JPS6315315B2 - - Google Patents

Info

Publication number
JPS6315315B2
JPS6315315B2 JP16478184A JP16478184A JPS6315315B2 JP S6315315 B2 JPS6315315 B2 JP S6315315B2 JP 16478184 A JP16478184 A JP 16478184A JP 16478184 A JP16478184 A JP 16478184A JP S6315315 B2 JPS6315315 B2 JP S6315315B2
Authority
JP
Japan
Prior art keywords
weight
moisture
styrene
copolymer resin
soil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16478184A
Other languages
Japanese (ja)
Other versions
JPS6143693A (en
Inventor
Fumitoshi Tsukyama
Nagahiro Inada
Akihiko Komatsu
Kazunobu Shiozawa
Seisaku Kashiwazaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Highpolymer Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Highpolymer Co Ltd filed Critical Showa Highpolymer Co Ltd
Priority to JP16478184A priority Critical patent/JPS6143693A/en
Publication of JPS6143693A publication Critical patent/JPS6143693A/en
Publication of JPS6315315B2 publication Critical patent/JPS6315315B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Materials Applied To Surfaces To Minimize Adherence Of Mist Or Water (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明は、家屋の床䞋郚分の土壌の防湿凊理剀
に関するものである。 さらに詳しくは本発明は、朚質家屋の防腐性を
高め、たた家屋の耐久性を高床に高めるために、
家屋の床䞋郚分の土壌に防湿凊理を斜す堎合、倚
量の原材料を芁せず、経枈的に優れ、たたフむル
ム被芆のごずき敷く、぀なぐ等の手間がかから
ず、単に散分するだけで簡単に也燥しお防湿性に
優れた被芆局を圢成する土壌防湿凊理剀に関する
ものである。 近幎、家屋の建築、保守の面においお、家屋の
土台、柱等の重芁な構造材郚分が短期間に腐朜し
たり、シロアリに食害されるずいう問題が発生し
おいる。この腐朜や蟻害の䞻な原因ずしおは、建
築材料や工法の倉化により家屋の密閉性が高くな
り、それら構造材郚分が高湿状態に保たれやすく
な぀たこずがあげられる。床䞋の湿床の最倧の䟛
絊源はいうたでもなく、床䞋の土壌であり、土壌
からの湿気を遮断するこずは、家屋の保守にず぀
お重芁である。 朚材の腐朜菌やシロアリは、高含氎率の朚材に
奜んで繁殖し、たた最近、北海道などで倧きな被
害を䞎えおいるナミダタケは、根状菌糞束を地䞭
にのばし、土壌から氎分を補絊しながら家屋の床
䞋の朚材を腐朜させるなど、いずれも床䞋の土壌
から繁殖に必芁な氎分を埗おおり、この氎分を遮
断するこずが被害を防止する䞊で極めお有効な手
段ずなる。埓぀お、圓業界においおは、家屋の床
䞋郚分の土壌に防湿凊理を斜す必芁が高た぀おい
る。 埓来、土壌の防湿凊理方法ずしおは、倧別しお
通りの方法が提案されおあり、そのは家屋の
床䞋郚分の土壌の衚面に所望の厚みのコンクリヌ
ト局を圢成させるか、たたはポリ゚チレンフむル
ムを敷く方法、そのはポリ゚チレンフむルム䞊
に防虫剀クロルデンを含浞させたクラフト玙
を重ね、さらにその䞊にポリ゚チレンフむルムを
重ね合せた䞉局耇合材を土壌に被芆する方法、そ
のは固型のフレヌク状アスフアルトを地面に
〜cmの厚さに敷きならし、突きかためお土壌を
被芆する方法である。䞊蚘およびの方法は被
芆前に基瀎土壌を十分に平滑にしおおく必芁があ
るばかりでなく、被芆に手間ず費甚がかかるずい
う欠点がある。たた䞊蚘の方法はフむルムずフ
むルムの぀なぎにゎムテヌプを䜿い、これらを぀
なぎ合せる必芁があり、この方法もかなり手間ず
費甚がかかるずいう欠点がある。 本発明者らは、䞊蚘埓来の各皮土壌凊理方法の
欠点を改良し、防湿性に優れ、か぀手間のできる
だけかからない安䟡な土壌防湿凊理剀を開発すべ
く鋭意怜蚎した結果、安䟡で単に散垃するだけで
簡単に也燥しお防湿性に優れた被芆局を圢成する
土壌防湿凊理剀を芋出し、本発明を完成するに至
぀た。 すなわち、本発明は、スチレン成分及び䞍飜和
カルボン酞成分の含量がそれぞれ20〜70重量及
び0.1〜重量であり、残郚がメタアクリ
ル酞゚ステル成分であるスチレン−メタアク
リル酞゚ステル−䞍飜和カルボン酞以䞋、スチ
レン−メタアクリル酞゚ステル系ずいう共
重合暹脂゚マルゞペン(A)ず石膏(B)ずからなり、か
぀(A)察(B)の混合割合は固圢分重量比で察98〜40
察60であるこずを特城ずする家屋の床䞋郚分に適
甚される土壌防湿凊理剀に関する。 䞀般にスチレン−メタアクリル酞゚ステル
系共重合暹脂゚マルゞペン単独では、硬化が遅く
お、しかも土壌ぞの密着性に劣るばかりでなく、
収瞮によるクラツクが発生し易く、たた皮膜の匷
床も䞍足する。䞀方、石膏単独では、硬化が早過
ぎお可䜿時間が短く、䜜業性に劣り、さらに硬化
皮膜は硬いが脆く、ひび割れを生じ易く、緻密性
に欠けるず共に吞氎率が倧きいため、防湿防氎性
に劣り、たた土壌ずの接着力に欠けるずいう難点
を有するが、スチレンずメタアクリル酞゚ス
テル及び䞍飜和カルボン酞ずが特定の組成範囲で
共重合せられたスチレン−メタアクリル酞゚
ステル系共重合暹脂゚マルゞペンず石膏ずを特定
の割合で混合䜿甚するこずによ぀お、スチレン−
メタアクリル酞゚ステル系共重合暹脂゚マル
ゞペンを単独、ならびに石膏を単独で䜿甚した堎
合の䞊蚘欠点が補われ、適床の可䜿時間を有しお
䜜業性が良奜であり、か぀緻密で可撓性および寞
法安定性の良奜な皮膜を圢成する防湿性および防
氎性に優れた土壌防湿凊理剀が埗られる。 本発明の土壌防湿凊理剀を家屋の床䞋郚分の土
壌の防湿凊理に甚いる堎合、 (1) 倚量の原材料を必芁ずせず、経枈的であるこ
ず、 (2) 単に散垃するだけで耐氎性、耐湿性に優れた
皮膜を圢成するため、既補のフむルムを土壌に
被芆する埓来法の堎合のようにフむルムを敷
く、぀なぐ等の手間がかからず、簡䟿である、 ずい぀た利点を有し、その実甚性は倧きい。 本発明においお䜿甚されるスチレン−メタ
アクリル酞゚ステル系共重合暹脂゚マルゞペンず
は、スチレン成分の含量が20〜70重量、奜たし
くは30〜50重量の範囲内にあるスチレン−メ
タアクリル酞゚ステル系共重合暹脂゚マルゞペ
ンである。 ここでいうメタアクリル酞゚ステルずしお
は、アクリル酞メチル、アクリル酞゚チル、アク
リル酞ブチル、アクリル酞オクチルおよびアクリ
ル酞−゚チルヘキシルなどのアクリル酞゚ステ
ル類、メタクリル酞メチル、メタクリル酞゚チ
ル、メタクリル酞ブチルおよびメタクリル酞オク
チルなどのメタクリル酞゚ステル類があげられ
る。 スチレンずメタアクリル酞゚ステル系共重
合暹脂䞭のスチレン成分の含量が20重量未満で
は、これを配合した土壌防湿凊理剀から圢成され
る皮膜が軟かすぎお匷床が䞍足するずいう欠点が
あり、䞀方、スチレン成分の含量が70重量より
倚い堎合には、これを配合した土壌防湿凊理剀か
ら圢成される皮膜は硬くお脆く、匟性、耐衝撃性
に劣るため、所期の防湿効果が埗られ難いずいう
欠点を有する。 本発明で甚いられる䞍飜和カルボン酞は、アク
リル酞、メタクリル酞、むタコン酞、マレむン酞
などであり、その䜿甚割合は0.1〜重量であ
る。 スチレン−メタアクリル酞゚ステル系共重
合暹脂゚マルゞペンは、埓来公知の方法、䟋えば
モノマヌを氎䞭で界面掻性剀や保護コロむド、重
合開始剀の存圚䞋でラゞカル共重合させるこずに
よ぀お補造される。 本発明においおは、スチレン−メタアクリ
ル酞゚ステル系共重合暹脂゚マルゞペンのみなら
ず、スチレンずメタアクリル酞゚ステルにさ
らにアクリルアミド、−ヒドロキシ゚チルアク
リレヌト、マレむン酞ゞブチル、ゞビニルベンれ
ン、−メチロヌルアクリルアミド、グリシゞル
メタクリレヌト、トリアリルシアヌレヌト、゚チ
レングリコヌルゞメタクリレヌト等のごずき第四
成分を共重合させたものも䜿甚するこずができ
る。䞊蚘第四成分のうち、ゞビニルベンれン、ト
リアリルシアヌレヌト、゚チレングリコヌルゞメ
タクリレヌト等を䜿甚すれば既架橋型合成暹脂゚
マルゞペンが埗られ、たた第䞉成分ずしお−メ
チロヌルアクリルアミド、グリシゞルメタクリレ
ヌト等を䜿甚すれば自己架橋型合成暹脂゚マルゞ
ペンが埗られる。これら第䞉成分の暹脂䞭に占め
る割合は、0.1〜重量であるこずが望たしい。 スチレン−メタアクリル酞゚ステル系共重
合暹脂゚マルゞペンには、必芁に応じお通垞゚マ
ルゞペン塗料においお甚いられる造膜助剀や可塑
剀、䟋えば゚チレングリコヌルモノブチル゚ヌテ
ル、ゞ゚チレングリコヌルモノブチル゚ヌテル、
ゞ゚チレングリコヌルモノブチルアセテヌト、テ
キサノヌル、ゞブチルフタレヌト、ゞオクチルフ
タレヌト等を配合しおもよいし、たた硬化を促進
させるために塩化カルシりム等の硬化促進剀を配
合しおもよい。たた、スチレン−メタアクリ
ル酞゚ステル系共重合暹脂゚マルゞペンには、必
芁に応じお硬化を遅延させるために゚チレングリ
コヌル、プロピレングリコヌル等のグリコヌル類
や各皮の界面掻性剀、ヒドロキシ゚チルセルロヌ
ス、メチルセルロヌス、ポリビニルアルコヌル等
のごずき倩然たたは合成高分子物質を配合しおも
よい。 本発明においお䜿甚される石膏ずしおは、二氎
石膏、α半氎石膏、β半氎石膏等があげられる。
これらの石膏は皮以䞊を混合しお䜿甚しおもよ
い。 スチレン−メタアクリル酞゚ステル系共重
合暹脂゚マルゞペンず石膏の混合割合は、固圢分
重量比で共重合暹脂゚マルゞペン察石膏察98
〜40察60であり、奜たしくは察95〜30察70であ
る。共重合暹脂゚マルゞペンの混合割合が固圢分
重量比で未満では、硬化は早いが、皮膜が硬く
お脆く、匟性や耐衝撃性に劣り、吞氎率が増倧し
お防湿、防氎機胜が䜎䞋する。䞀方、共重合暹脂
゚マルゞペンの混合割合が固圢分重量比で40より
倚い堎合には、硬化が遅くお、しかも皮膜の硬さ
が倱なわれお匷床が䞍足するばかりでなく、寞法
安定性に欠けるずいう難点を有する。 本発明の土壌防湿凊理剀䞭に癜蟻防陀のための
各皮薬剀を䟋えばクロルデン、有機燐剀等を混合
䜿甚するこずは可胜であり、たたナミダタケ等に
よる腐朜を防陀するためには適圓な各皮殺菌剀を
土壌防湿凊理剀に配合しおもよく、そうするこず
により防湿凊理ず防蟻および防腐察策が䞀床に出
きるため䞀局有効である。 本発明の土壌防湿凊理剀には必芁に応じお、
砂、骚材類、顔料、セメント類、界面掻性剀、増
粘剀、消泡剀等を配合しおもよい。 砂、骚材類ずしおは、石英、パヌラむト、ひる
石、シラスバルヌン、硅石粉、硅砂、川砂等があ
げられ、顔料ずしおは、カオリン、タルク、クレ
ヌ、各皮炭酞カルシりム、酞化チタン、マむカ、
酞性癜土、ケむ藻土、鉄粉、プラむト、リトポ
ン、バラむタ、ゞルコニア、カヌボンブラツク、
ホワむトカヌボン等があげられる。たたセメント
類ずしおは各皮ポルトランドセメント、高炉セメ
ント、アルミナセメント等があげられる。砂、骚
材類、顔料、セメント類は䞀皮、たたは二皮以䞊
を混合しお甚いおもよい。添加量は本発明の土壌
防湿凊理剀䞭のスチレン−メタアクリル酞゚
ステル系共重合暹脂゚マルゞペンず石膏ずの合蚈
量100重量郚に察しお300重量郚たでがよく、より
奜たしくは100重量郚以䞋である。 増粘剀は土壌防湿凊理剀を散垃する際の䜜業性
を調敎するために重芁であるが、䜿甚可胜なもの
ずしおはれラチン、カれむン等のごずき倩然高分
子系増粘剀、酞化、メチル化、カルボキシメチル
化、ヒドロキシ゚チル化、ヒドロキシプロピル
化、リン酞化、カチオン化等の凊理を斜されたで
ん粉やセルロヌス、アルギン酞゜ヌダ、アルギン
酞アンモニりム等のごずき半合成高分子系増粘
剀、ポリビニルアルコヌル、ポリビニルピロリド
ン、ポリアクリル酞゜ヌダ、ポリアクリルアミド
等のごずき合成高分子系増粘剀、ポリ゚チレンオ
キサむド、およびその誘導䜓等のごずき界面掻性
剀系増粘剀、コロむダルシリカ、ベントナむト、
アタゲル等のごずき無機系増粘剀があげられる。 増粘剀は土壌防湿凊理剀に察し0.01〜重量
配合するこずが奜たしい。配合量が少い堎合は骚
材や顔料が短期間で沈降し易く、逆に倚過ぎる堎
合は皮膜の耐氎性が䜎䞋するこずがある。 たた消泡剀ずしおは、オクチルアルコヌル、カ
プリルアルコヌル、ラりリルアルコヌル、シクロ
ヘキサノヌルなどがあげられ、消泡剀はスチレン
−メタアクリル酞゚ステル系共重合暹脂゚マ
ルゞペン100重量郚に察しお0.001〜重量郚皋床
添加するのが奜たしい。 本発明における土壌防湿凊理剀䞭の䞍揮発分の
量は任意でよいが通垞は30〜80重量の範囲が奜
たしい。䞍揮発分の量が80重量を越える堎合
は、散垃時の䜜業性が悪く、䞍揮発分の量が30重
量より䜎過ぎおも土壌䞭ぞの土壌防湿凊理剀の
浞透性が倧き過ぎお防湿効果が䜎䞋する。 本発明の土壌防湿凊理剀は家屋の床䞋郚分の土
壌に塗垃、たたは散垃されお皮膜を圢成するが、
土壌防湿凊理剀の粘床は10〜20000cps型粘床
蚈、10rpm、ロヌタヌNo.、30℃が奜たしく、
より奜たしくは100〜10000cps皋床がよい。粘床
が高過ぎるず散垃の際の䜜業性が劣るばかりでな
く、散垃埌レベリングが悪く、均䞀に土壌を被芆
するこずが困難になる。䞀方、土壌防湿凊理剀の
粘床が䜎過ぎるず土壌ぞの浞透性が倧き過ぎ塗膜
の緊密性に欠け、期埅する防湿効果が埗られ難
い。 本発明の土壌防湿凊理剀の也燥時の膜厚は0.2
mm以䞊が奜たしく、より奜たしくは0.4〜mmが
よい。膜厚が小さ過ぎるず防湿効果が䜎く、所期
の目的は達せられず、膜厚が厚過ぎおもそれに比
䟋した防湿効果が埗られず䞍経枈である。 本発明の土壌防湿凊理剀を家屋の床䞋郚分に散
垃する堎合、簡単に散垃が可胜で、環境を汚染す
るこずなく、也燥、硬化埌の塗膜は極めお防湿効
果に優れ、家屋の腐蝕防止に関しお倧きな効果を
持぀ずいう特長を有しおいる。 次に実斜䟋をあげお本発明をさらに詳现に説明
する。 なお、実斜䟋および比范䟋の吞氎率は䞋蚘の方
法に準じお枬定した。 シダヌレ䞭にKgm2盞圓量の土壌防湿凊理剀
土壌防湿凊理剀Kgに垌釈氎Kgを加えお、m2
圓りKgの撀垃量ずする。を撀垃し、垞枩で
日間攟眮、也燥させお厚さ〜mmの硬化皮膜を
䜜成する。この硬化皮膜の重量を枬定した埌、皮
膜䞊に皮膜を十分に芆う量の氎40mlを入れ、䞀倜
攟眮しお十分に吞氎させた。次いで、シダヌレ䞭
の氎を陀いた埌、盎ちに皮膜䞭の付着氎を玙で
拭き取぀た。玙に氎が、付着しなくな぀おか
ら、盎ちに皮膜を秀量しお泚氎による吞氎量を枬
定し、次匏により吞氎率を求めた。 吞氎率吞氎皮膜重量−吞氎前皮膜重
量吞氎前皮膜重量×100 実斜䟋〜および比范䟋〜 (A) スチレン−アクリル酞−゚チルヘキシル共
重合暹脂゚マルゞペンの補造 アニオン界面掻性ポリオキシ゚チレンノニ
ルプノヌル゚ヌテルサルプヌトアンモニり
ム塩モノマヌ100重量郚に察しお重量郚䜿甚
ずノニオン界面掻性剀ポリオキシ゚チレンノ
ニルプニル゚ヌテル、HLB17、モノマヌ
100重量郚に察しお重量郚を䜿甚を甚いお、
通垞の方法によ぀お第衚に瀺すような性状の
スチレン−アクリル酞−゚チルヘキシル共重
合暹脂゚マルゞペン共重合暹脂のモノマヌ組
成スチレン40重量、アクリル酞−゚チル
ヘキシル59重量、むタコン酞重量を埗
た。
The present invention relates to a moisture-proofing agent for the soil under the floor of a house. More specifically, the present invention aims to improve the antiseptic properties of wooden houses and highly increase the durability of the houses.
When applying moisture-proofing treatment to the soil under the floor of a house, it does not require a large amount of raw materials, is economical, and does not require the labor of laying or connecting film coatings, and can be easily applied by simply distributing it. This invention relates to a soil moisture-proofing agent that dries to form a coating layer with excellent moisture-proofing properties. BACKGROUND ART In recent years, problems have arisen in the construction and maintenance of houses, such as important structural parts such as foundations and pillars of houses rotting in a short period of time or being eaten by termites. The main cause of this rot and ant damage is that changes in building materials and construction methods have made houses more airtight, making it easier for these structural materials to remain in high humidity conditions. Needless to say, the biggest source of humidity under the floor is the soil under the floor, and blocking moisture from the soil is important for house maintenance. Wood-decaying fungi and termites prefer to breed in wood with high moisture content, and the fungi, which has recently caused great damage in areas such as Hokkaido, extend bundles of root-like hyphae into the ground to replenish moisture from the soil. However, in both cases, wood rotting under the floors of houses obtains the moisture necessary for reproduction from the soil under the floors, and blocking this moisture is an extremely effective means of preventing damage. Therefore, in the industry, there is an increasing need to apply moisture-proofing treatment to the soil under the floors of houses. Conventionally, three methods have been proposed for moisture-proofing soil.The first method is to form a concrete layer of a desired thickness on the surface of the soil under the floor of a house, or to lay a polyethylene film. The second method is to cover the soil with a three-layer composite material, which is made by layering kraft paper impregnated with an insect repellent (chlordane) on top of a polyethylene film, and then layering a polyethylene film on top of that. 3 flaky asphalt on the ground
This method covers the soil by spreading it to a thickness of ~5 cm and tamping it down. Methods 1 and 3 above not only require the foundation soil to be sufficiently smoothed before covering, but also have the disadvantage that covering is laborious and costly. Furthermore, method 2 requires the use of rubber tape to join the films together, and this method also has the disadvantage of being quite time-consuming and costly. The present inventors have made intensive studies to improve the shortcomings of the various conventional soil treatment methods described above and to develop an inexpensive soil moisture-proofing agent that has excellent moisture-proofing properties and requires as little effort as possible. The present inventors have discovered a soil moisture-proofing agent that can be easily dried to form a coating layer with excellent moisture-proofing properties, and have completed the present invention. That is, the present invention provides styrene-(meth)acrylic acid in which the contents of the styrene component and the unsaturated carboxylic acid component are 20 to 70% by weight and 0.1 to 5% by weight, respectively, and the remainder is a (meth)acrylic acid ester component. It consists of an ester-unsaturated carboxylic acid (hereinafter referred to as styrene-(meth)acrylic acid ester) copolymer resin emulsion (A) and gypsum (B), and the mixing ratio of (A) to (B) is the solid content. Weight ratio: 2:98~40
The present invention relates to a soil moisture-proofing agent that is applied to the underfloor part of a house and is characterized by having a moisture resistance of 60%. Generally, styrene-(meth)acrylic acid ester copolymer resin emulsion alone not only cures slowly but also has poor adhesion to soil.
Cracks are likely to occur due to shrinkage, and the strength of the film is also insufficient. On the other hand, gypsum alone cures too quickly, has a short pot life, and is poor in workability.Furthermore, the cured film is hard but brittle, prone to cracking, lacks density, and has a high water absorption rate, making it difficult to provide moisture-proof and waterproof properties. Styrene-(meth)acrylic acid ester type, which is a copolymerization of styrene, (meth)acrylic acid ester, and unsaturated carboxylic acid in a specific composition range, although it has the disadvantage of poor adhesion to soil. By mixing copolymer resin emulsion and gypsum in a specific ratio, styrene
The above drawbacks when using (meth)acrylic acid ester copolymer resin emulsion alone or gypsum alone are compensated for, and it has a suitable pot life, good workability, and is dense and flexible. A soil moisture-proofing agent with excellent moisture-proofing and waterproofing properties that forms a film with good properties and dimensional stability can be obtained. When the soil moisture-proofing treatment agent of the present invention is used for moisture-proofing the soil under the floor of a house, (1) it does not require a large amount of raw materials and is economical; (2) it can be water-resistant and moisture-resistant just by spraying it; Because it forms a film with excellent properties, it has the advantage that it is simple and does not require the labor of laying and connecting the film, unlike the conventional method of coating the soil with a ready-made film. Its practicality is great. Styrene-(meth) used in the present invention
The acrylic ester copolymer resin emulsion is a styrene-(meth)acrylic ester copolymer resin emulsion in which the content of the styrene component is in the range of 20 to 70% by weight, preferably 30 to 50% by weight. The (meth)acrylic esters mentioned here include acrylic esters such as methyl acrylate, ethyl acrylate, butyl acrylate, octyl acrylate, and 2-ethylhexyl acrylate, methyl methacrylate, ethyl methacrylate, and methacrylic acid. Examples include methacrylic acid esters such as butyl and octyl methacrylate. If the content of the styrene component in the styrene and (meth)acrylic acid ester copolymer resin is less than 20% by weight, the film formed from the soil moisture-proofing agent containing the styrene component will be too soft and lack strength. On the other hand, if the content of the styrene component is more than 70% by weight, the film formed from the soil moisture-proofing agent containing it will be hard and brittle, and will have poor elasticity and impact resistance, so the desired moisture-proofing effect will not be achieved. It has the disadvantage that it is difficult to obtain. The unsaturated carboxylic acid used in the present invention is acrylic acid, methacrylic acid, itaconic acid, maleic acid, etc., and the proportion thereof used is 0.1 to 5% by weight. Styrene-(meth)acrylic acid ester copolymer resin emulsion is produced by a conventionally known method, for example, by radical copolymerization of monomers in water in the presence of a surfactant, a protective colloid, and a polymerization initiator. . In the present invention, not only styrene-(meth)acrylic acid ester copolymer resin emulsion but also acrylamide, 2-hydroxyethyl acrylate, dibutyl maleate, divinylbenzene, N-methylol A copolymer of a fourth component such as acrylamide, glycidyl methacrylate, triallyl cyanurate, ethylene glycol dimethacrylate, etc. can also be used. Among the fourth components, divinylbenzene, triallyl cyanurate, ethylene glycol dimethacrylate, etc. can be used to obtain a crosslinked synthetic resin emulsion, and as the third component, N-methylol acrylamide, glycidyl methacrylate, etc. can be used. A self-crosslinking synthetic resin emulsion can be obtained. The proportion of these third components in the resin is preferably 0.1 to 5% by weight. The styrene-(meth)acrylic acid ester copolymer resin emulsion may contain film-forming agents and plasticizers normally used in emulsion paints, such as ethylene glycol monobutyl ether, diethylene glycol monobutyl ether,
Diethylene glycol monobutyl acetate, texanol, dibutyl phthalate, dioctyl phthalate, etc. may be blended, and a hardening accelerator such as calcium chloride may be blended to accelerate hardening. In addition, for the styrene-(meth)acrylic acid ester copolymer resin emulsion, glycols such as ethylene glycol and propylene glycol, various surfactants, hydroxyethyl cellulose, methyl cellulose, polyvinyl Natural or synthetic polymeric substances such as alcohols may also be included. Examples of the gypsum used in the present invention include dihydrate gypsum, α-hemihydrate gypsum, β-hemihydrate gypsum, and the like.
These plasters may be used in combination of two or more. The mixing ratio of styrene-(meth)acrylic acid ester copolymer resin emulsion and gypsum is solid content weight ratio: copolymer resin emulsion to gypsum = 2:98
~40:60, preferably 5:95 to 30:70. If the mixing ratio of the copolymer resin emulsion is less than 2 in terms of solid content weight ratio, curing is quick, but the film is hard and brittle, has poor elasticity and impact resistance, and increases water absorption, resulting in a decrease in moisture-proofing and waterproofing functions. On the other hand, if the mixing ratio of the copolymer resin emulsion is more than 40 in terms of solid content weight ratio, curing is slow and the film loses its hardness, resulting in not only insufficient strength but also lack of dimensional stability. It has the following drawback. It is possible to mix and use various agents for controlling termites, such as chlordane and organic phosphorus agents, in the soil moisture-proofing treatment agent of the present invention, and various fungicides suitable for controlling rot caused by mushrooms, etc. may be added to the soil moisture-proofing agent, which is more effective because moisture-proofing, termite prevention, and antiseptic measures can be taken out at the same time. The soil moisture-proofing agent of the present invention may include, if necessary,
Sand, aggregates, pigments, cements, surfactants, thickeners, antifoaming agents, etc. may be added. Examples of sand and aggregates include quartz, perlite, vermiculite, shirasu balloons, silica powder, silica sand, river sand, etc.; examples of pigments include kaolin, talc, clay, various calcium carbonates, titanium oxide, mica,
Acid clay, diatomaceous earth, iron powder, ferrite, lithopone, baryta, zirconia, carbon black,
Examples include white carbon. Further, examples of cements include various types of Portland cement, blast furnace cement, and alumina cement. Sand, aggregates, pigments, and cements may be used alone or in combination of two or more. The amount added is preferably up to 300 parts by weight, more preferably 100 parts by weight, based on 100 parts by weight of the total amount of styrene-(meth)acrylate copolymer resin emulsion and gypsum in the soil moisture-proofing agent of the present invention. It is as follows. Thickeners are important to adjust the workability when spraying soil moisture-proofing agents, and the ones that can be used include natural polymer thickeners such as gelatin and casein, oxidized, methylated, Starch and cellulose treated with carboxymethylation, hydroxyethylation, hydroxypropylation, phosphorylation, cationization, etc., semi-synthetic polymeric thickeners such as sodium alginate, ammonium alginate, etc., polyvinyl alcohol, polyvinylpyrrolidone , synthetic polymer thickeners such as sodium polyacrylate and polyacrylamide, surfactant thickeners such as polyethylene oxide and its derivatives, colloidal silica, bentonite,
Examples include inorganic thickeners such as Attagel. Thickener: 0.01 to 3% by weight of soil moisture-proofing agent
It is preferable to mix them. If the amount is too small, the aggregates and pigments tend to settle in a short period of time, and if the amount is too large, the water resistance of the film may decrease. Examples of antifoaming agents include octyl alcohol, caprylic alcohol, lauryl alcohol, and cyclohexanol. It is preferable to add about 1 part. The amount of non-volatile content in the soil moisture proofing agent in the present invention may be arbitrary, but is usually preferably in the range of 30 to 80% by weight. If the amount of non-volatile content exceeds 80% by weight, the workability during spraying will be poor, and even if the amount of non-volatile content is lower than 30% by weight, the permeability of the soil moisture-proofing agent into the soil will be too high, making it difficult to prevent moisture. effectiveness decreases. The soil moisture-proofing agent of the present invention is applied or sprayed to the soil under the floor of a house to form a film.
The viscosity of the soil moisture-proofing agent is preferably 10 to 20,000 cps (B-type viscometer, 10 rpm, rotor No. 3, 30°C),
More preferably, it is about 100 to 10,000 cps. If the viscosity is too high, not only will the workability during spraying be poor, but also the leveling after spraying will be poor, making it difficult to uniformly cover the soil. On the other hand, if the viscosity of the soil moisture-proofing agent is too low, its permeability into the soil is too high and the coating film lacks tightness, making it difficult to obtain the expected moisture-proofing effect. The dry film thickness of the soil moisture-proofing agent of the present invention is 0.2
The thickness is preferably 0.4 to 2 mm, more preferably 0.4 to 2 mm. If the film thickness is too small, the moisture-proofing effect will be low and the intended purpose will not be achieved, and if the film thickness is too thick, a proportional moisture-proofing effect will not be obtained, which is uneconomical. When the soil moisture-proofing treatment agent of the present invention is applied to the subfloor of a house, it can be easily sprayed, does not pollute the environment, and the coating film after drying and curing has an extremely excellent moisture-proofing effect, and is effective in preventing corrosion of houses. It has the feature of having great effects. Next, the present invention will be explained in more detail with reference to Examples. In addition, the water absorption rates of Examples and Comparative Examples were measured according to the following method. Add 1 kg of dilution water to 2 kg of soil moisture-proofing agent (2 kg of soil moisture-proofing agent and add 1 kg of dilution water, m 2
The amount of removal is 3 kg per person. ) and leave it at room temperature.
Leave to dry for several days to create a cured film with a thickness of 1 to 2 mm. After measuring the weight of this cured film, 40 ml of water was poured onto the film in an amount sufficient to cover the film, and the film was left overnight to absorb sufficient water. Next, after removing the water in the shear dish, the water adhering to the film was immediately wiped off with paper. Immediately after water stopped adhering to the paper, the film was weighed to measure the amount of water absorbed by water injection, and the water absorption rate was determined using the following formula. Water absorption rate (%) = Water absorption film weight - Film weight before water absorption / Film weight before water absorption x 100 Examples 1 to 6 and Comparative Examples 1 to 2 (A) Production of styrene-2-ethylhexyl acrylate copolymer resin emulsion Anion interface Activity (1 part by weight used per 100 parts by weight of polyoxyethylene nonylphenol ether sulfate ammonium salt monomer)
and nonionic surfactant (polyoxyethylene nonyl phenyl ether, HLB=17, monomer
using 2 parts by weight for 100 parts by weight),
A styrene-2-ethylhexyl acrylate copolymer resin emulsion with the properties shown in Table 1 was prepared by a conventional method (monomer composition of the copolymer resin: 40% by weight of styrene, 59% by weight of 2-ethylhexyl acrylate, itaconic acid). 1% by weight).

【衚】 (B) 防湿凊理剀の調補 前蚘スチレン−アクリル酞−゚チルヘキシ
ル共重合暹脂゚マルゞペンず焌石膏ずを第衚
に瀺すような固圢分重量比になるように混合し
た。 埗られた防湿凊理剀Kgに氎Kgを加えお土
壌防湿凊理剀ずした。 この土壌防湿凊理剀を甚いお吞氎率の枬定を
行な぀た。結果を第衚に瀺した。 なお、参考䟋ずしお、゚チレン−酢酞ビニル
共重合暹脂゚マルゞペン固圢分含量45重量
、゚チレン成分15重量を甚いた䟋に぀い
おも同様にしお実隓を行な぀た。
[Table] (B) Preparation of moisture-proofing agent The styrene-2-ethylhexyl acrylate copolymer resin emulsion and calcined gypsum were mixed at a solid content weight ratio as shown in Table 2. 1 kg of water was added to 2 kg of the obtained moisture-proofing agent to prepare a soil moisture-proofing agent. The water absorption rate was measured using this soil moisture proofing agent. The results are shown in Table 2. As a reference example, a similar experiment was conducted using an ethylene-vinyl acetate copolymer resin emulsion (solid content: 45% by weight, ethylene component: 15% by weight).

【衚】 蚻 比范䟋の土壌防湿凊理剀から埗られた皮
膜は、硬さが倱なわれお匷床が䞍足し、
寞法安定性に欠ける。
実斜䟋で補造した防湿凊理剀Kgに察し、防
蟻剀ずしおクロルデン50を含む乳化剀溶液(æ ª)
コシむプレザヌビング瀟補、商品名コシクロル
A500.12Kg及び皀釈氎0.88Kgを配合し、よく撹
拌混合した埌、該凊理剀を土壌面ぞ3.0Kgm2の
割合で散垃した。 散垃埌日で衚面は均䞀な灰色の被芆を圢成
し、日で䞈倫な硬い也燥衚面ずな぀た。 この衚面被芆䞊にガラス補円筒内埄50mm、厚
み玄mm、高さ30mmを隙間がないようにのせ、
この内にむ゚シロアリ職蟻27頭及び兵蟻頭を投
入しお、蟻の挙動を芳察した。 比范のために、クロルデンを含たない䞊蚘防湿
凊理剀のみのものに぀いお䞊蚘ず同様に詊隓し
た。結果を次衚に瀺す。
[Table] Note) * The film obtained from the soil moisture-proofing agent of Comparative Example 1 lost its hardness and lacked strength.
Lacks dimensional stability.
For 2 kg of the moisture-proof treatment agent produced in Example 4, an emulsifier solution containing 50% chlordane as a termiticide (manufactured by Co., Ltd.) was added.
Manufactured by Koshii Preserving Co., Ltd., trade name: Koshiklor
A50) 0.12Kg and dilution water 0.88Kg were mixed, stirred and mixed well, and then the treatment agent was sprayed onto the soil surface at a rate of 3.0Kg/m 2 . One day after application, the surface formed a uniform gray coating, and within three days it had become a durable, hard, dry surface. Place a glass cylinder (inner diameter 50 mm, thickness approx. 3 mm, height 30 mm) on top of this surface coating without leaving any gaps.
Twenty-seven domestic termite worker ants and three soldier ants were introduced into the system, and the behavior of the ants was observed. For comparison, a sample containing only the moisture-proofing agent without chlordane was tested in the same manner as above. The results are shown in the table below.

【衚】 健党 仰倩 死亡
䞊蚘結果䞊びに第衚から、防蟻剀を配合した
本発明の防湿凊理剀は、防湿効果に加えお、防蟻
剀の効力を枛ずるこずなくその効力を発揮させる
こずが出来るこず明癜である。 実斜䟋  実斜䟋〜においお、アクリル酞−゚チル
ヘキシルの代りにアクリル酞゚チルを䜿甚した以
倖は、実斜䟋〜ず同様な方法によ぀おスチレ
ン−アクリル酞゚チル共重合暹脂゚マルゞペン
共重合暹脂のモノマヌ組成スチレン40重量、
アクリル酞゚チル59重量、むタコン酞重量
を埗た。 埗られた共重合暹脂゚マルゞペンは、固圢分含
量が49重量、平均粒子埄が0.5Ό以䞋であ぀た。 実斜䟋  実斜䟋〜においお、アクリル酞−゚チル
ヘキシルの代りにアクリル酞ブチルを䜿甚した以
倖は、実斜䟋〜ず同様な方法によ぀おスチレ
ン−アクリル酞ブチル共重合暹脂゚マルゞペン
共重合暹脂のモノマヌ組成スチレン40重量、
アクリル酞ブチル59重量、むタコン酞重量
を埗た。 埗られた共重合暹脂゚マルゞペンは、固圢分含
量が49重量、平均粒子埄が0.5Ό以䞋であ぀た。 比范䟋  実斜䟋〜においお、スチレン−アクリル酞
−゚チルヘキシル共重合暹脂゚マルゞペン䞭の
共重合暹脂のスチレン含量が80重量になるよう
にモノマヌ組成を倉えた以倖は、実斜䟋〜ず
同様な方法によ぀おスチレン−アクリル酞−゚
チルヘキシル共重合暹脂゚マルゞペン共重合暹
脂のモノマヌ組成スチレン80重量、アクリル
酞−゚チルヘキシル19重量、むタコン酞重
量を埗た。 埗られた共重合暹脂゚マルゞペンは、固圢分含
量が49重量、平均粒子埄が0.1〜0.5Ό以䞋であ
぀た。 前蚘、実斜䟋〜および比范䟋で埗られた
共重合暹脂゚マルゞペンず焌石膏ずを第衚に瀺
すような固圢分重量比になるように混合した。 埗られた防湿凊理剀Kgに氎Kgを加えお土壌
防湿凊理剀ずした。 この土壌防湿凊理剀を甚いお吞氎率の枬定を行
な぀た。その結果を第衚に瀺した。
[Table] H: Healthy K: Surprised M: Dead From the above results and Table 2, it can be seen that the moisture-proof treatment agent of the present invention containing a termiticide has not only a moisture-proofing effect, but also a moisture-proofing effect without reducing the effectiveness of the termiticide. It is clear that it can be effective. Example 7 In Examples 1 to 6, styrene-ethyl acrylate copolymer resin emulsion (co) was prepared in the same manner as in Examples 1 to 6, except that ethyl acrylate was used instead of 2-ethylhexyl acrylate. Monomer composition of polymer resin: 40% by weight of styrene,
59% by weight of ethyl acrylate and 1% by weight of itaconic acid). The obtained copolymer resin emulsion had a solid content of 49% by weight and an average particle size of 0.5 ÎŒm or less. Example 8 A styrene-butyl acrylate copolymer resin emulsion (copolymer) was prepared in the same manner as in Examples 1 to 6, except that butyl acrylate was used instead of 2-ethylhexyl acrylate. Monomer composition of polymer resin: 40% by weight of styrene,
59% by weight of butyl acrylate and 1% by weight of itaconic acid). The obtained copolymer resin emulsion had a solid content of 49% by weight and an average particle size of 0.5 ÎŒm or less. Comparative Example 3 Examples 1 to 6 except that the monomer composition was changed so that the styrene content of the copolymer resin in the styrene-2-ethylhexyl acrylate copolymer resin emulsion was 80% by weight. A styrene-2-ethylhexyl acrylate copolymer resin emulsion (monomer composition of copolymer resin: 80% by weight of styrene, 19% by weight of 2-ethylhexyl acrylate, 1% by weight of itaconic acid) was obtained in the same manner as above. The obtained copolymer resin emulsion had a solid content of 49% by weight and an average particle size of 0.1 to 0.5 ÎŒm or less. The copolymer resin emulsions obtained in Examples 7 to 8 and Comparative Example 3 and calcined gypsum were mixed at a solid content weight ratio as shown in Table 3. 1 kg of water was added to 2 kg of the obtained moisture-proofing agent to prepare a soil moisture-proofing agent. The water absorption rate was measured using this soil moisture proofing agent. The results are shown in Table 3.

【衚】 蚻 比范䟋の土壌防湿凊理剀から埗られた皮
膜は、硬くお脆く、僅かの衝撃によりク
ラツクを生じ、土壌防湿凊理剀ずしおは䞍適
であ぀た。
実斜䟋  実斜䟋〜においお共重合暹脂の組成をスチ
レン40重量、アクリル酞−゚チルヘキシル59
重量、メタクリル酞重量ずなる様にモノマ
ヌ組成をかえた以倖は実斜䟋〜ず同様な方法
によ぀おスチレン−アクリル酞−゚チルヘキシ
ル共重合暹脂゚マルゞペンを埗た。 埗られた共重合暹脂゚マルゞペンは固圢分重量
が49重量、平均粒子埄が0.1〜0.5Όであ぀た。 実斜䟋 10 実斜䟋〜においお共重合暹脂の組成を、ス
チレン40重量、アクリル酞−゚チルヘキシル
59重量、アクリル酞重量ずなる様にモノマ
ヌ組成をかえた以倖は実斜䟋〜ず同様な方法
によ぀おスチレン−アクリル酞−゚チルヘキシ
ル系共重合暹脂゚マルゞペンを埗た。 埗られた共重合暹脂゚マルゞペンは固圢分重量
が49重量、平均粒子埄が0.1〜0.5Όであ぀た。 実斜䟋 11 実斜䟋〜においお共重合暹脂のスチレン含
量が60重量になる様にモノマヌ組成を倉えた以
倖は実斜䟋〜ず同様な方法によ぀おスチレン
−アクリル酞−゚チルヘキシル系共重合暹脂゚
マルゞペン共重合暹脂のモノマヌ組成スチレ
ン60重量、アクリル酞−゚チルヘキシル39重
量、むタコン酞重量を埗た。 埗られた共重合暹脂゚マルゞペンは固圢分重量
が49重量、平均粒子埄が0.1〜0.5Όであ぀た。 実斜䟋 12 実斜䟋〜においお共重合暹脂のスチレン含
量が30重量になる様にモノマヌ組成を倉えた以
倖は実斜䟋〜ず同様な方法によ぀おスチレン
−アクリル酞−゚チルヘキシル系共重合暹脂゚
マルゞペン共重合暹脂のモノマヌ組成スチレ
ン30重量、アクリル酞−゚チルヘキシル69重
量、むタコン酞重量を埗た。 埗られた共重合暹脂゚マルゞペンは固圢分重量
が49重量、平均粒子埄が0.1〜0.5Όであ぀た。 前蚘実斜䟋〜12で埗られた共重合暹脂゚マル
ゞペンず焌石膏ずを第衚に瀺す様な固圢分重量
比になる様に混合した。埗られた防湿凊理剀Kg
に氎Kgを加えお土壌防湿凊理剀ずした。 この土壌防湿凊理剀を甚いお吞氎率の枬定を行
぀た。その結果を第衚に瀺した。
[Table] Note) * The film obtained from the soil moisture-proofing agent of Comparative Example 3 was hard and brittle, and cracked under the slightest impact, making it unsuitable as a soil moisture-proofing agent.
Example 9 In Examples 1 to 6, the composition of the copolymer resin was 40% by weight of styrene and 59% by weight of 2-ethylhexyl acrylate.
A styrene-2-ethylhexyl acrylate copolymer resin emulsion was obtained in the same manner as in Examples 1 to 6 except that the monomer composition was changed so that the amount of methacrylic acid was 1% by weight. The obtained copolymer resin emulsion had a solid content of 49% by weight and an average particle size of 0.1 to 0.5Ό. Example 10 In Examples 1 to 6, the composition of the copolymer resin was 40% by weight of styrene and 2-ethylhexyl acrylate.
A styrene-2-ethylhexyl acrylate copolymer resin emulsion was obtained in the same manner as in Examples 1 to 6, except that the monomer composition was changed to 59% by weight and 1% by weight of acrylic acid. The obtained copolymer resin emulsion had a solid content of 49% by weight and an average particle size of 0.1 to 0.5Ό. Example 11 A styrene-2-ethylhexyl acrylate system was prepared in the same manner as in Examples 1 to 6 except that the monomer composition was changed so that the styrene content of the copolymer resin was 60% by weight. A copolymer resin emulsion (monomer composition of copolymer resin: 60% by weight of styrene, 39% by weight of 2-ethylhexyl acrylate, 1% by weight of itaconic acid) was obtained. The obtained copolymer resin emulsion had a solid content of 49% by weight and an average particle size of 0.1 to 0.5Ό. Example 12 A styrene-2-ethylhexyl acrylate system was prepared in the same manner as in Examples 1 to 6 except that the monomer composition was changed so that the styrene content of the copolymer resin was 30% by weight. A copolymer resin emulsion (monomer composition of copolymer resin: 30% by weight of styrene, 69% by weight of 2-ethylhexyl acrylate, 1% by weight of itaconic acid) was obtained. The obtained copolymer resin emulsion had a solid content of 49% by weight and an average particle size of 0.1 to 0.5Ό. The copolymer resin emulsions obtained in Examples 9 to 12 and calcined gypsum were mixed to have a solid content weight ratio as shown in Table 4. 2 kg of the obtained moisture-proofing agent
1 kg of water was added to the mixture to prepare a soil moisture-proofing agent. The water absorption rate was measured using this soil moisture-proofing agent. The results are shown in Table 4.

【衚】【table】

Claims (1)

【特蚱請求の範囲】[Claims]  スチレン成分及び䞍飜和カルボン酞成分の含
量がそれぞれ20〜70重量及び0.1〜重量で
あり、残郚がメタアクリル酞゚ステル成分で
あるスチレン−メタアクリル酞゚ステル−䞍
飜和カルボン酞共重合暹脂゚マルゞペン(A)ず石膏
(B)ずからなり、か぀(A)察(B)の混合割合は固圢分重
量比で察98〜40察60であるこずを特城ずする家
屋の床䞋郚分に適甚される土壌防湿凊理剀。
1 Styrene-(meth)acrylic acid ester-unsaturated carboxyl having a content of styrene component and unsaturated carboxylic acid component of 20 to 70% by weight and 0.1 to 5% by weight, respectively, and the remainder being a (meth)acrylic ester component Acid copolymer resin emulsion (A) and plaster
(B), and the mixing ratio of (A) to (B) is from 2:98 to 40:60 in terms of solid content weight ratio; .
JP16478184A 1984-08-08 1984-08-08 Moisture-proof treatment agent for soil Granted JPS6143693A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16478184A JPS6143693A (en) 1984-08-08 1984-08-08 Moisture-proof treatment agent for soil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16478184A JPS6143693A (en) 1984-08-08 1984-08-08 Moisture-proof treatment agent for soil

Publications (2)

Publication Number Publication Date
JPS6143693A JPS6143693A (en) 1986-03-03
JPS6315315B2 true JPS6315315B2 (en) 1988-04-04

Family

ID=15799824

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16478184A Granted JPS6143693A (en) 1984-08-08 1984-08-08 Moisture-proof treatment agent for soil

Country Status (1)

Country Link
JP (1) JPS6143693A (en)

Also Published As

Publication number Publication date
JPS6143693A (en) 1986-03-03

Similar Documents

Publication Publication Date Title
US6217646B1 (en) Sculptable and breathable wall coating mortar compound
KR101400065B1 (en) Constructing method for waterproof using infiltrative liquid waterproofing agent
KR101370694B1 (en) Methods for applying polymer-modified wet concrete mixtures
EP1186577A2 (en) Flexible setting type joint compound
JPS61158851A (en) Cement composition
JP4033766B2 (en) Makeup structure on the building surface
JPS6315315B2 (en)
CN103502003B (en) For the polymer composition of the improvement of cement class substructure
JPS6019834A (en) Moisture-proofing treatment agent for soil
JPS584749B2 (en) Manufacturing method of base material
EP0970931A1 (en) Compositions useful for suppressing efflorescence on mineral substrates
CA3197580A1 (en) Starch as a primer for substrates
JPS643833B2 (en)
US12006262B2 (en) Plasticizer dedusting agents for joint compounds
JP2008037717A (en) Elastic color polymer cement mortar composition
JPH01105854A (en) Foundation layer for preventing blister of impermeable finished layer
JPH03275840A (en) Method and layer for underfloor dampproofing/ant prevention, and composition therefor
JPS60230451A (en) Under-floor moistureproof construction method
JPS60115669A (en) Primer for cement mortar
US20080245276A1 (en) Lining mortar
CA2269513A1 (en) Sculptable and breathable wall coating mortar compound
JPS63295489A (en) Film forming curing agent for cement
JPS6225621B2 (en)
JPS6110660A (en) Construction of wall surface in house
JP2004225375A (en) Polymer cement mortar composition for continuous footing, and method of finishing surface of continuous footing