JPS6315311B2 - - Google Patents

Info

Publication number
JPS6315311B2
JPS6315311B2 JP55000040A JP4080A JPS6315311B2 JP S6315311 B2 JPS6315311 B2 JP S6315311B2 JP 55000040 A JP55000040 A JP 55000040A JP 4080 A JP4080 A JP 4080A JP S6315311 B2 JPS6315311 B2 JP S6315311B2
Authority
JP
Japan
Prior art keywords
parts
paint
butyl
acid
meth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55000040A
Other languages
Japanese (ja)
Other versions
JPS5698266A (en
Inventor
Hajime Kumada
Kazuyoshi Maruyama
Takeshi Yamashita
Yukio Yokoyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Ink and Chemicals Co Ltd filed Critical Dainippon Ink and Chemicals Co Ltd
Priority to JP4080A priority Critical patent/JPS5698266A/en
Publication of JPS5698266A publication Critical patent/JPS5698266A/en
Publication of JPS6315311B2 publication Critical patent/JPS6315311B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Polyurethanes Or Polyureas (AREA)
  • Paints Or Removers (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明は初期硬化性に優れたりレタン塗料甚組
成物に関する。 ポリ゚ステルりレタン塗料に比べおアクリルり
レタン塗料は淡色、硬化剀量が少なくおすむ、耐
候性、硬床、耐シンナヌ性、機械的物性等の面で
優れおいるこずから、その需芁は幎々増加しおい
る。しかしながら、朚工、合板、建築倖装、自動
車補修、無機質材甚など、立䞊りの速硬化性を芁
求される甚途においおは、物性面では充分でも
仲々、立䞊りの硬化性の良いものがないのが珟状
である。ずころで、硬化性を良くする方法ずしお
埓来から知られおいるやり方には䟋えば䞍飜和
酞モノマヌを䜿う方法、オクチル酞亜鉛やゞブ
チルチンゞラりレヌトの様な有機金属塩系化合物
を倖郚添加する方法、アミン類を倖郚添加する
方法などがあるが、ポツトラむフずの兌合いず
か、耐候性、耐薬品性の䜎䞋の問題、添加量のコ
ントロヌルの問題、溶出又は移行性の問題、臭気
や着色の問題等の点で、各々䞀長䞀短があ぀お
仲々、充分に䜿いこなすこずが難しい。 本発明者等はこの様な状況に鑑み、鋭意研究の
結果、共重合䜓䞭に重合性有機スズ化合物を導入
するこずにより、前蚘難点が改良されるこずを芋
い出し、本発明に到぀た。 即ち、本発明は 「(1) 重合性有機スズ化合物
0.0001〜10重量以䞋、ず略す (2) 氎酞基含有重合性単量䜓 〜50 (3) (1)、(2)以倖の重合性単量䜓100−(1)(2) からなる重合䜓にポリむ゜シアネヌトをOH
NCO0.5〜1.5圓量比で配合しお埗
られる初期硬化性に優れた塗料甚組成物。」に関
する。 本発明に䜿甚する重合性有機スズ化合物には、
重合性カルボン酞のスズ塩が奜たしく、䟋えば、
ゞブチルチンマレヌト、ゞオクチルチンマレヌ
ト、ゞブチルチンラりレヌトマレヌト、ゞブチル
チンフマレヌト、ゞブチルチンオクテヌトマレヌ
ト、トリブチルチンメタアクリレヌト、ゞフ
゚ニルチンメタクリレヌトなどが含たれる。その
䜿甚量は期埅する初期の硬化性ずポツトラむフの
バランスで遞択されるが、堎合によ぀おはブロツ
クむ゜シアネヌトの解離觊媒ずしおの効果を期埅
するこずもあるので、化合物ずしお0.0001〜10
、奜たしくは0.001〜である。 氎酞基含有重合性単量䜓には(i)β−ヒドロキシ
゚チルメタアクリレヌト、β−ヒドロキシプ
ロピルメタアクリレヌト、−ヒドロキシブ
チルメタアクリレヌト、メタツク、同
日油化孊(æ ª)、などの氎酞基を含有したメタ
アクリル酞誘導䜓、(ii)カヌゞナラシ゚ル化孊
(æ ª)、オクチル酞グリシゞル゚ステル、ダシ油脂
肪酞グリシゞル゚ステル等の䟡カルボン酞のモ
ノグリシゞル゚ステルずかブチルグリシゞル゚ヌ
テルなどのモノグリシゞル゚ヌテルで代衚される
モノ゚ポキシ化合物ずメタアクリル酞、フマ
ル酞、マレむン酞のようなカルボキシル基含有単
量䜓ずの付加物、(iii)重合性䞍飜和基を有する䜎分
子量のポリ゚ステル系暹脂などがその䟋ずしお挙
げられる。その䜿甚量が未満では物性が十分
出お来ないし、50を超えるず塗料䟡栌の面で奜
たしくない。埓぀お、〜50、特に10〜40の
範囲が奜たしい。 (3)成分である、(1)、(2)成分以倖の重合性単量䜓
ずしおは、スチレン、α−メチルスチレンなどの
スチレン系化合物メチルメタアクリレヌ
ト、゚チルメタアクリレヌト、ブチルメ
タアクリレヌト、む゜ブチルメタアクリレ
ヌト、グリシゞルメタアクリレヌトなどの
メタアクリル酞誘導䜓メタアクリル酞、
フマル酞、マレむン酞、むタコン酞、β−アシツ
ドホスホキシメタアクリレヌトなどの重合性
䞍飜和酞マレむン酞又はフマル酞ずC1〜C8の
䟡アルコヌルずのゞ゚ステル、メタアクリ
ルアミド、ゞアルキルアミノアルキルメタア
クリレヌト、−アルコキシメチルメタアク
リルアミドなどが挙げられる。これらの成分は
(1)、(2)成分の各䜿甚量で決た぀おくるが、所望ず
する塗膜物性に応じお、適宜、組合わせお䜿甚す
れば良い。これらの重合性単量䜓のうち、䞍飜和
酞、ゞアルキルアミノアルキルメタアクリレ
ヌトはポリむ゜シアネヌトずの硬化反応の促進効
果を有しおいるが、その他の玠地ずの付着性向䞊
効果も有しおいる。本発明で䜿甚する堎合には、
むしろ埌者の䜿甚効果を期埅しお䜿甚するので、
その䜿甚量は0.05〜のごく少ない量の範囲に
留めおおくのが奜たしい。又、スチレン系化合物
を䜿甚する堎合には塗膜物性、耐久性、鮮映感、
他暹脂ずの盞溶性などの面から、その䜿甚量は
〜40、特に〜30の範囲に留めおおくのが奜
たしい。メタアクリルアミド、−アルコキ
シメチルメタアクリルアミドなどのゞアルキ
ルアミノアルキルメタアクリレヌト以倖の含
窒玠単量䜓に぀いおも、濁り、耐久性、保存安定
性、反応䞭に増粘し易いずい぀た点から、これら
のものを䜿甚する堎合には、䜿甚量は0.5〜15
皋床に留めおおくのが望たしい。メタアクリ
ル酞誘導䜓は、䞊蚘の様な䞍郜合な面は比范的少
ないので、特別な限定はなく、所望する塗膜物性
に応じお、䜕皮類か、適宜組合わせお䜿甚すれば
良い。 尚、−ブチルメタクリレヌトおよび、マレむ
ン酞又はフマル酞ずC1〜C8の䟡アルコヌルず
のゞ゚ステルを䜵甚しお埗られる重合䜓、䟋えば (1) 重合性有機スズ化合物 0.0001〜10 (2) 氎酞基含有重合性単量䜓 〜50 (3) −ブチルメタクリレヌト 20〜90 (4) マレむン酞又はフマル酞ずC1〜C8の䟡ア
ルコヌルずのゞ゚ステル 0.1〜25 (5) (1)〜(4)以倖の共重合可胜な単量䜓
100−(1)(2)(3)(4) から埗られるものは初期硬化性のみならず、塗装
䜜業性、倖芳肉持感等に優れ、玫倖線による黄
倉、劣化が少ない塗料甚組成物をもたらすこずが
できる。この際、或る䞀定量以䞊の−ブチルメ
タクリレヌトを䜿甚するこずにより、耐玫倖線性
が向䞊する機構はよく刀らないが、物性面ではこ
のモノマヌの保持する特性から、溶解性向䞊によ
る䜎粘床化や靭性に富んだ塗膜がえられお、クラ
ツクに察する抵抗力の向䞊が実珟される。その䜿
甚量が20以䞋では顕著な䜿甚効果が埗られない
し、90以䞊では、塗膜物性の面で耐溶剀性、耐
ガ゜リン性、耐汚染性が䜎䞋するなど、奜たしく
ないこずが出おくるので、䜿甚量は20〜90、特
にその効果ず塗膜物性から考えお、30〜80の範
囲が奜たしい。又、マレむン酞又はフマル酞ず
C1〜C8の䟡アルコヌルずのゞ゚ステルは、マ
レむン酞、フマル酞ずC1〜C8の䟡アルコヌル、
䟋えば、メタノヌル、゚タノヌル、プロパノヌ
ル、ブタノヌルなどずのゞ゚ステル類で共重合
性、モノマヌずしおの貯蔵安定性、塗膜物性等か
ら、ゞブチルフマレヌト、ゞむ゜ブチルフマレヌ
トが特に掚奚される。この成分を䜿甚するこずに
より、メルカプタン類など、耐候性に悪圱響を及
がす連鎖移動剀を䜿甚しなくおも、䜎粘床化を図
るこずが可胜であり、実質的なハむ゜リツド化を
期埅するこずが出来る。0.1未満では䜿甚効果
が埗られないし、25を超えるずその共重合性か
ら、堎合によ぀おはフリヌモノマヌの圢で、暹脂
溶液䞭に残぀おしたうので奜たしくない。埓぀お
0.1〜25、特に〜15の範囲が奜たしい。 而しお、埗られる重合䜓は数平均分子量
1000〜8000、特に2000〜7000重量平均
分子量1.7〜3.7、特に1.9〜3.7Tgガ
ラス転䜍点−10〜60℃、特に〜50℃のもの
が奜たしい。重合䜓のが1000以䞋であれば、
タレ易く、塗膜物性が十分出ないし、出そうずす
ればOH䟡を高くしなければならず、塗膜が脆く
な぀たり、塗料䟡栌が高くな぀たりしお奜たしく
ない。が8000以䞊になるず塗膜物性は問題な
いが、塗面の倖芳、メタルの戻りムラ、肌、光
沢、肉持感などに欠陥が珟われる。比
は分子量分垃の挙動をあらわし、溶剀離れの難易
にかかわりがあり、1.7であるず溶
剀離れを良くすのには有効であるが、珟圚の公知
の溶液重合法ではなかなか難しく、䞀方、
3.7になるず溶剀離れが悪くなり、塗装䜜
業性、メタルの戻りムラ、ツダ、肉持感などに䞍
郜合なこずが倚くなるので奜たしくない。重合䜓
のTgは䟋えばFoxの匏Tg〓WiTgiTgi、 Wi成分のTg、重量分率等で蚈算するこず
が出来る。Tgが−10℃以䞋であれば、屈曲性、
寒熱のくりかえしに䌎なう耐クラツク性、耐衝撃
性などの機械的物性には優れおいるが、耐汚染
性、耐溶剀性、定ブロツキング性などの面で劣
り、60℃以䞊では、逆に機械的物性が䜎䞋し、耐
汚染性、耐溶剀性、耐ブロツキング性などが良く
なる。 本発明で䜿甚されるポリむ゜シアネヌトにはト
リレンゞむ゜シアネヌト、ゞプニルメタンゞむ
゜シアネヌト、キシリレンゞむ゜シアネヌトなど
の芳銙族系ゞむ゜シアネヌトテトラメチレンゞ
む゜シアネヌト、ヘキサメチレンゞむ゜シアネヌ
ト、トリメチルヘキサンゞむ゜シアネヌトなどの
脂肪族ゞむ゜シアネヌトむ゜ホロンゞむ゜シア
ネヌト、メチルシクロヘキサン−たたは
−ゞむ゜シアネヌト、4′−メチレン
ビスシクロヘキシルむ゜シアネヌト、
−む゜シアナヌトメチルシクロヘキサンなど
の脂環族系ゞむ゜シアネヌトず゚チレングリコヌ
ル、プロピレングリコヌル、ネオペンチルグリコ
ヌル、トリメチロヌル゚タン、トリメチロヌルプ
ロパンなどの様な倚䟡アルコヌルやむ゜シアネヌ
ト基ず反応する官胜基を有するごく分子量の䜎い
ポリ゚ステル暹脂油倉性タむプを含む、氎な
どずの付加物、或はピナレツト䜓、ゞむ゜シアネ
ヌト同志の重合䜓オリゎマヌ、或はこれらず
䜎玚䟡アルコヌル、メチル゚チルケトオキシム
など公知のブロツク化剀でブロツクしたものなど
が適しお居り、垂販されおいる䟋ずしおは、バヌ
ノツク−750、−800、DN−950、DN−970、
−500、−550倧日本むンキ化孊、タケネヌ
ト−102、−110N、−120N、−140N、
−420S歊田薬品、コロネヌト、HL、2030
日本ポリりレタン、デスモデナヌル、、
HLバむ゚ル瀟などが挙げられる。特に、玫
倖線により黄倉しない、芳銙族系ゞむ゜シアネヌ
ト以倖のものが奜たしい。 本発明では前蚘の重合䜓ずポリむ゜シアネヌト
ずの配合比はOHNCO0.5〜1.5圓量
比であり、OH1圓量に察しおNCOが0.5圓量未
満であれば十分な塗膜物性が埗られず、OH1圓
量に察しおNCO1.5圓量を超えるず塗膜物性は十
分出るが、塗料䟡栌が高いものになる。 本発明の重合䜓を埗るのに䜿甚出来る溶剀類は
トル゚ン、キシレンなどの芳銙族炭化氎玠類、酢
酞゚チル、酢酞ブチル、セロ゜ルブアセテヌトな
どの酢酞゚ステル系溶剀、MEK、MIBKなどの
ケトン系溶剀など、通垞、りレタン塗料に䜿甚さ
れおいるものであればいづれでも䜿甚出来る。重
合に䜿甚する開始剀もAIBN、BPO、ゞタヌシ
ダリヌブチルパヌオキシドなど通垞、アクリル単
量䜓の重合に䜿甚されおいるものであれば䜿甚出
来るし、重合法も公知の溶液重合法でさし぀かえ
ない。かくしお埗られた塗料はクリダヌ塗料ずし
おも、゚ナメル塗料ずしおも䜿甚出来る。甚途ず
しおは朚工甚塗料、合板甚塗料、自動車補修甚塗
料、プラスチツク甚塗料、建築倖装甚塗料、無機
質材甚塗料など広範囲にわた぀おあげられる。
又、さらに芁すれば公知のレベリング剀、消泡
剀、スリツプ防止剀などの塗料添加剀、或はニト
ロセルロヌス、CABなどのセルロヌス系化合物、
ビニル暹脂、シリコン暹脂、アミノ暹脂、ポリ゚
ステル暹脂、他のアクリル暹脂など他の暹脂を本
重合䜓ず盞溶する範囲内で少量ブレンドするこず
も可胜である。塗装、硬化条件に぀いおもスプレ
ヌ塗装、静電塗装、刷毛塗りずか垞枩也燥、匷制
也燥、焌付也燥等通垞行なわれおいる方法が適甚
出来る。 次に実斜䟋で本発明を説明するが、それにより
限定されるものではなく、䟋䞭の郚は重量郚を瀺
す。 実斜䟋  撹拌装眮、枩床蚈、還流コンデンサヌ、䞍掻性
ガス導入口を付した四ツ口フラスコにキシレン
500郚、酢酞ブチル200郚を仕蟌んで、120℃に昇
枩した。120℃になればスチレン300郚、メチルメ
タクリレヌト330郚、ブチルアクリレヌト120郚、
゚チルアクリレヌト50郚、β−ヒドロキシ゚チル
メタアクリレヌト190郚、ゞブチルチンラりレヌ
トマレヌト10郚、タヌシダリヌブチルパヌオクト
゚ヌト20郚、ゞタヌシダリヌブチルパヌオキシド
郚、AIBN5郚、酢酞ブチル300郚から成る混合
物を時間かけお滎䞋し、滎䞋が終れば120℃で
箄10時間保持しお、䞍揮発分50.3、粘床〜
、酞䟡1.0、色数、OH䟡40の暹脂溶液をえ
た。 埗られた暹脂溶液100郚、ポリむ゜シアネヌト
ずしおバヌノツクDN−950倧日本むンキ化孊瀟
補24郚暹脂のOHポリむ゜シアネヌトの
NCOの圓量比および酞䟡チタン−CR
−ブリテむツシナ・チタン瀟補36.6郚をキ
シレントル゚ン酢酞ブチル酢酞゚チルセ
ロ゜ルブアセテヌト20501510重量比
の混合溶剀により、岩田カツプで14〜15秒たで皀
釈しお塗料を埗た。この塗料の物性を第衚に瀺
す。 実斜䟋  実斜䟋ず同じ四ツ口フラスコにキシレン500
郚、酢酞ブチル200郚を仕蟌んで120℃に昇枩し
た。120℃になればメチルメタクリレヌト650郚、
ブチルアクリレヌト150郚、β−ヒドロキシ゚チ
ルメタクリレヌト140郚、メタクリル酞郚、゚
チルアクリレヌト48郚、ゞブチルチンマレヌト
郚、タヌシダリブチルパヌオクト゚ヌト25郚、ゞ
タヌシダリブチルパヌオキシド郚、AIBN6郚、
酢酞ブチル300郚から成る混合物を時間かけお
滎䞋し、滎䞋が終れば120℃で玄10時間保持しお、
䞍揮発分51.0、粘床、酞䟡2.3、色数、
OH䟡30の暹脂溶液を埗た。 埗られた暹脂溶液100郚、バヌノツクDN−950
18郚OHNCOの圓量比および酞化チタ
ン−CR−34.2郚を甚いお以䞋、実斜䟋
ず同様にしお塗料を埗た。この塗料の物性を第
衚に瀺す。 比范䟋  モノマヌ混合物ずしおスチレン300郚、メチル
メタクリレヌト330郚、ブチルアクリレヌト130
郚、β−ヒドロキシ゚チルメタクリレヌト190郚、
゚チルアクリレヌト50郚を甚いる他は実斜䟋ず
同様にしお䞍揮発分50.5、粘床、酞䟡0.9、
色数、OH䟡40の暹脂溶液を埗た。 以䞋、実斜䟋ず同様にしお塗料を埗た。この
塗料の物性を第衚に瀺す。 比范䟋  モノマヌ混合物ずしおメチルメタクリレヌト
650郚、ブチルアクリレヌト150郚、β−ヒドロキ
シ゚チルメタクリレヌト140郚、メタクリル酞
郚、゚チルアクリレヌト53郚を甚いる他は実斜䟋
ず同様にしお䞍揮発分50.6、粘床、酞䟡
2.2、色数、OH䟡30の暹脂溶液を埗た。 以䞋、実斜䟋ず同様にしお塗料を埗た。この
塗料の物性を第衚に瀺す。
The present invention relates to a urethane coating composition with excellent initial curing properties. Compared to polyester urethane paints, acrylic urethane paints are lighter in color, require less curing agent, and are superior in terms of weather resistance, hardness, thinner resistance, mechanical properties, etc., so the demand for them is increasing year by year. . However, for applications that require fast curing properties such as woodworking, plywood, building exteriors, automobile repair, and inorganic materials, there is currently no product that has good curing properties even though the physical properties are sufficient. be. By the way, conventionally known methods for improving curing properties include, for example, using unsaturated acid monomers, externally adding organic metal salt compounds such as zinc octylate and dibutyltin dilaurate, and using amines. There are methods to add externally, but there are issues such as compatibility with pot life, problems with weather resistance and decrease in chemical resistance, problems with controlling the amount added, problems with elution or migration, problems with odor and coloration, etc. Each one has its own advantages and disadvantages, making it difficult to use them to their full potential. In view of this situation, the present inventors conducted extensive research and found that the above-mentioned drawbacks could be improved by introducing a polymerizable organic tin compound into the copolymer, leading to the present invention. That is, the present invention provides ``(1) Polymerizable organic tin compound
0.0001 to 10% by weight (hereinafter abbreviated as %) (2) Hydroxyl group-containing polymerizable monomer 5 to 50% (3) Polymerizable monomers other than (1) and (2) 100−{(1)+ (2)} OH/OH/polyisocyanate to a polymer consisting of
A coating composition with excellent initial curing properties obtained by blending NCO = 1/0.5 to 1/1.5 (equivalent ratio). ” related. The polymerizable organic tin compound used in the present invention includes:
Tin salts of polymerizable carboxylic acids are preferred, e.g.
These include dibutyl tin malate, dioctyl tin malate, dibutyl tin laurate malate, dibutyl tin fumarate, dibutyl tin octate malate, tributyl tin (meth)acrylate, diphenyl tin methacrylate, and the like. The amount to be used is selected based on the expected balance between initial curing properties and pot life.
%, preferably 0.001 to 5%. Hydroxyl group-containing polymerizable monomers include (i) β-hydroxyethyl (meth)acrylate, β-hydroxypropyl (meth)acrylate, 4-hydroxybutyl (meth)acrylate, Metac E, and P
(Meta) containing hydroxyl groups such as (NOYU Chemical Co., Ltd.)
Acrylic acid derivatives, (ii) Cardiula E (Ciel Chemical Co., Ltd.
Co., Ltd.), monoepoxy compounds represented by monoglycidyl esters of monovalent carboxylic acids such as octylic acid glycidyl ester and coconut oil fatty acid glycidyl ester, and monoglycidyl ethers such as butyl glycidyl ether, (meth)acrylic acid, and fumaric acid. , an adduct with a carboxyl group-containing monomer such as maleic acid, and (iii) a low molecular weight polyester resin having a polymerizable unsaturated group. If the amount used is less than 5%, sufficient physical properties will not be obtained, and if it exceeds 50%, it is undesirable in terms of paint price. Therefore, a range of 5 to 50%, particularly 10 to 40% is preferred. Polymerizable monomers other than components (1) and (2), which are component (3), include styrene compounds such as styrene and α-methylstyrene; methyl (meth)acrylate, ethyl (meth)acrylate, butyl (meth)acrylic acid derivatives such as (meth)acrylate, isobutyl (meth)acrylate, and glycidyl (meth)acrylate; (meth)acrylic acid;
Polymerizable unsaturated acids such as fumaric acid, maleic acid, itaconic acid, β-acid phosphooxy (meth)acrylate; diester of maleic acid or fumaric acid with C1 - C8 monohydric alcohol, (meth)acrylamide , dialkylaminoalkyl (meth)acrylate, N-alkoxymethyl (meth)acrylamide, and the like. These ingredients are
The amount of each component (1) and (2) used determines the amount used, but they may be used in an appropriate combination depending on the desired physical properties of the coating film. Among these polymerizable monomers, unsaturated acids and dialkylaminoalkyl (meth)acrylates have the effect of accelerating the curing reaction with polyisocyanate, but also have the effect of improving adhesion to other substrates. ing. When used in the present invention,
Rather, I use it expecting the latter effect,
It is preferable to keep the amount used within a very small range of 0.05 to 5%. In addition, when using styrene compounds, the physical properties of the coating film, durability, sharpness,
In terms of compatibility with other resins, the amount used is 1
It is preferable to keep it within the range of ~40%, especially 1~30%. Nitrogen-containing monomers other than dialkylaminoalkyl (meth)acrylates, such as (meth)acrylamide and N-alkoxymethyl (meth)acrylamide, have problems such as turbidity, durability, storage stability, and tendency to thicken during reaction. From this point of view, when using these substances, the amount used should be 0.5 to 15%.
It is desirable to keep it to a certain extent. Since (meth)acrylic acid derivatives have relatively few disadvantages as described above, there are no particular limitations, and several types may be used in an appropriate combination depending on the desired physical properties of the coating film. In addition, a polymer obtained by using a combination of n-butyl methacrylate and a diester of maleic acid or fumaric acid and a C 1 to C 8 monohydric alcohol, such as (1) polymerizable organic tin compound 0.0001 to 10% (2 ) Hydroxyl group-containing polymerizable monomer 5-50% (3) n-butyl methacrylate 20-90% (4) Diester of maleic acid or fumaric acid and C1 - C8 monohydric alcohol 0.1-25% (5 ) Copolymerizable monomers other than (1) to (4)
The product obtained from 100-{(1)+(2)+(3)+(4)}% has not only excellent initial curing properties but also excellent paint workability, solid appearance, etc., and is resistant to yellowing and deterioration due to ultraviolet rays. It is possible to provide a coating composition with less At this time, the mechanism by which UV resistance is improved by using more than a certain amount of n-butyl methacrylate is not well understood, but in terms of physical properties, due to the properties held by this monomer, it is possible to reduce viscosity by improving solubility. A coating film with high toughness and toughness can be obtained, resulting in improved resistance to cracking. If the amount used is less than 20%, no noticeable effect will be obtained, and if it is more than 90%, undesirable effects may occur in terms of physical properties of the coating, such as a decrease in solvent resistance, gasoline resistance, and stain resistance. Therefore, the amount to be used is preferably 20 to 90%, particularly in the range of 30 to 80%, considering the effect and physical properties of the coating film. Also, maleic acid or fumaric acid
Diesters with C 1 to C 8 monohydric alcohols include maleic acid, fumaric acid and C 1 to C 8 monohydric alcohols,
For example, dibutyl fumarate and diisobutyl fumarate are particularly recommended because of their copolymerizability with methanol, ethanol, propanol, butanol, etc., storage stability as a monomer, and physical properties of the coating film. By using this component, it is possible to lower the viscosity without using chain transfer agents such as mercaptans, which have a negative effect on weather resistance, and it is possible to expect a substantial increase in solidity. . If it is less than 0.1%, no effect can be obtained, and if it exceeds 25%, it may remain in the resin solution in the form of a free monomer due to its copolymerizability, which is not preferable. accordingly
A range of 0.1 to 25%, particularly 5 to 15% is preferred. Thus, the obtained polymer has n (number average molecular weight)
= 1000 to 8000, especially 2000 to 7000; w (weight average molecular weight)/n = 1.7 to 3.7, especially 1.9 to 3.7; Tg (glass transition point) = -10 to 60°C, preferably 0 to 50°C . If n of the polymer is 1000 or less,
It is easy to sag, and the physical properties of the paint film are not good enough, and if you want to achieve it, you have to increase the OH value, which is not desirable because the paint film becomes brittle and the price of the paint increases. When n is 8000 or more, there are no problems with the physical properties of the coating, but defects appear in the appearance of the coating, uneven metal return, skin, gloss, texture, etc. The w/n ratio expresses the behavior of molecular weight distribution and is related to the difficulty of separating from the solvent.W/n<1.7 is effective in improving the separation from the solvent, but in the currently known solution polymerization method, It's quite difficult, but on the other hand, w/
When Mn>3.7, solvent removal becomes difficult and there are many disadvantages such as poor painting workability, uneven return of metal, gloss, and texture, which is not preferable. The Tg of the polymer can be calculated, for example, using Fox's formula; 1/Tg=Wi/Tgi (Tgi, Wi: Tg of component i, weight fraction). If Tg is -10℃ or less, flexibility,
Although it has excellent mechanical properties such as crack resistance and impact resistance due to repeated exposure to cold and heat, it is inferior in terms of stain resistance, solvent resistance, constant blocking property, etc. Mechanical properties are reduced, and stain resistance, solvent resistance, blocking resistance, etc. are improved. The polyisocyanates used in the present invention include aromatic diisocyanates such as tolylene diisocyanate, diphenylmethane diisocyanate, and xylylene diisocyanate; aliphatic diisocyanates such as tetramethylene diisocyanate, hexamethylene diisocyanate, and trimethylhexane diisocyanate; isophorone diisocyanate, methyl Cyclohexane-2,4 (or 2,6)-diisocyanate, 4,4'-methylenebis(cyclohexyl isocyanate), 1,3
- (Methyl isocyanate) A compound having a functional group that reacts with an alicyclic diisocyanate such as cyclohexane and a polyhydric alcohol or isocyanate group such as ethylene glycol, propylene glycol, neopentyl glycol, trimethylolethane, trimethylolpropane, etc. Low molecular weight polyester resins (including oil-modified types), adducts with water, etc., polymers, diisocyanate polymers (oligomers), or known blocking of these with lower monohydric alcohols, methyl ethyl ketoxime, etc. Suitable products are those blocked with a chemical agent, and commercially available examples include Burnock D-750, D-800, DN-950, DN-970,
D-500, D-550 (Dainippon Ink Chemical), Takenate D-102, D-110N, D-120N, D-140N,
B-420S (Takeda Pharmaceutical), Coronate L, HL, 2030
(Japan Polyurethane), Desmodeleur L, N,
Examples include HL (Bayer AG). In particular, those other than aromatic diisocyanates that do not yellow due to ultraviolet rays are preferred. In the present invention, the blending ratio of the above polymer and polyisocyanate is OH/NCO = 1/0.5 to 1/1.5 (equivalent ratio), and if NCO is less than 0.5 equivalent to 1 equivalent of OH, a sufficient coating film is obtained. Physical properties cannot be obtained, and if the amount exceeds 1.5 equivalents of NCO per 1 equivalent of OH, the physical properties of the coating film will be sufficient, but the price of the paint will be high. Solvents that can be used to obtain the polymer of the present invention include aromatic hydrocarbons such as toluene and xylene, acetate ester solvents such as ethyl acetate, butyl acetate, and cellosolve acetate, and ketone solvents such as MEK and MIBK. Any material normally used for urethane paints can be used. The initiator used for polymerization can be one that is normally used for polymerizing acrylic monomers, such as AIBN, BPO, ditertiary butyl peroxide, and the polymerization method can be any known solution polymerization method. . The paint thus obtained can be used both as a clear paint and as an enamel paint. It can be used in a wide range of applications, including wood coatings, plywood coatings, automobile repair coatings, plastic coatings, architectural exterior coatings, and inorganic material coatings.
In addition, if necessary, known paint additives such as leveling agents, antifoaming agents, and anti-slip agents, or cellulose compounds such as nitrocellulose and CAB,
It is also possible to blend a small amount of other resins, such as vinyl resins, silicone resins, amino resins, polyester resins, and other acrylic resins, within a range that is compatible with the present polymer. Regarding the coating and curing conditions, commonly used methods such as spray coating, electrostatic coating, brush coating, room temperature drying, forced drying, and baking drying can be applied. Next, the present invention will be explained with reference to examples, but the present invention is not limited thereby, and parts in the examples indicate parts by weight. Example 1 Add xylene to a four-necked flask equipped with a stirrer, thermometer, reflux condenser, and inert gas inlet.
500 parts and 200 parts of butyl acetate were charged, and the temperature was raised to 120°C. When the temperature reaches 120℃, 300 parts of styrene, 330 parts of methyl methacrylate, 120 parts of butyl acrylate,
Consisting of 50 parts of ethyl acrylate, 190 parts of β-hydroxyethyl methacrylate, 10 parts of dibutyltin laurate malate, 20 parts of tert-butyl peroctoate, 5 parts of di-tert-butyl peroxide, 5 parts of AIBN, and 300 parts of butyl acetate. The mixture was added dropwise over 5 hours, and after the addition was completed, it was kept at 120°C for about 10 hours until the non-volatile content was 50.3% and the viscosity was
A resin solution with Y, acid value 1.0, color number <1, and OH value 40 was obtained. 100 parts of the obtained resin solution, 24 parts of Burnock DN-950 (manufactured by Dainippon Ink Chemical Co., Ltd.) as polyisocyanate (OH of resin/polyisocyanate)
Equivalence ratio of NCO = 1) and acid value titanium (R-CR
-3: Diluted 36.6 parts (manufactured by Britain Titanium Co., Ltd.) with a mixed solvent of xylene/toluene/butyl acetate/ethyl acetate/cellosolve acetate = 20/50/15/10/5 weight ratio in an Iwata cup for 14 to 15 seconds. and got the paint. The physical properties of this paint are shown in Table 1. Example 2 Add 500 g of xylene to the same four-necked flask as in Example 1.
and 200 parts of butyl acetate, and the temperature was raised to 120°C. When the temperature reaches 120℃, 650 parts of methyl methacrylate,
150 parts of butyl acrylate, 140 parts of β-hydroxyethyl methacrylate, 7 parts of methacrylic acid, 48 parts of ethyl acrylate, 5 parts of dibutyl tin malate
25 parts of tertiary butyl peroctoate, 5 parts of ditertiary butyl peroxide, 6 parts of AIBN,
A mixture consisting of 300 parts of butyl acetate was added dropwise over 5 hours, and after the addition was completed, it was kept at 120°C for about 10 hours.
Nonvolatile content 51.0%, viscosity W, acid value 2.3, number of colors <1,
A resin solution with an OH value of 30 was obtained. 100 parts of the resulting resin solution, Burnock DN-950
A coating material was obtained in the same manner as in Example 1 using 18 parts (OH/NCO equivalent ratio = 1) and 34.2 parts of titanium oxide (R-CR-3). The physical properties of this paint are shown in Table 1. Comparative Example 1 Monomer mixture: 300 parts of styrene, 330 parts of methyl methacrylate, 130 parts of butyl acrylate
parts, 190 parts of β-hydroxyethyl methacrylate,
Same as Example 1 except that 50 parts of ethyl acrylate was used, non-volatile content 50.5%, viscosity X, acid value 0.9,
A resin solution with a color number <1 and an OH value of 40 was obtained. Hereinafter, a paint was obtained in the same manner as in Example 1. The physical properties of this paint are shown in Table 1. Comparative Example 2 Methyl methacrylate as monomer mixture
650 parts, butyl acrylate 150 parts, β-hydroxyethyl methacrylate 140 parts, methacrylic acid 7
53 parts of ethyl acrylate was used, but in the same manner as in Example 2, the non-volatile content was 50.6%, the viscosity Y, and the acid value.
A resin solution with a color number of 2.2, color number <1, and an OH value of 30 was obtained. Thereafter, a paint was obtained in the same manner as in Example 2. The physical properties of this paint are shown in Table 1.

【衚】 詊隓条件 各物性詊隓で甚いられる塗膜は塗料を゚ア・ス
プレヌでブリキ板BN144凊理鋌板に塗垃
し、70℃で30分間焌付けお埗られた38〜40Όの膜
厚のものを甚いた。 䜆し、 也燥性23℃ブリキ板に塗料を塗垃した埌、
焌付けるこずなく、23℃に保ちながら䞀定時間
毎にガヌれ枚を重ねお、その䞊に100の分
銅をのせお分間攟眮し、塗膜䞊に残るガヌれ
跡を刀定する。 実斜䟋  −ブチルメタクリレヌト650郚、スチレン50
郚、ゞブチルフマレヌト100郚、ゞブチルチンマ
レヌト0.1郚、メチルメタクリレヌト90郚、メタ
クリル酞9.9郚、β−ヒドロキシ゚チルメタクリ
レヌト100郚から成るモノマヌ混合物1000郚を䜜
成した。補造䟋ず同じ四぀口フラスコにモノマヌ
混合物150郚、トル゚ン150郚、酢酞ブチル388郚、
タヌシダリヌブチルパヌベンゟ゚ヌト郚を仕蟌
んで118℃に昇枩し、118℃になれば、先に䜜成し
たモノマヌ混合物850郚、トル゚ン280郚、
AIBN10郚、ゞタヌシダリヌブチルパヌオキシド
10郚、タヌシダリヌブチルパヌオクテヌト30郚か
ら成る混合物を時間かけお滎䞋したのち、120
℃に昇枩しお10時間保持した。䞍揮発分54.9、
粘床、OH䟡26、酞䟡4.0、6000、
3.2、Tg32℃の暹脂溶液をえた。 埗られた暹脂溶液100郚、バヌノツクDN−950
15.6郚OHNCOの圓量比および酞䟡チ
タン−CR−35.9郚を甚いお以䞋、実斜
䟋ず同様にしお塗料を埗た。この塗料の物性を
第衚に瀺す。 実斜䟋  −ブチルメタクリレヌト550郚、スチレン55
郚、ゞブチルフマレヌト45郚、ゞブチルチンラり
レヌトマレヌト0.5郚、メチルメタクリレヌト
99.5郚、メタクリル酞10郚、β−ヒドロキシ゚チ
ルメタクリレヌト140郚、ブチルアクリレヌト100
郚から成るモノマヌ混合物1000郚を䜜成した。補
造䟋ず同じ四ツ口フラスコにキシレン100郚、酢
酞ブチル337郚を仕蟌んで120℃に昇枩し、120℃
になれば、先に䜜成したモノマヌ混合物1000郚、
キシレン230郚、AIBN15郚、ゞタヌシダリヌブ
チルパヌオキシド10郚、タヌシダリブチルパヌオ
クテヌト40郚から成る混合物を時間かけお滎䞋
したのち、120℃で10時間保持した。䞍揮発分
59.6、粘床−、OH䟡38、酞化4.2、
5100、3.1、Tg26℃の暹脂溶液を
えた。 埗られた暹脂溶液100郚、バヌノツクDN−950
22.8郚OHNCOの圓量比および酞化チ
タン−CR−41.5郚を甚いお以䞋、実斜
䟋ず同様にしお塗料を埗た。この塗料の物性を
第衚に瀺す。 実斜䟋  −ブチルメタアクリレヌト480郚、スチレン
150郚、ゞブチルフマレヌト80郚、ゞブチルチン
マレヌト0.1郚、メチルメタクリレヌト60郚、β
−ヒドロキシ゚チルメタクリレヌト190郚、む゜
ボルニルメタクリレヌト25郚、アクリル酞14.9郚
から成るモノマヌ混合物1000郚を䜜成した。四ツ
口フラスコにキシレン100郚、酢酞ブチル200郚を
仕蟌んで120℃に昇枩し、120℃になれば、先に䜜
成したモノマヌ混合物1000郚、キシレン230郚、
酢酞ブチル138郚、AIBN25郚、ゞタヌシダリブ
チルパヌオキシド10郚、タヌシダリブチルパヌオ
クテヌト50郚から成る混合物を時間かけお滎䞋
したのち120℃で10時間保持した。䞍揮発分60.1
、粘床、OH䟡50、酞䟡6.3、3500、
2.6、Tg42℃の暹脂溶液をえた。 埗られた暹脂溶液100郚、バヌノツクDN−950
30郚OHNCOの圓量比および酞化チタ
ン44.4郚を甚いお、以䞋実斜䟋ず同様にしお塗
料を埗た。この塗料の物性を第衚に瀺す。 比范䟋  実斜䟋に斌おモノマヌ混合物ずしおスチレン
50郚、ゞブチルフマレヌト100郚、メチルメタク
リレヌト486郚、メタクリル酞10郚、β−ヒドロ
キシ゚チルメタクリレヌト100郚、ブチルアクリ
レヌト254郚を甚いる他は実斜䟋ず同様にしお、
䞍揮発分54.8、粘床、OH䟡26、酞䟡4.0、
6000、3.2、Tg32℃の暹脂溶
液をえた。 以䞋、実斜䟋ず同様にしお塗料を埗た。この
塗料の物性は第衚に瀺す。 比范䟋  実斜䟋に斌おスチレン50郚、ゞブチルフマレ
ヌト100郚、メチルメタクリレヌト405郚、メタク
リル酞10郚、β−ヒドロキシ゚チルメタクリレヌ
ト140郚、ブチルメタクリレヌト295郚を甚いる他
は実斜䟋ず同様にしお䞍揮発分60.2、粘床
〜W2、OH䟡38、酞䟡4.1、5100、
3.1、Tg26℃の暹脂溶液をえた。 以䞋、実斜䟋ず同様にしお塗料を埗た。この
塗料の物性は第衚に瀺す。 比范䟋  実斜䟋に斌おモノマヌ混合物ずしお、−ブ
チルメタクリレヌト50郚、スチレン150郚、ゞブ
チルフマレヌト80郚、β−ヒドロキシ゚チルメタ
クリレヌト190郚、アクリル酞15郚、メチルメタ
クリレヌト317.5郚、ブチルアクリレヌト172.5
郚、む゜ボルニルメタクリレヌト25郚を甚いる他
は実斜䟋ず同様にしお、䞍揮発分59.8、粘床
、OH䟡50、酞䟡6.4、3500、
2.6、Tg42℃の暹脂溶液をえた。 以䞋、実斜䟋ず同様にしお塗料を埗た。この
塗料の物性は第衚に瀺す。
[Table] (Test conditions) The coating film used in each physical property test was a 38-40ÎŒ film obtained by applying the paint to a tin plate (BN#144 treated steel plate) using air spray and baking it at 70℃ for 30 minutes. I used a thick one. However, drying (23℃): After applying the paint to the tin plate,
4 sheets of gauze are stacked at regular intervals without baking at 23°C, a 100g weight is placed on top of the gauze, and the gauze is left for 1 minute to determine the gauze marks left on the coating. Example 3 650 parts of n-butyl methacrylate, 50 parts of styrene
100 parts of a monomer mixture consisting of 100 parts of dibutyl fumarate, 0.1 part of dibutyl tin malate, 90 parts of methyl methacrylate, 9.9 parts of methacrylic acid, and 100 parts of β-hydroxyethyl methacrylate was prepared. In the same four-necked flask as in the production example, add 150 parts of the monomer mixture, 150 parts of toluene, 388 parts of butyl acetate,
Charge 3 parts of tertiary butyl perbenzoate and raise the temperature to 118°C. Once it reaches 118°C, add 850 parts of the monomer mixture prepared earlier, 280 parts of toluene,
10 parts of AIBN, ditertiary butyl peroxide
A mixture of 10 parts of tert-butyl peroctate and 30 parts of tert-butyl peroctate was added dropwise over 6 hours, and 120 parts of
The temperature was raised to ℃ and held for 10 hours. Non-volatile content 54.9%,
Viscosity W, OH value 26, acid value 4.0, n=6000, w/
A resin solution with Mn=3.2 and Tg=32°C was obtained. 100 parts of the resulting resin solution, Burnock DN-950
A coating material was obtained in the same manner as in Example 1 using 15.6 parts (OH/NCO equivalent ratio = 1) and 35.9 parts of acid value titanium (R-CR-3). The physical properties of this paint are shown in Table 2. Example 4 550 parts of n-butyl methacrylate, 55 parts of styrene
parts, dibutyl fumarate 45 parts, dibutyl tin laurate malate 0.5 parts, methyl methacrylate
99.5 parts, 10 parts of methacrylic acid, 140 parts of β-hydroxyethyl methacrylate, 100 parts of butyl acrylate
1000 parts of a monomer mixture consisting of 1000 parts were prepared. 100 parts of xylene and 337 parts of butyl acetate were placed in the same four-necked flask as in the production example, and the temperature was raised to 120°C.
Then, 1000 parts of the monomer mixture prepared earlier,
A mixture consisting of 230 parts of xylene, 15 parts of AIBN, 10 parts of ditertiary butyl peroxide, and 40 parts of tertiary butyl peroctate was added dropwise over 7 hours, and then maintained at 120° C. for 10 hours. Non-volatile content
59.6%, viscosity UV, OH value 38, oxidation 4.2, n=
5100, w/n=3.1, and Tg=26°C, a resin solution was obtained. 100 parts of the resulting resin solution, Burnock DN-950
A coating material was obtained in the same manner as in Example 1 using 22.8 parts (OH/NCO equivalent ratio = 1) and 41.5 parts of titanium oxide (R-CR-3). The physical properties of this paint are shown in Table 2. Example 5 480 parts of n-butyl methacrylate, styrene
150 parts, dibutyl fumarate 80 parts, dibutyltin malate 0.1 part, methyl methacrylate 60 parts, β
- 1000 parts of a monomer mixture consisting of 190 parts of hydroxyethyl methacrylate, 25 parts of isobornyl methacrylate, and 14.9 parts of acrylic acid was prepared. Charge 100 parts of xylene and 200 parts of butyl acetate into a four-necked flask and raise the temperature to 120°C. Once the temperature reaches 120°C, 1000 parts of the monomer mixture prepared earlier, 230 parts of xylene,
A mixture consisting of 138 parts of butyl acetate, 25 parts of AIBN, 10 parts of tertiary butyl peroxide, and 50 parts of tertiary butyl peroctate was added dropwise over 7 hours, and then maintained at 120°C for 10 hours. Non-volatile content 60.1
%, viscosity S, OH value 50, acid value 6.3, n=3500,
A resin solution with w/n=2.6 and Tg=42°C was obtained. 100 parts of the resulting resin solution, Burnock DN-950
A coating material was obtained in the same manner as in Example 1 using 30 parts (OH/NCO equivalent ratio = 1) and 44.4 parts of titanium oxide. The physical properties of this paint are shown in Table 2. Comparative Example 3 Styrene was used as the monomer mixture in Example 3.
50 parts of dibutyl fumarate, 486 parts of methyl methacrylate, 10 parts of methacrylic acid, 100 parts of β-hydroxyethyl methacrylate, and 254 parts of butyl acrylate in the same manner as in Example 1,
Non-volatile content 54.8%, viscosity X, OH value 26, acid value 4.0,
A resin solution with n=6000, w/n=3.2, and Tg=32°C was obtained. Hereinafter, a paint was obtained in the same manner as in Example 3. The physical properties of this paint are shown in Table 2. Comparative Example 4 Same as Example 2 except that 50 parts of styrene, 100 parts of dibutyl fumarate, 405 parts of methyl methacrylate, 10 parts of methacrylic acid, 140 parts of β-hydroxyethyl methacrylate, and 295 parts of butyl methacrylate were used in Example 4. Non-volatile content 60.2%, viscosity V
~ W2 , OH value 38, acid value 4.1, n=5100, w/
A resin solution with Mn=3.1 and Tg=26°C was obtained. Thereafter, a paint was obtained in the same manner as in Example 4. The physical properties of this paint are shown in Table 2. Comparative Example 5 In Example 5, the monomer mixture was 50 parts of n-butyl methacrylate, 150 parts of styrene, 80 parts of dibutyl fumarate, 190 parts of β-hydroxyethyl methacrylate, 15 parts of acrylic acid, 317.5 parts of methyl methacrylate, and butyl acrylate. 172.5
59.8% non-volatile content, viscosity T, OH value 50, acid value 6.4, n = 3500, w/n.
= 2.6, a resin solution with Tg = 42°C was obtained. Thereafter, a paint was obtained in the same manner as in Example 5. The physical properties of this paint are shown in Table 2.

【衚】【table】

Claims (1)

【特蚱請求の範囲】  (1) 重合性有機スズ化合物 0.0001〜10重量 (2) 氎酞基含有重合性単量䜓 〜50重量 (3) (1)、(2)以倖の重合性単量䜓
100−(1)(2)重量 からなる重合䜓にポリむ゜シアネヌトをOH
NCO0.5〜1.5圓量比になるように
配合しおなる塗料甚組成物。
[Scope of Claims] 1 (1) Polymerizable organic tin compound 0.0001 to 10% by weight (2) Hydroxyl group-containing polymerizable monomer 5 to 50% by weight (3) Polymerizable monomers other than (1) and (2) Quantity
100−{(1)+(2)}% by weight of polyisocyanate in OH/
A coating composition that is blended so that NCO=1/0.5 to 1/1.5 (equivalent ratio).
JP4080A 1980-01-07 1980-01-07 Composition for coating material Granted JPS5698266A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4080A JPS5698266A (en) 1980-01-07 1980-01-07 Composition for coating material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4080A JPS5698266A (en) 1980-01-07 1980-01-07 Composition for coating material

Publications (2)

Publication Number Publication Date
JPS5698266A JPS5698266A (en) 1981-08-07
JPS6315311B2 true JPS6315311B2 (en) 1988-04-04

Family

ID=11463195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4080A Granted JPS5698266A (en) 1980-01-07 1980-01-07 Composition for coating material

Country Status (1)

Country Link
JP (1) JPS5698266A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS594473A (en) * 1982-06-28 1984-01-11 Asahi Glass Co Ltd Painting and finishing method of cement base material
JPH0730288B2 (en) * 1987-05-25 1995-04-05 日本ペむント株匏䌚瀟 Two-component urethane coating composition

Also Published As

Publication number Publication date
JPS5698266A (en) 1981-08-07

Similar Documents

Publication Publication Date Title
US5670600A (en) Aqueous two-component polyurethane coating composition, process for its preparation, and its use in processes for the production of a multicoat finish
CN1778826B (en) Polyisocyanate mixtures, process for their preparation and their use in coating compositions
US5834555A (en) Aqueous multicomponent polyurethane coating composition, process for its preparation and its use in methods of producing a multicoat finish
EP1240210B1 (en) Ultra-high-solids acrylic coatings
JP5173422B2 (en) Aqueous coating compositions based on acrylate copolymers
SK35994A3 (en) Aqueous varnishes and process for manufacturing car coating varnishes
EP2102263A1 (en) Coating agents having high scratch resistance and weathering stability
DE4407415A1 (en) Coating compositions based on a hydroxyl-containing polyacrylate resin and its use in processes for producing a multicoat paint system
JPH07286138A (en) Coating composition
JPH0657197A (en) Coating composition and its usein production of multilayer coating
US4215023A (en) Urethane enamel coating composition
CA1146687A (en) High-solids polyurethane enamel coating composition
EP0828776A1 (en) Coating agent based on a hydroxyl group-containing polyacrylate resin and its use in processes for producing a multicoat paint system
RU2141497C1 (en) Water-soluble varnish binders and method of preparing thereof
EP1454934B1 (en) Two-component coating compositions
EP1211267B1 (en) Coating compositions based on hydroxy-functional (meth)acrylic copolymers
EP1541647A1 (en) Aqueous two-component coating compositions
JPS6315311B2 (en)
JP3000580B2 (en) Curable resin composition
JPS6159785B2 (en)
JP2867485B2 (en) lacquer
JPS61145260A (en) Acrylic coating material
JPH0412301B2 (en)
JP3101904B2 (en) Paint composition and paint finishing method using the same
JPH0816203B2 (en) Impregnation primer composition