JPS63153047A - Oxygen electrode - Google Patents

Oxygen electrode

Info

Publication number
JPS63153047A
JPS63153047A JP61300390A JP30039086A JPS63153047A JP S63153047 A JPS63153047 A JP S63153047A JP 61300390 A JP61300390 A JP 61300390A JP 30039086 A JP30039086 A JP 30039086A JP S63153047 A JPS63153047 A JP S63153047A
Authority
JP
Japan
Prior art keywords
electrolyte
electrode
cathode
reaction surface
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61300390A
Other languages
Japanese (ja)
Other versions
JPH0244537B2 (en
Inventor
萩原 文二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP61300390A priority Critical patent/JPS63153047A/en
Publication of JPS63153047A publication Critical patent/JPS63153047A/en
Publication of JPH0244537B2 publication Critical patent/JPH0244537B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は電解液を更新せずに長時間にわたって測定を
可能にした酸素1極に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to an oxygen single electrode that enables measurement over a long period of time without renewing the electrolyte.

[従来の技術] 従来より気体中及び溶液中の酸素濃度の変化を計測する
ため、定電圧電解法(ポーラログラフイー)による電極
が用いられている。これは一般に酸素電極法と呼ばれて
いる。この方法は、照合電極(参照電極、対照電極、標
準電極)と測定電極の両を極間に一定の電圧を加えて測
定電極の面上で02を電解し、その電解電流の強さによ
って02の濃度を測定する方法である。実用の酸素電極
では照合電極に銀を、測定電極に白金、金、銀などの貴
金属を、電解液に塩化物溶液を用いる。照合電極に対し
て測定電極の電位を約−〇、6vに保って電解を行わせ
ている。したがって両電極間に約0゜6vの電圧をかけ
ると照合電極が陽極に、測定電極が陰極となり、次のよ
うな電極反応が進行する。
[Prior Art] Conventionally, electrodes based on constant voltage electrolysis (polarography) have been used to measure changes in oxygen concentration in gases and solutions. This is generally called the oxygen electrode method. In this method, 02 is electrolyzed on the surface of the measuring electrode by applying a constant voltage between both the reference electrode (reference electrode, control electrode, standard electrode) and the measuring electrode, and the 02 is determined by the strength of the electrolytic current. This method measures the concentration of Practical oxygen electrodes use silver for the reference electrode, noble metals such as platinum, gold, silver, etc. for the measurement electrode, and a chloride solution for the electrolyte. Electrolysis is carried out by keeping the potential of the measuring electrode at about -0.6 V with respect to the reference electrode. Therefore, when a voltage of approximately 0°6 V is applied between both electrodes, the reference electrode becomes an anode and the measurement electrode becomes a cathode, and the following electrode reaction proceeds.

陰極(測定電極):02+4H會+48−一一一→2H
20 (酸性溶液) 02+2H20+4e−一→40H− (中性及びアルカリ性溶液) 陽極(照合電極):4Ag+4C1 −〉4 A g C1+ 4 e (広pH域) 上記の陽極(照合型S)は、Ag/AgC1系を形成し
て一定の電位に固定されるので、陰極も02の還元に適
した一定電位に保たれ、上記の電極度応が起こる。した
がって、陰極で電子〇が消失し陽極で電子eが発生して
、陰極に到達する02分子の数に比例した電流が両電極
の間に流れる。陰極に到達する02分子の数は測定試料
中の02濃度に比例するので、この電流を測定すること
により02濃度を知ることができる。
Cathode (measuring electrode): 02 + 4H Kai + 48-111 → 2H
20 (acidic solution) 02+2H20+4e-1 → 40H- (neutral and alkaline solution) Anode (reference electrode): 4Ag+4C1 ->4 A g C1+ 4 e (wide pH range) The above anode (reference type S) is Ag/ Since the AgC1 system is formed and the potential is fixed at a constant potential, the cathode is also kept at a constant potential suitable for the reduction of 02, and the above-mentioned polarity response occurs. Therefore, electrons 〇 disappear at the cathode, electrons e are generated at the anode, and a current flows between the two electrodes in proportion to the number of 02 molecules that reach the cathode. Since the number of 02 molecules reaching the cathode is proportional to the 02 concentration in the measurement sample, the 02 concentration can be determined by measuring this current.

酸素電極は電極の配置の仕方から陰陽分離型と陰陽複合
型に分類できる。前者は、両電極を測定試料に直接浸け
、試料内で電解反応を行わせるものである。 IIt者
は、両′!4極及び電解液を酸素透過性のプラスチック
の薄膜で包み込んだものである。
Oxygen electrodes can be classified into yin-yang separated type and yin-yang combined type based on how the electrodes are arranged. In the former method, both electrodes are directly immersed in the sample to be measured, and an electrolytic reaction occurs within the sample. IIt people are both! The four electrodes and electrolyte are wrapped in a thin oxygen-permeable plastic film.

これを測定試料に浸け、薄膜を通った。02を薄膜内の
電解液において電解反応を行わせるものである。
This was immersed in the measurement sample and passed through the thin film. 02 is subjected to an electrolytic reaction in an electrolytic solution within a thin film.

複合型酸素f/l極は約10年前までは長さが直径の数
倍以上もある細長い棒状をしたものが専ら用いられてき
たが、最近では血液ガスの経皮測定(例えば、エバーハ
ードおよびミント、特願昭46−76804 :萩原、
特願昭51−158119 ;萩原、特願昭52−10
1235)や酸素反応容器(例えば、萩原、特願昭6l
−146688)用として、長さが直径よりも短い偏平
型のものも用いられるようになってきた。酸素電極を分
類すると第1表のようになる。
Until about 10 years ago, composite oxygen f/l electrodes were exclusively used in the form of long, slender rods with a length several times the diameter. and mint, patent application 1976-76804: Hagiwara,
Patent application 1977-158119; Hagiwara, patent application 1977-10
1235) and oxygen reaction vessels (e.g., Hagiwara, Tokugan Sho 6l)
-146688), flat types with a length shorter than the diameter have also come to be used. Table 1 shows the classification of oxygen electrodes.

(以T:余6) 第1表 高さ7mm) この発明は、複合型FII累電極電極するものである。(T: extra 6) Table 1 height 7mm) The present invention is a composite FII cumulative electrode.

複合型酸素電極には、電極膜そのものを電極部に対して
挾み込んで固定するもの(以下膜固定型という)と、1
11極膜をあらかじめ膜ホルダーに固定したものを電極
部にはめ込むものく以下膜ホルダー型という、例えば、
萩原、特願昭51−158119、特願昭52−101
235)とがある。
There are two types of composite oxygen electrodes: one in which the electrode membrane itself is inserted into the electrode part and fixed (hereinafter referred to as membrane fixed type);
A method in which a 11-pole membrane is fixed in advance to a membrane holder and then inserted into the electrode part is called a membrane holder type, for example.
Hagiwara, patent application 1972-158119, patent application 1972-101
235).

第5図に従来の膜固定型偏平酸素′!4極の断面図を示
す、陰極(測定電極、貴金属)1−は陰極絶縁体である
円筒状のガラス3の中心部に設けられ、ガラス3の外周
には円筒状の陽極(照合電極、銀)2が設けられている
。これらは、プラスチック性の電極支持体8によって固
定されている。酸素透過性の′@、極膜(プラスチック
フィルム)4は、陰極反応面30を覆うようにしてO−
リング24によって電極支持体8に固定されている。陰
極反応面30の上には電極膜4によって電解液の薄層5
が保持されており、ff1.極膜4を通った02がこの
電解液の薄M5において前述の電解反応を生じる。
Figure 5 shows the conventional membrane-fixed flat oxygen'! A cross-sectional view of four poles is shown. A cathode (measuring electrode, noble metal) 1- is provided at the center of a cylindrical glass 3 that is a cathode insulator, and a cylindrical anode (reference electrode, silver )2 are provided. These are fixed by a plastic electrode support 8. The oxygen-permeable electrode membrane (plastic film) 4 covers the cathode reaction surface 30 and is oxygen-permeable.
It is fixed to the electrode support 8 by a ring 24. A thin layer 5 of electrolyte is deposited on the cathode reaction surface 30 by an electrode film 4.
is held, and ff1. 02 passing through the electrode membrane 4 causes the aforementioned electrolytic reaction in the thin M5 of this electrolytic solution.

なお、第5図の9は@極膜被覆板(保護板)、21はそ
の固定用受はネジでいづれも金属またはプラスチック製
であり、23は電極膜支持体(プラスチック)で、16
は電極リード線である。
In Fig. 5, 9 is an electrode membrane covering plate (protection plate), 21 is a screw for fixing the plate and is made of metal or plastic, 23 is an electrode membrane support (plastic), 16 is
is the electrode lead wire.

[発明が解決しようとする問題点] 複合型酸素電極の場合、電解反応により電解液の成分変
化が生じると感度が変化して正確な測定を行うことがで
きなくなるので、電解液の更新を行わねばならない、上
記のような従来の複合型酸素電極では、少量の電解液が
電解膜4内に保持されているだけであるので、その成分
変化が速やかに起り度々電解液を更新しなければならな
かった。
[Problems to be solved by the invention] In the case of a composite oxygen electrode, if the composition of the electrolyte changes due to an electrolytic reaction, the sensitivity changes and accurate measurements cannot be performed, so it is necessary to renew the electrolyte. In the conventional composite oxygen electrode as described above, only a small amount of electrolyte is retained in the electrolyte membrane 4, so the composition changes quickly and the electrolyte must be frequently renewed. There wasn't.

電解液の更新には電極膜4の張りかえが必要であるため
煩雑であり、また同一感度の再現が回能であった。
Renewing the electrolytic solution requires replacing the electrode film 4, which is complicated, and it is difficult to reproduce the same sensitivity.

これを解決するため、多量の電解液を貯留させると、電
極を横向けにしたり、到立させて使用した時に、電解液
がもれて測定に致命的な妨害となる電気的なリークを起
こす恐れがあった。特に偏平型酸素電極では、上下方向
のサイズが極めて小さく、電解液の漏出防止のために設
は得るスペースが十分にない、そのため、上記の電解液
の漏出が極めて起りやすく多量の電解液を貯留させるこ
とが不可能であった。また、さらにこのリークを防止す
るため電解液を完全に密閉すると、内外の温度変化や外
部の気圧変化により反応面30上の電解液層の厚さが変
って、電解感度が安定しないという問題を生じる。
To solve this problem, if a large amount of electrolyte is stored, when the electrode is used horizontally or vertically, the electrolyte will leak and cause electrical leakage that will fatally interfere with measurement. There was fear. In particular, flat oxygen electrodes are extremely small in vertical size and do not have enough space to prevent leakage of electrolyte. Therefore, leakage of the electrolyte mentioned above is extremely likely to occur, and a large amount of electrolyte is stored. It was impossible to do so. Furthermore, if the electrolyte is completely sealed to prevent this leakage, the thickness of the electrolyte layer on the reaction surface 30 will change due to internal and external temperature changes and external pressure changes, resulting in the problem of unstable electrolytic sensitivity. arise.

即ち、従来の複合型酸素電極では、度々電極膜4を張替
えて電解液を更新しなければならず煩雑であり、また長
時間にわたる連続測定を行うことができないという問題
点があった。
That is, with the conventional composite oxygen electrode, there were problems in that the electrode membrane 4 had to be replaced frequently and the electrolyte solution had to be renewed, which was complicated, and continuous measurement over a long period of time could not be performed.

この発明は上記のような問題点を解決して、大量の電解
液を密閉せずに貯留させながら、電極が傾いたり倒立し
たりしても電解液がもれることがなく、著しく長時間に
わたって安定な測定を可能とした複合型酸素7ft能を
提供することを目的とする。
This invention solves the above-mentioned problems and stores a large amount of electrolyte without sealing it, without leaking the electrolyte even if the electrode is tilted or inverted, and can be used for an extremely long period of time. The purpose is to provide a 7ft combined oxygen capacity that enables stable measurements.

[問題点を解決するための手段] 第1の発明に係る偏平型酸素電極は、陰極反応面上の電
解液と接続する位置に多量の電解液を貯留する電解液貯
留区画を設け、この電解液貯留区画を細管を介して外気
と連通し、電解液貯留区画内部を大気圧と等く保ってい
る。
[Means for Solving the Problems] The flat oxygen electrode according to the first invention is provided with an electrolyte storage section for storing a large amount of electrolyte at a position connected to the electrolyte on the cathode reaction surface. The liquid storage compartment is communicated with the outside air through a thin tube, and the inside of the electrolyte storage compartment is maintained at atmospheric pressure.

第2の発明に係る偏平型M素電極は、反応面上の電解液
と接続する位置に電解液を貯留する電解液貯留区画を設
け、弾力性の管の末端を閉じることによりこの電解液貯
留区画内部を大気圧よりgiかに低い状態に安定に保っ
ている。
The flat type M elementary electrode according to the second invention provides an electrolyte storage section for storing the electrolyte at a position connected to the electrolyte on the reaction surface, and closes the end of the elastic tube to store the electrolyte. The interior of the compartment is stably maintained at a pressure just below atmospheric pressure.

[作用] 第1の発明における細管は、電解液と大気との境界を細
管の中央部に置くことにより、温度や大気圧が変化して
も、この境界が細管内で動くだけで電解液が漏出するこ
となく電解液貯留区画内部の圧力を常に大気圧と等しく
保っている。
[Function] The capillary in the first invention places the boundary between the electrolyte and the atmosphere in the center of the capillary, so that even if the temperature or atmospheric pressure changes, the electrolyte will simply move within the capillary and the electrolyte will flow. The pressure inside the electrolyte storage compartment is always maintained equal to atmospheric pressure without leaking.

第2の発明における弾力管は弾力性があるために、その
大気側末端を閉じていても電解液貯留区画の圧力はほぼ
一定に保たれる。この際には、勿論電解液の漏出はない
0弾力管の内部は大気圧よりやや低くして閉じられてい
るので、電極膜が常に測定面側へ引寄せられ、測定面上
の電解液層の厚さが一定に保たれる。
Since the elastic tube in the second invention is elastic, the pressure in the electrolyte storage section is kept almost constant even if the end on the atmosphere side is closed. At this time, of course, there is no leakage of the electrolyte.Since the inside of the elastic tube is closed at a pressure slightly lower than atmospheric pressure, the electrode membrane is always drawn toward the measurement surface, and the electrolyte layer on the measurement surface The thickness is kept constant.

[実施例] 第1図に第1の発明の一実施例による偏平型酸素電極の
断面図を、第2図にその平面断面図を示す、この電極は
十分な量の電解液を貯留させ、使用者が組み立てを行う
必要のない、いわゆるディスポーザブル型の長期持続性
1!極である。白金などの貴金属よりなる陰極(測定電
極)1は円筒状の陰極絶縁体3(ガラス、セラミックな
ど)の中心部に設けられ陰極絶縁体3の外周には電極支
持体8が配されている。電極支持体8の内部には電解液
貯留区画12が設けられており、その外周部端面のtI
ILFi膜固定面20にはt!1極膜(02透過性プラ
スチツクフイルム)4が接着されている。陰極1、陰極
絶縁体3の端面ば平面またはこれに近い球面状に研磨さ
れて電解液貯留区画12の端面よりやや突出した陰極反
応面30を形成している。電解液7は、上述の電解液貯
留区画12と電極[4とに囲まれた区画に貯留され、陰
極反応面30上では、電極膜4がこの反応面を軽く押圧
しているので、電解液7が薄層5として存在しているこ
とになる。この電解液の薄層5は当然電解液貯留区画1
2中の電解液と連結される。なお、電解液としては、K
CI水溶液、CI−を含む中性または弱塩基性緩r#液
、またはこれらにエチレングリコール、グリセリンなど
の蒸発防止剤を加えたものを用いる。を膵液貯留区画1
2には銀などの陽ff1(対照電極)2が、電解液7に
接して設けられている。fl電極支持体には電解液貯留
区画に通じる電解液注入管84が設けられており、電解
液注入口84には排水性の細管83(例えば内径0.5
m111のシリコンチューブ)がはめられている、電解
液7はこの細管を利用して真空導入法などによって電解
液貯留区画12に充満する。 $111管83の長さは
、細管のほぼ中央付近に電解液と大気との境界がくるよ
うにした時に、大気圧や気温の変化があっても電解液が
外に漏出したり、空気が電解液貯留区画12に入り込む
ことのない程度とするが、ふつう20111m程度で十
分である。この細管83を設けることにより電解液貯留
区画12内の圧力が外気圧と同一に保たれるようになっ
ている。
[Example] Fig. 1 shows a sectional view of a flat oxygen electrode according to an embodiment of the first invention, and Fig. 2 shows a plan sectional view thereof.This electrode stores a sufficient amount of electrolyte, So-called disposable type long-term sustainability that does not require any assembly by the user! It is extreme. A cathode (measuring electrode) 1 made of a noble metal such as platinum is provided at the center of a cylindrical cathode insulator 3 (glass, ceramic, etc.), and an electrode support 8 is arranged around the outer periphery of the cathode insulator 3. An electrolyte storage section 12 is provided inside the electrode support 8, and the tI of the outer peripheral end surface of the electrolyte storage section 12 is
t! on the ILFi membrane fixing surface 20! A monopolar membrane (02 permeable plastic film) 4 is adhered. The end surfaces of the cathode 1 and the cathode insulator 3 are polished into a flat or nearly spherical shape to form a cathode reaction surface 30 that slightly protrudes from the end surface of the electrolyte storage section 12. The electrolytic solution 7 is stored in a compartment surrounded by the above-mentioned electrolytic solution storage compartment 12 and the electrode [4, and on the cathode reaction surface 30, since the electrode membrane 4 lightly presses this reaction surface, the electrolytic solution 7 exists as the thin layer 5. This thin layer 5 of electrolyte is naturally the electrolyte storage section 1.
It is connected to the electrolyte in 2. In addition, as the electrolyte, K
A CI aqueous solution, a neutral or weakly basic slow r# solution containing CI-, or a mixture thereof with an evaporation inhibitor such as ethylene glycol or glycerin is used. Pancreatic juice storage compartment 1
2 is provided with a positive electrode ff1 (reference electrode) 2 made of silver or the like in contact with the electrolytic solution 7. The fl electrode support is provided with an electrolyte injection pipe 84 leading to the electrolyte storage section, and the electrolyte injection port 84 has a drainage thin tube 83 (for example, an inner diameter of 0.5
The electrolytic solution 7 in which the silicon tube (m111) is fitted is filled into the electrolytic solution storage section 12 by a vacuum introduction method or the like using this thin tube. $111 The length of the tube 83 is such that when the boundary between the electrolyte and the atmosphere is near the center of the thin tube, the electrolyte will not leak out even if there are changes in atmospheric pressure or temperature, and the air will not leak out. The length should be such that it does not enter the electrolyte storage section 12, but usually about 20111 m is sufficient. By providing this thin tube 83, the pressure within the electrolyte storage section 12 is maintained at the same level as the outside pressure.

加えて、細管83の内径が極めて細くかつ長いので電解
液の蒸発は実質的にはない、このように電解液貯留区画
12は常に外気圧と同一に保たれるので、温度変化や外
気圧変化があっても、電極膜4の陰極測定面に対する押
圧力は電極膜4の伸張力のみにより一定に保たれ、電解
液層5の厚さが常に一定に保たれる。電解液層5の厚さ
は02分子の陰極面への到達量を支配するので、この層
の厚さが安定に保たれることは、安定な感度を得るため
に極めて重要である。
In addition, since the inner diameter of the capillary tube 83 is extremely thin and long, there is virtually no evaporation of the electrolyte solution.In this way, the electrolyte solution storage section 12 is always kept at the same pressure as the outside pressure, so it is not affected by temperature changes or changes in the outside pressure. Even if there is a problem, the pressing force of the electrode membrane 4 against the cathode measurement surface is kept constant only by the stretching force of the electrode membrane 4, and the thickness of the electrolyte layer 5 is always kept constant. Since the thickness of the electrolytic solution layer 5 controls the amount of O2 molecules reaching the cathode surface, it is extremely important to maintain a stable thickness of this layer in order to obtain stable sensitivity.

電極支持体8は上述の各種部材を保持し、電解液貯留区
画12を形成するもので、ふつう電気絶縁性のよいプラ
スチックのみで造られているが、電極に温度調節機構を
持たせる場合には、プラスチック部8P(中央部)金属
部8K(周辺部)とから構成し、金属部8にヒーターや
測温体を設置する。電極支持体の上部および側面は、電
極キャップ(プラスチック)10で覆われ、電極キャッ
プ10には陽極・陰極用のリード1116、その他各種
のリード線(後述)を保持する柄の部分10aがついて
いる。電極支持体8や各種リード線と電極キャップ10
との間は、エポキシのような充填性接着剤11で接着ま
たは充填されている。但し、細管84を収納する部分に
はエポキシなどを充填せず空気相とし、電極キャップ1
0にはこの空気相を大気と通じさせるための微細な通気
孔81が設けられている。
The electrode support 8 holds the above-mentioned various members and forms the electrolyte storage section 12, and is usually made only of plastic with good electrical insulation, but when the electrode is provided with a temperature control mechanism, , a plastic part 8P (center part) and a metal part 8K (periphery part), and a heater and a temperature sensor are installed in the metal part 8. The upper and side surfaces of the electrode support are covered with an electrode cap (plastic) 10, and the electrode cap 10 has a handle portion 10a for holding anode/cathode leads 1116 and other various lead wires (described later). . Electrode support 8, various lead wires and electrode cap 10
The space between them is bonded or filled with a filler adhesive 11 such as epoxy. However, the part where the thin tube 84 is housed is not filled with epoxy or the like, but is filled with air, and the electrode cap 1 is
0 is provided with fine ventilation holes 81 for communicating this air phase with the atmosphere.

酸素の測定を行う場合、陰極1の端面上では電解液層の
電解質組成が徐々に変化してゆくが、多量の電解液を貯
留した電解液貯留区画12が電解液層5と連続している
ので、常に電解質成分の交換がなされ、電極感度の変化
は、測定開始のごく初期以外には実質的には生じない、
なお陽極2の付近においても電解液組成は変化するが、
陽極2は多量の電解液と直接に接触しているので感度へ
の影響はない。
When measuring oxygen, the electrolyte composition of the electrolyte layer gradually changes on the end surface of the cathode 1, but the electrolyte storage section 12, which stores a large amount of electrolyte, is continuous with the electrolyte layer 5. Therefore, electrolyte components are constantly exchanged, and changes in electrode sensitivity do not occur except at the very beginning of measurement.
Note that the electrolyte composition also changes near the anode 2;
Since the anode 2 is in direct contact with a large amount of electrolyte, the sensitivity is not affected.

この実施例では、電極支持体8の一部8Kを熱伝導のよ
い金属で構成し、その内部にヒーター19Aと測温体1
9Bを備えている。これらは、定温加熱手段を構成して
おり、金属部8にならびに金属製の電極膜支持体9を所
定温度に保っている。従って、たとえば皮膚に張り付け
て、皮膚を加熱しつつ血液の酸素濃度を測定する経皮測
定電極として利用することができる。
In this embodiment, a part 8K of the electrode support 8 is made of a metal with good thermal conductivity, and a heater 19A and a temperature measuring element 1 are provided inside the electrode support 8.
It is equipped with 9B. These constitute constant temperature heating means, and keep the metal part 8 and the metal electrode membrane support 9 at a predetermined temperature. Therefore, for example, it can be applied to the skin and used as a transcutaneous measurement electrode that measures the oxygen concentration of blood while heating the skin.

なお、上記実施例では陰極反応面30を微細な粗面状態
に形成することによって、反応面30上の電解液層を所
定の厚さに保っているが、平滑な陰極反応面30上に多
孔性の薄膜を設け、この中に電解液を含ませる方法によ
っても安定な感度が得られる。
In the above embodiment, the electrolyte layer on the reaction surface 30 is maintained at a predetermined thickness by forming the cathode reaction surface 30 in a finely roughened state. Stable sensitivity can also be obtained by providing a transparent thin film and containing an electrolyte therein.

第3図に他の実施例による偏平型酸素電極の断面図を示
す、この実施例においては、細管83の中に流動パラフ
ィンのような水と混合しないlIt蒸発性液体層50を
入れている。この龍蒸発性液体層50により、電解液の
蒸発が完全に防止され、しかもこの液体層50が圧力の
変化に応じて細管83のなかを自由に移動して電解液貯
留区画12の圧力を大気圧と等しく保つ作用を有してい
る。
FIG. 3 shows a sectional view of a flat oxygen electrode according to another embodiment. In this embodiment, a thin tube 83 contains a layer 50 of an lIt vaporizable liquid that is immiscible with water, such as liquid paraffin. This evaporative liquid layer 50 completely prevents evaporation of the electrolyte, and moreover, this liquid layer 50 moves freely in the thin tube 83 in response to changes in pressure, increasing the pressure in the electrolyte storage section 12. It has the effect of keeping air pressure equal.

第4図に第2の発明の一実施例による偏平型酸素電極の
断面図を示す、この場合には弾力性のある材料(シリコ
ンゴム、ゴムなど)でできた肉薄の弾力管85が、電解
液注入口84に接続され、この注入口附近まで電解液を
満たし、管内85の末端側の大部分に空気を満たし、こ
の空気部を軽く減圧してから管85の末端85Eを閉じ
ている。このようにすると電解液の蒸発が全くないので
、この弾力管85は第1の発明の場合のように細管であ
る必要はない0弾力管85の内部が減圧されると、当然
電解液貯留区画12も同程度の減圧状態となる。このた
め、電極膜4が陰極測定面30に軽く押つけられる0弾
力管85の減圧の程度は、使用温度の範囲によって加減
する必要があり、電極の使用予定の最高温度になっても
電解液貯留区画12の中の圧力は@極外の大気圧よりも
高くならない程度にして、陰極反応面から電極膜が離れ
ないようにする必要がある0例えば20℃〜50°Cの
範囲で使用する電極の場合には、電極温度を20℃に保
ってから、大気圧よりも30/323= 0.093気
圧を僅かに超す0.1気圧程度の減圧を行いつつ弾力管
85を閉じるとよい。
FIG. 4 shows a cross-sectional view of a flat oxygen electrode according to an embodiment of the second invention. In this case, a thin elastic tube 85 made of an elastic material (silicone rubber, rubber, etc.) is used for electrolysis. It is connected to a liquid injection port 84, and the electrolytic solution is filled up to the vicinity of this injection port, and most of the end side of the tube 85 is filled with air, and after this air portion is slightly depressurized, the end 85E of the tube 85 is closed. In this way, there is no evaporation of the electrolyte, so the elastic tube 85 does not need to be a thin tube as in the case of the first invention. When the pressure inside the elastic tube 85 is reduced, it is natural that the electrolyte storage section 12 will also be in a reduced pressure state to the same extent. For this reason, the degree of depressurization of the zero elastic tube 85, by which the electrode film 4 is lightly pressed against the cathode measurement surface 30, needs to be adjusted depending on the operating temperature range. It is necessary to keep the pressure inside the storage compartment 12 to a level that does not exceed the atmospheric pressure outside the pole and to prevent the electrode membrane from separating from the cathode reaction surface. For example, use in the range of 20°C to 50°C. In the case of electrodes, it is preferable to maintain the electrode temperature at 20° C. and then close the elastic tube 85 while reducing the pressure to about 0.1 atm, which is slightly more than 30/323=0.093 atm than atmospheric pressure.

あるいは、便法として、電極温度を53°C程度に保っ
てから常圧のまま弾力管85の末端部85Eを1極キヤ
ツプの通気孔81から外に引き出して行い、末端に近い
所を正正しながら末端85.Hの内部を接着してからキ
ャップ内に収納すればよい、上記のように管内85の圧
力を調整しておくと温度や外気圧の変化があっても、圧
力の変化の大部分が弾力管85の弾力によって吸収され
るので電極膜4と陰極測定面30の間の電解液層5の厚
さがほぼ一定に保たれ、測定感度が安定する。
Alternatively, as an expedient method, maintain the electrode temperature at about 53°C, then pull out the terminal end 85E of the elastic tube 85 from the ventilation hole 81 of the single-pole cap while maintaining normal pressure, and then correct the part near the terminal. while terminal 85. Just glue the inside of the tube and then store it in the cap.If you adjust the pressure inside the tube 85 as described above, even if there are changes in temperature or outside pressure, most of the pressure changes will be caused by the elastic tube. Since the electrolyte layer 5 is absorbed by the elasticity of the electrode film 4 and the cathode measurement surface 30, the thickness of the electrolyte layer 5 between the electrode film 4 and the cathode measurement surface 30 is kept almost constant, and measurement sensitivity is stabilized.

なお、皮膚に電極を張り付けて血液の酸素濃度を測定す
る場合には、第2の発明においても第1の発明と同様に
定温加熱手段を設けることにより、血行をよくして測定
を容易にすることができる。
In addition, when measuring the oxygen concentration of blood by pasting electrodes on the skin, the second invention also provides constant temperature heating means as in the first invention to improve blood circulation and facilitate measurement. be able to.

なお、以上に説明した酸素電極のばかに、これに極めて
類似したものにガルバニ−電池式の酸素測定電極がある
。この場合には酸素電極における照合電極(銀)に対応
するものに鉛を、電解液として塩化物溶液の代りにアル
カリ液を、測定電極には02に対して過電圧の低い銀を
用いている。
In addition to the oxygen electrode described above, there is a galvanic cell type oxygen measuring electrode that is very similar to the oxygen electrode. In this case, lead is used as the oxygen electrode corresponding to the reference electrode (silver), an alkaline solution is used instead of the chloride solution as the electrolyte, and silver, which has a lower overvoltage than 02, is used as the measurement electrode.

この鉛電極(鉛/水酸化鉛系)の電位は銀/塩化銀糸よ
りもかなり低いので酸素電極とは異なって、測定電極(
銀)に対して負の電圧を加えなくても02の還元反応が
起る。したが・つて、この場合には、02測定電極を陽
極、鉛電極を陰極としたガルバニ−電池が構成されるこ
とになる。したがって、電気分解を行う酸素電極とは著
しく異なっているように見えるが、両者ともに2種の電
極(但し、正負の呼び方は逆になる)と電解液より構成
され、両極間に電圧を加えるか加えないかがちがうだけ
であるから、構造と機能の関係は著しく類似している。
The potential of this lead electrode (lead/lead hydroxide system) is much lower than that of the silver/silver chloride thread, so unlike the oxygen electrode, the measurement electrode (
The reduction reaction of 02 occurs without applying a negative voltage to silver). Therefore, in this case, a galvanic cell is constructed in which the 02 measuring electrode is the anode and the lead electrode is the cathode. Therefore, although they appear to be significantly different from oxygen electrodes that perform electrolysis, both are composed of two types of electrodes (however, the positive and negative names are reversed) and an electrolyte, and a voltage is applied between the two electrodes. The only difference is whether or not it is added, so the relationship between structure and function is strikingly similar.

したがって、酸素電極の構造に関する本出願の発明はガ
ルバニ−電池式の酸素測定電極にも適用されるものであ
る。すなわち、本明細書において「酸X電極」というと
きは、上記のガルバニ−電池式の1素測定電極を含む。
Therefore, the invention of the present application relating to the structure of the oxygen electrode is also applicable to a galvanic cell type oxygen measuring electrode. That is, in this specification, the term "acid X electrode" includes the above-mentioned galvanic cell type single element measurement electrode.

[発明の効果] 第1の発明に係る酸素電極は、電解液貯留区画を設け、
この内部を細管によって外部と連通している。細管を用
いているので、電解液の外部への漏出や電解液の蒸発が
防止されながら電解液貯留区画が外気圧と同一に保たれ
ている。このため、温度上昇や外気圧の変化があっても
、測定面の電解液層の厚さが変化せずに一定に保たれる
ので長時間にわたって測定感度が安定する。
[Effect of the invention] The oxygen electrode according to the first invention is provided with an electrolyte storage section,
This interior is communicated with the outside through a thin tube. Since a thin tube is used, leakage of the electrolyte to the outside and evaporation of the electrolyte are prevented, and the electrolyte storage compartment is maintained at the same atmospheric pressure as the outside pressure. Therefore, even if there is a rise in temperature or a change in external pressure, the thickness of the electrolyte layer on the measurement surface does not change and is kept constant, resulting in stable measurement sensitivity over a long period of time.

第2の発明に係る酸素電極は、外気に対して密閉された
電解液貯留区画を設け、これに弾力性のある管を連結し
、この電解貯留区画および弾力管の内部を大気圧より僅
かに低い状態にして外気に対して密閉している。従って
、この減圧の程度は、弾力管の弾力によって温度上昇や
外気圧の変化があってもほぼ一定に保たれ、陰極測定面
上の電解液層の厚さが実質的には一定に保たれるので測
定感度が安定する。この第2の発明の場合には電解液貯
留区画は外気に対して密閉されているので、電解液の外
部への漏出や電解液の蒸発は完全に防止され長時間の測
定が可能になる。
The oxygen electrode according to the second invention is provided with an electrolyte storage section that is sealed from the outside air, an elastic tube is connected to this, and the inside of the electrolyte storage section and the elastic tube is kept at a pressure slightly below atmospheric pressure. It is kept low and sealed from the outside air. Therefore, the degree of this pressure reduction is kept almost constant due to the elasticity of the elastic tube, even when the temperature rises or the external pressure changes, and the thickness of the electrolyte layer on the cathode measurement surface remains essentially constant. measurement sensitivity is stable. In the case of the second invention, since the electrolyte storage compartment is sealed from the outside air, leakage of the electrolyte to the outside and evaporation of the electrolyte are completely prevented, allowing long-time measurements.

すなわち、第1・第2の発明によれば、長い時間にわた
り、かつ安定な測定を行うことのできる酸素電極を提供
することができる。
That is, according to the first and second inventions, it is possible to provide an oxygen electrode that can perform stable measurements over a long period of time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は第1の発明の一実施例による偏平型酸素電極の
側断面図、第2図は第1図の偏平型酸素TL極の平面断
面図、第3図は第1の発明の他の実施例による偏平型酸
素電極の側断面図、第4図は第2の発明の一実施例によ
る偏平型酸素を極の側断面図、第5図は従来の偏平型酸
素@極の側断面図である。 1は陰極、2は陽極、3は陰極絶縁体、4は電極膜、5
は電解液層、8は電極支持体、12は電解液貯留区画、
83は細管、85は弾力管である。 なお、各図中同一符号は同一または相当部分を示す。
FIG. 1 is a side sectional view of a flat oxygen electrode according to an embodiment of the first invention, FIG. 2 is a plan sectional view of the flat oxygen TL electrode of FIG. 1, and FIG. FIG. 4 is a side sectional view of a flat oxygen electrode according to an embodiment of the second invention, FIG. 5 is a side sectional view of a conventional flat oxygen electrode. It is a diagram. 1 is a cathode, 2 is an anode, 3 is a cathode insulator, 4 is an electrode film, 5
is an electrolytic solution layer, 8 is an electrode support, 12 is an electrolytic solution storage section,
83 is a thin tube, and 85 is an elastic tube. Note that the same reference numerals in each figure indicate the same or corresponding parts.

Claims (10)

【特許請求の範囲】[Claims] (1)端面が電解液と接している陰極、 電解液と接して設けられ、電解液を介して陰極と導通さ
れている陽極、 陽極、陰極を保持する電極支持体、 陰極の一端の端面によって形成される陰極反応面、 陰極反応面に電解液を薄層状に保持するよう反応面を覆
って設けられた酸素透過性の電極膜、陰極反応面上の電
解液層と接続する位置に電解液を貯留しており、細くて
長い管を経て大気と接することによって大気圧と等しく
保たれた電解液貯留区画、 を備えたことを特徴とする酸素電極。
(1) A cathode whose end surface is in contact with the electrolyte, an anode which is provided in contact with the electrolyte and is electrically connected to the cathode via the electrolyte, an electrode support holding the anode and cathode, and an end surface of one end of the cathode. A cathode reaction surface is formed, an oxygen-permeable electrode film is provided covering the reaction surface to hold a thin layer of electrolyte on the cathode reaction surface, and an electrolyte is placed on the cathode reaction surface at a position connected to the electrolyte layer. An oxygen electrode characterized by comprising: an electrolyte storage compartment which stores an electrolyte and whose pressure is kept equal to atmospheric pressure by contacting the atmosphere through a thin and long tube.
(2)陰極反応面が、電極膜固定面より僅かに突出され
ており、電極膜がこの陰極反応面の突出によって伸張さ
れたものであることを特徴とする特許請求の範囲第1項
記載の酸素電極。
(2) The cathode reaction surface is slightly protruded from the electrode membrane fixing surface, and the electrode membrane is expanded by the protrusion of the cathode reaction surface. oxygen electrode.
(3)陰極反応面は、微細な粗面状態に形成されたもの
であることを特徴とする特許請求の範囲第2項記載の酸
素電極。
(3) The oxygen electrode according to claim 2, wherein the cathode reaction surface is formed into a finely roughened surface.
(4)陰極反応面の上面に電解液を含んだ多孔性薄膜を
有するものであることを特徴とする特許請求の範囲第2
項記載の酸素電極。
(4) Claim 2, characterized in that it has a porous thin film containing an electrolyte on the upper surface of the cathode reaction surface.
Oxygen electrode as described in section.
(5)電解液貯留区画に連結した細管の内部には、難蒸
発性の液体が少量封入されていることを特徴とする特許
請求の範囲第1項、第2項、第3項または第4項に記載
の酸素電極。
(5) Claims 1, 2, 3, or 4, characterized in that a small amount of a liquid that is difficult to evaporate is sealed inside the thin tube connected to the electrolyte storage section. The oxygen electrode described in section.
(6)電極支持体の一部は熱伝導性の金属からできてお
り、この金属部が定温加熱手段によって所定の温度に保
たれていることを特徴とする特許請求の範囲第1項、第
2項、第3項、第4項または第5項に記載の酸素電極。
(6) A part of the electrode support is made of a thermally conductive metal, and this metal part is maintained at a predetermined temperature by constant temperature heating means. The oxygen electrode according to item 2, 3, 4, or 5.
(7)電解液と接している陰極、 電解液と接して設けられ、電解液を介して陰極と導通さ
れている陽極、 陽極、陰極を保持する電極支持体、 陰極の一端の端面によって形成される陰極反応面、 陰極反応面に電解液を薄層状に保持するように反応面を
覆って設けられた酸素透過性の電極膜、陰極反応面上の
電解液層と接続する位置に電解液を貯留している電解液
貯留区画、 一端が電解液貯留区画に接続され、他端が閉じられて、
その内部及び電解液貯留区画の内部を外気よりわずかに
低く調整し、この減圧状態をその弾力によって安定に保
持する弾力管、 を備えたことを特徴とする酸素電極。
(7) A cathode in contact with the electrolyte, an anode provided in contact with the electrolyte and electrically connected to the cathode via the electrolyte, an electrode support holding the anode and cathode, and an end face of one end of the cathode. The cathode reaction surface has a thin layer of electrolyte on the cathode reaction surface, an oxygen-permeable electrode film is provided covering the reaction surface to hold the electrolyte in a thin layer, and the electrolyte is placed on the cathode reaction surface at a position connected to the electrolyte layer. an electrolyte storage compartment having one end connected to the electrolyte storage compartment and the other end closed;
An oxygen electrode comprising: an elastic tube that adjusts the inside of the electrode and the inside of the electrolyte storage section to be slightly lower than the outside air, and stably maintains this reduced pressure state by its elasticity.
(8)陰極反応面は、電解液を安定に保持するために微
細な粗面状態に形成されたものであることを特徴とする
特許請求の範囲第7項記載の酸素電極。
(8) The oxygen electrode according to claim 7, wherein the cathode reaction surface is formed into a finely roughened surface in order to stably hold the electrolyte.
(9)陰極反応面は、その上面に電解液を含んだ多孔性
薄膜を有するものであることを特徴とする特許請求の範
囲第7項記載の酸素電極。
(9) The oxygen electrode according to claim 7, wherein the cathode reaction surface has a porous thin film containing an electrolyte on its upper surface.
(10)電極支持体の一部は熱伝導性の金属からできて
おり、定温加熱手段によって所定の温度に保たれている
ことを特徴とする特許請求の範囲第7項、第8項または
第9項に記載の酸素電極。
(10) A portion of the electrode support is made of a thermally conductive metal and is maintained at a predetermined temperature by constant temperature heating means. The oxygen electrode according to item 9.
JP61300390A 1986-12-16 1986-12-16 Oxygen electrode Granted JPS63153047A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61300390A JPS63153047A (en) 1986-12-16 1986-12-16 Oxygen electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61300390A JPS63153047A (en) 1986-12-16 1986-12-16 Oxygen electrode

Publications (2)

Publication Number Publication Date
JPS63153047A true JPS63153047A (en) 1988-06-25
JPH0244537B2 JPH0244537B2 (en) 1990-10-04

Family

ID=17884204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61300390A Granted JPS63153047A (en) 1986-12-16 1986-12-16 Oxygen electrode

Country Status (1)

Country Link
JP (1) JPS63153047A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006170645A (en) * 2004-12-13 2006-06-29 Gastec:Kk Galvanic cell gas sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006170645A (en) * 2004-12-13 2006-06-29 Gastec:Kk Galvanic cell gas sensor

Also Published As

Publication number Publication date
JPH0244537B2 (en) 1990-10-04

Similar Documents

Publication Publication Date Title
US4100048A (en) Polarographic cell
US4077861A (en) Polarographic sensor
US5393391A (en) Electrode arrangement for the electrochemical analysis of electrolytic components of a liquid
GB1354042A (en) Polarographic sensor and membrane therefor
SE434437B (en) DEVICE FOR TRANSCUTE SEATING OF THE ARTERIAL ACID PARTIAL PRESSURE
GB2270982A (en) Electrochemical gas sensor.
WO1982000161A1 (en) Electrochemical gas sensor,electrodes therefor and methods of making said sensor and electrodes
CN108645898B (en) Electrochemical performance testing device and electrochemical performance testing method
US4182666A (en) Oxygen sensors
DK158167B (en) ELECTROCHEMICAL MEASURING ELECTRODE INSTALLATION, MEMBRANE FOR AN ELECTROCHEMICAL MEASURING ELECTRODE INSTALLATION AND A MEMBRANE MOUNTING KIT FOR MOUNTING A MEMBRAN ON AN ELECTROCHEMICAL MEASURING ELECTRODE INSTALLATION
GB1436194A (en) Oxygen sensor
GB1468711A (en) Gas electrode
JPS63153047A (en) Oxygen electrode
US4473456A (en) Conductimetric gas sensor
EP0120108B1 (en) Electrochemical cell for determining a particular component of a fluid
JPS63138254A (en) Reference electrode
JPH09178690A (en) Ion sensor and method for measuring ion concentration
JPS63153046A (en) Oxygen electrode
JP3129821B2 (en) Electrochemical gas detector
JPS6162855A (en) Electrode for measuring concentration of electrochemically active substance
Bergman Amperometric oxygen sensors: problems with cathodes and anodes of metals other than silver
JP2867323B2 (en) Dissolved oxygen electrode
JP3650919B2 (en) Electrochemical sensor
TWI687683B (en) Long-lasting disposable reference electrode
JP3778680B2 (en) Cathode for oxygen electrode