05-18 2008-11-20 リアル サウンド ラボ,エスアイエー Method for correcting acoustic parameters of electroacoustic transducer and apparatus for realizing the same
JP2013511712A (en) * 2009-11-19 2013-04-04 ウニフェルジテイト・トゥウェンテ Method and apparatus for determining acoustic coefficients and power

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008541654A (en) * 2005-05-18 2008-11-20 リアル サウンド ラボ,エスアイエー Method for correcting acoustic parameters of electroacoustic transducer and apparatus for realizing the same
JP2013511712A (en) * 2009-11-19 2013-04-04 ウニフェルジテイト・トゥウェンテ Method and apparatus for determining acoustic coefficients and power

Similar Documents

Publication Publication Date Title
JP2752967B2 (en) Deviation measurement system
US20120253722A1 (en) Electronic device and method for measurement of flatness of objects using the electronic device
CN102022987B (en) Radiation thickness gauge
DE60002518D1 (en) Method and device for adaptive learning of test errors to reduce the total number of test measurements required in real time
CN106164684A (en) Electric field intensity calculates program, electric field intensity calculating apparatus and electric field intensity calculation method
JPS63153433A (en) Acoustic power level measuring method
RU2690701C2 (en) Metrological bench for verification, calibration of level gauges and level indicators
US6330026B1 (en) Color testing system for testing color output of a display device
JP4876287B2 (en) Measuring method of acoustic impedance and sound absorption coefficient
CN110849827B (en) Spectrum calibration method, device and equipment for echelle spectrometer and storage medium
CN210953334U (en) Optical zero detection device
JPH0843189A (en) Method and apparatus for estimating sound field
JPH04120456A (en) Nondestructive inspecting apparatus by skid
JP2577110B2 (en) Street accuracy measuring device and street accuracy measuring method at construction site
Jia et al. A Technical Discussion about COOMET Pilot Comparison Resulsts of Sound Pressure Sensitivity and Sound Pressure Gradient Sensitivity in Frequency Range 5 Hz to 400Hz
JPS5322757A (en) Testing apparatus of electric a ppliances
Schöneweiß et al. Datasets of high spatial resolution scans of the airborne ultrasound field of an ultrasonic welding machine either with or without an artificial head at a worker’s sedentary position
JPH0353111A (en) Measuring instrument
SU1649460A1 (en) Method of measuring electric and non-electric parameters
Vorländer et al. Suggestions for Revision of ISO 3382
CN206710086U (en) A kind of part quality defect detector
Nielsen et al. Sound Power Determination of Household Appliances on the Production Line
SU381863A1 (en) METHOD INSPECTION CHECK
CN105973989B (en) A kind of method and apparatus of ultrasound detection absolute value measurement
SU1298648A1 (en) Method of determining coordinates and acoustical emission source in articles with cone-shaped surface