JPH09178690A - Ion sensor and method for measuring ion concentration - Google Patents

Ion sensor and method for measuring ion concentration

Info

Publication number
JPH09178690A
JPH09178690A JP7351762A JP35176295A JPH09178690A JP H09178690 A JPH09178690 A JP H09178690A JP 7351762 A JP7351762 A JP 7351762A JP 35176295 A JP35176295 A JP 35176295A JP H09178690 A JPH09178690 A JP H09178690A
Authority
JP
Japan
Prior art keywords
ion
electrolyte solution
leaching
electrode
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7351762A
Other languages
Japanese (ja)
Inventor
Migiwa Ando
汀 安藤
Junichi Tokumoto
徳本淳一
Chie Hayashi
千栄 林
Masahiko Okuyama
奥山雅彦
Naoko Horibe
堀部尚子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP7351762A priority Critical patent/JPH09178690A/en
Publication of JPH09178690A publication Critical patent/JPH09178690A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an ion sensor suitable for disposal which is formed by making an ion sensing polar and a reference polar to be integral and can measure the ion concentration through easy and simple operation. SOLUTION: An ion sensor 1 is provided with, on single supporting substrate, a solid-state ion sensing polar 3 using a solid electrolyte, a reference polar 4 including a water absorbing member, an electrolytic solution accumulating part 8 which is filled with an electrolytic solution 6 by a damageable diaphragm 5, a movable seeping member 7 including a needle-like part made of porous material, and a dispersing member 9 which disperses a dropped liquid to be tested and allows it to be brought into contact with a seeping electrolytic solution through the seeping member. When the ion concentration is subjected to measurement, the member 7 is penetrated into the diaphragm 5 to allow the solution 6 to seep therefrom, and after a liquid to be tested is dropped, it is partly dispersed on the member 9 and brought into contact with the electrolytic solution.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、化学工業、食品工
業、医療、環境計測等において溶液中に存在する特定の
イオンの濃度を測定するために用いられるイオンセンサ
に関し、特に使い捨て用途に適したイオンセンサに関す
る。
TECHNICAL FIELD The present invention relates to an ion sensor used for measuring the concentration of a specific ion present in a solution in the chemical industry, food industry, medical treatment, environmental measurement, etc., and is particularly suitable for disposable applications. Regarding an ion sensor.

【0002】[0002]

【従来の技術】溶液中の特定のイオン濃度を測定する手
法として、イオン選択性電極(以下、イオン電極ともい
う)を用いるイオン電極法が知られている。この方法
は、通常、イオン電極と参照電極とを一対として被測定
液中に浸漬し、両電極間の電位差をエレクトロメータ等
の計測器を用いて測定することにより行なわれる。ここ
で通常用いられるイオン電極及び参照電極としては、電
解質溶液を内部に封入した内部液構造を備えるものが主
に用いられている。この内部液構造のものは測定精度は
優れているが、保守・管理が必要であるとともに小型化
あるいは一体化には適しないという欠点を有する。ま
た、イオン感応部材として固体電解質を用いたものや内
部液をゲル化させたもの、あるいは内部液を一切用いず
に完全に固体状の電極としたもの等についていくつか提
案されているが、長期間にわたる保存安定性や測定精
度、再現性等の点では従来の内部液構造のものに比べて
劣っている。
2. Description of the Related Art An ion electrode method using an ion selective electrode (hereinafter, also referred to as an ion electrode) is known as a method for measuring a specific ion concentration in a solution. This method is usually performed by immersing a pair of an ion electrode and a reference electrode in a liquid to be measured and measuring the potential difference between the two electrodes using a measuring instrument such as an electrometer. As the ion electrode and the reference electrode usually used here, those having an internal liquid structure in which an electrolyte solution is enclosed are mainly used. This internal liquid structure has excellent measurement accuracy, but has the drawback that it requires maintenance and management and is not suitable for downsizing or integration. Also, some proposals have been made for those using a solid electrolyte as the ion-sensitive member, those gelling the internal liquid, or those having a completely solid electrode without using any internal liquid. It is inferior to the conventional internal liquid structure in terms of storage stability, measurement accuracy, and reproducibility over a period of time.

【0003】イオンセンサの用途のひとつとして、医療
分野において血液や尿中の電解質成分の分析があるが、
この場合、センサの使い捨て使用が衛生上望ましく、ま
た、高い精度と保存安定性が要求されている。さらに
は、より微量の被検液で測定ができるとともに測定操作
の簡便さ等の面からイオン電極と参照電極の一体化及び
小型化も要求されている。
One of the applications of ion sensors is the analysis of electrolyte components in blood and urine in the medical field.
In this case, the disposable use of the sensor is desirable for hygiene, and high accuracy and storage stability are required. Further, it is required that the ion electrode and the reference electrode are integrated and miniaturized from the viewpoints that the measurement can be performed with a smaller amount of the test liquid and the measurement operation is simple.

【0004】これらの点を考慮するものとして、固体状
のイオン電極と参照電極とを一枚の基板上に並べて配置
し、測定時に上記内部液に相当する標準液を参照電極上
に滴下して測定するようにしたスライド型の固体電極が
知られている。例えば、特開昭58−211648号公
報、特開昭59−30055号公報には、特定イオンに
選択的に応答するイオン選択層を最外層に有する固体電
極からなる固体電極対が配置され、この電極対にそれぞ
れ被検液および標準液の供給後に浸透により両極間の電
気的導通を達成するための多孔性ブリッジが設けられた
イオン活量測定器具が開示されている。
In consideration of these points, a solid ion electrode and a reference electrode are arranged side by side on a single substrate, and a standard solution corresponding to the above internal solution is dropped on the reference electrode during measurement. A slide-type solid-state electrode that is adapted to measure is known. For example, in JP-A-58-212648 and JP-A-59-30055, a solid electrode pair composed of a solid electrode having an ion selective layer which selectively responds to a specific ion as an outermost layer is arranged. Disclosed is an ion activity measuring instrument provided with a porous bridge for achieving electrical conduction between both electrodes by permeation after supplying a test solution and a standard solution to electrode pairs, respectively.

【0005】[0005]

【発明が解決しようとする課題】しかし、上記イオン電
極は、測定精度については満足する性能が得られるが、
固体電極対の所定の位置に被検液の点着と同時に標準液
の点着をも行なわなければならないため、測定の都度標
準液を用意しなければならず、またその操作性の面から
専用のピペットなどの使用を考慮しなければならない等
の欠点を有する。したがって、上記イオン電極は前記医
療分野での分析用途においても必ずしも簡易な測定手段
とはなっていない。
However, although the above-mentioned ion electrode has satisfactory performance with respect to measurement accuracy,
Since the standard solution must be spotted at the same time as the spotting of the test solution on the predetermined position of the solid electrode pair, the standard solution must be prepared each time the measurement is performed, and it is dedicated from the viewpoint of its operability. It has drawbacks such as consideration of using a pipette or the like. Therefore, the ion electrode is not always a simple measuring means even in the analytical use in the medical field.

【0006】本発明はこのような欠点を解消するために
なされたものであり、その目的とするところは、イオン
電極と参照電極とを一体化したイオンセンサであって、
精度の高い測定を簡易に行なうことができ、しかも保存
性にすぐれ、使い捨て使用に適したイオンセンサを提供
することにある。
The present invention has been made to solve the above drawbacks, and an object of the present invention is to provide an ion sensor in which an ion electrode and a reference electrode are integrated.
An object of the present invention is to provide an ion sensor that can perform highly accurate measurement easily, has excellent storage stability, and is suitable for disposable use.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するため
に、本発明の請求項1に係るイオンセンサは、固体電解
質を用いた固体状のイオン感応極と、内部極上に吸水性
部材を有する固体状の参照極と、少なくとも一部が破損
または除去可能な隔壁によって電解質溶液が封入された
電解質溶液溜部と、前記隔壁を破損または除去して前記
電解質溶液溜部より電解質溶液を浸出させるための可動
式の浸出部材と、滴下した被検液を拡散させて前記浸出
部材により浸出した電解質溶液と接触させるための拡散
部材とを備えることを特徴とする。
In order to solve the above problems, an ion sensor according to claim 1 of the present invention has a solid ion sensitive electrode using a solid electrolyte and a water absorbing member on the inner electrode. A solid reference electrode, an electrolyte solution reservoir in which an electrolyte solution is enclosed by a partition wall that is at least partially damaged or removable, and a partition wall that is damaged or removed to leach the electrolyte solution from the electrolyte solution reservoir area. The movable leaching member and the diffusing member for diffusing the dropped test liquid and bringing it into contact with the electrolyte solution leached by the leaching member.

【0008】ここで、前記浸出部材の一部が針状部を有
し、前記隔壁の一部が前記針状部が針入可能な耐水性膜
よりなり、特に、前記針状部が連通気孔を有する親水性
の多孔質体からなることが望ましい。また、前記浸出部
材が使用前に前記隔壁を破損または除去することを防止
するための固定手段を備えていてもよく、前記拡散部材
が連通気孔を有する親水性の多孔質体からなること、前
記浸出部材と前記拡散部材とが一体に形成されているこ
と、それぞれ異なるイオン種に選択的に応答する固体電
解質を用いた複数のイオン感応極を備えること、前記固
体電解質がセラミックスよりなることはそれぞれ好まし
い。
Here, a part of the leaching member has a needle-shaped portion, and a part of the partition wall is made of a water resistant film into which the needle-shaped portion can be inserted. It is desirable to be composed of a hydrophilic porous body having Further, the leaching member may be provided with a fixing means for preventing the partition wall from being damaged or removed before use, and the diffusion member is made of a hydrophilic porous body having an open-air hole, The leaching member and the diffusion member are integrally formed, a plurality of ion sensitive electrodes using a solid electrolyte that selectively responds to different ion species are provided, and the solid electrolyte is made of ceramics, respectively. preferable.

【0009】また、本発明の請求項9に係るイオン濃度
測定方法は、固体電解質を用いた固体状のイオン感応極
と、内部極上に吸水性部材を有する固体状の参照極と、
隔壁によって電解質溶液が封入された電解質溶液溜部
と、前記隔壁を破損または除去して前記電解質溶液溜部
より電解質溶液を浸出させるための可動式の浸出部材
と、滴下した被検液を拡散させて前記浸出部材により浸
出した電解質溶液と接触させるための拡散部材とを備え
るイオンセンサを用いたイオン濃度測定方法であって、
前記浸出部材の動作により前記隔壁を破損または除去し
て電解質溶液を浸出させ、浸出した電解質溶液の一部を
前記吸水性部材に吸水させるとともに前記内部極に接触
させた後、前記イオン感応極の上方より被検液を滴下
し、前記拡散部材中を拡散させて固体電解質に接触させ
るとともに、その一部を前記浸出部材により浸出した電
解質溶液にも接触せしめ、前記イオン感応極と前記参照
極との間に生ずる電位差を測定することを特徴とする。
Further, the ion concentration measuring method according to claim 9 of the present invention comprises a solid ion sensitive electrode using a solid electrolyte, a solid reference electrode having a water absorbing member on the inner electrode,
An electrolyte solution reservoir in which an electrolyte solution is enclosed by a partition, a movable leaching member for leaching the electrolyte solution from the electrolyte solution reservoir by damaging or removing the partition, and diffusing the dropped test liquid An ion concentration measuring method using an ion sensor comprising a diffusing member for contacting with an electrolyte solution leached by the leaching member,
After the partition wall is broken or removed by the operation of the leaching member to leaching the electrolyte solution, the water-absorbing member is caused to absorb part of the leached electrolyte solution, and the inner electrode is brought into contact with the electrolyte solution. A test liquid is dropped from above, and while contacting with the solid electrolyte by diffusing in the diffusion member, a part thereof is also contacted with the electrolyte solution leached by the leaching member, and the ion sensitive electrode and the reference electrode. It is characterized in that the potential difference generated between the two is measured.

【0010】ここで、前記浸出部材の一部が針状部を有
するとともに、前記隔壁の一部が前記針状部が針入可能
な耐水性膜よりなり、前記針状部を前記隔壁に圧接また
は圧入することによりこれを破損または除去し、前記電
解質溶液溜部より電解質溶液を浸出させること、さらに
は、前記針状部が連通気孔を有する親水性の多孔質体か
らなり、前記電解質溶液を前記連通気孔を通して浸出さ
せることは特に好ましい。また、前記拡散部材が連通気
孔を有する親水性の多孔質体からなること、前記浸出部
材と前記拡散部材とが一体に形成されていること、前記
イオンセンサが、それぞれ異なるイオン種に選択的に応
答する固体電解質を用いた複数のイオン感応極を備えて
おり、複数のイオン種のイオン濃度を同時に測定するこ
と、及び、固体電解質がセラミックスよりなることは好
ましい。
Here, a part of the leaching member has a needle-shaped portion, and a part of the partition wall is made of a water resistant film into which the needle-shaped part can be inserted, and the needle-shaped part is pressed against the partition wall. Alternatively, it is damaged or removed by press-fitting, the electrolyte solution is leached from the electrolyte solution reservoir, and further, the needle-shaped portion is made of a hydrophilic porous body having continuous vents, and the electrolyte solution is Leaching through the continuous vents is particularly preferred. Further, the diffusion member is made of a hydrophilic porous body having continuous vents, the leaching member and the diffusion member are integrally formed, and the ion sensor selectively selects different ion species. It is preferable to provide a plurality of ion sensitive electrodes using a responsive solid electrolyte, to simultaneously measure the ion concentrations of a plurality of ion species, and to use a solid electrolyte made of ceramics.

【0011】[0011]

【発明の実施の形態】本発明のイオンセンサは、イオン
感応極と参照極とを一体化したものであって、使用前に
おけるイオン感応極及び参照極を固体状の電極とすると
ともに、使用時に前記両極間の液的導通を確保するため
の電解質溶液を別個に設けた溜部より浸出せしめるよう
に構成することにより、使用前の保存性を上げるととも
に測定精度を維持しつつ簡便な操作を可能としたもので
ある。すなわち、本発明のイオンセンサは、固体状のイ
オン感応極と、吸水性部材を有する固体状の参照極と、
電解質溶液を封入してなる電解質溶液溜部と、前記電解
質溶液を浸出させるための可動式の浸出部材と、滴下し
た被検液を前記浸出部材により浸出した電解質溶液と接
触させるための拡散部材とから基本的に構成されるもの
である。
BEST MODE FOR CARRYING OUT THE INVENTION The ion sensor of the present invention is one in which an ion sensitive electrode and a reference electrode are integrated, and the ion sensitive electrode and the reference electrode before use are solid electrodes and are used at the time of use. The electrolyte solution for ensuring the liquid conduction between the two electrodes can be leached from the separately provided reservoir to improve the storage stability before use and to maintain the measurement accuracy and simplify the operation. It is what That is, the ion sensor of the present invention, a solid ion sensitive electrode, a solid reference electrode having a water absorbing member,
An electrolyte solution reservoir formed by enclosing an electrolyte solution, a movable leaching member for leaching the electrolyte solution, and a diffusing member for bringing the dropped test liquid into contact with the electrolyte solution leached by the leaching member. It is basically composed of

【0012】上記のイオンセンサを作製するに際し、通
常、イオン感応極と参照極とは電気絶縁性を有する支持
体上に一体的に形成される。このときの支持体として
は、ガラス、セラミックス焼結体、アクリル樹脂、AB
S樹脂、ポリカーボネート樹脂、エポキシ樹脂とガラス
粉末との複合体等の各種材質のものを用いることがで
き、電気絶縁性に優れ、加工性、耐水性、取り扱い性等
を備えるものであれば特に限定されず、これらをイオン
センサの使用形態に応じた各種形状、たとえば平板状、
角棒状、円筒状、針状等に加工して用いることができ
る。
When the above-mentioned ion sensor is manufactured, the ion sensitive electrode and the reference electrode are usually integrally formed on a support having an electrically insulating property. As the support at this time, glass, ceramics sintered body, acrylic resin, AB
Various materials such as S resin, polycarbonate resin, composite of epoxy resin and glass powder can be used, and particularly limited as long as they have excellent electrical insulation properties, processability, water resistance, handleability, etc. However, various shapes according to the usage of the ion sensor, such as a flat plate,
It can be used after being processed into a square rod shape, a cylindrical shape, a needle shape, or the like.

【0013】イオン感応極は、特定のイオンに選択的に
応答するもので、固体電解質を用いた固体状の電極とし
て用いる。固体状の電極とは従来の電極で内蔵されてい
たような内部液を必要としないタイプの電極をいう。前
記固体電解質はイオン感応部材(感応膜)として用いら
れ、これをイオン感応極の最外層とするか、あるいはさ
らにその上にクラウンエーテルやバリノマイシン等を含
有するイオン感応物質層で覆ってもよい。通常、イオン
感応極は、この固体電解質とその電位を取り出すための
内部電極とを組み合わせたものから構成される。内部電
極としては金属電極が好ましく、例えば銅張積層板をエ
ッチング加工して内部電極部とこれに続く端子部とが配
線形成されたものや、薄膜状の金属導体層が蒸着された
基板等を用いることができる。感応部材は、その表面の
うち被検液に接しない部分を内部電極に直接に接触固定
させてもよいが、イオンブリッジとも呼ばれる固体状ま
たは半固体状の導電性ブリッジ材を介して接着固定する
とより安定した電位が取り出せるため好ましい。
The ion sensitive electrode selectively responds to specific ions and is used as a solid electrode using a solid electrolyte. The solid-state electrode means an electrode of a type that does not require an internal liquid, which is built in a conventional electrode. The solid electrolyte is used as an ion-sensitive member (sensitive film) and may be the outermost layer of the ion-sensitive electrode, or may be covered with an ion-sensitive substance layer containing crown ether, valinomycin or the like. Usually, the ion sensitive electrode is composed of a combination of this solid electrolyte and an internal electrode for taking out its potential. As the internal electrode, a metal electrode is preferable, and for example, a copper clad laminate having an internal electrode portion and a terminal portion following the wiring formed by etching or a substrate having a thin metal conductor layer deposited thereon can be used. Can be used. The sensitive member may directly contact and fix a portion of the surface that does not come into contact with the test liquid to the internal electrode, but if it is fixed by adhesion via a solid or semi-solid conductive bridge material also called an ion bridge. This is preferable because a more stable potential can be taken out.

【0014】前記導電性ブリッジ材としては、導電性と
接着性とを兼ね備えるものが望ましく用いられる。たと
えば、好ましい例として、カーボン粒子をフェノール樹
脂と混合してなる熱硬化性のカーボンペーストを用い、
該ペーストを塗布した固体電解質からなる感応部材の一
表面を、支持体表面の導体配線(例えば銅)の一端部に
接触させた状態で一定温度に加熱し前記ペーストを接着
硬化させるとよい。また、このカーボンペーストにさら
に、塩化ナトリウム、塩化銀等の塩類を加えたものを導
電性ブリッジ材として用いることにより応答性の向上や
電位の一層の安定化を図ることもできる。
As the conductive bridge material, a material having both conductivity and adhesiveness is preferably used. For example, as a preferable example, a thermosetting carbon paste obtained by mixing carbon particles with a phenol resin is used,
It is preferable that one surface of the sensitive member made of a solid electrolyte coated with the paste is heated to a constant temperature while being in contact with one end of the conductor wiring (for example, copper) on the surface of the support to bond and cure the paste. Further, by using a salt obtained by adding salts such as sodium chloride and silver chloride to the carbon paste as a conductive bridge material, it is possible to improve the responsiveness and further stabilize the potential.

【0015】なお、前述の固体電解質としては、たとえ
ば、ナシコンセラミックス(Na1+XZr2SiX3-X
12,0≦x≦3)、ベータ・アルミナセラミックス(M
2O・nAl23,5≦n≦11,Mはアルカリ金
属)、フッ化ランタン(LaF3)、ハロゲン化銀、硫
化銀、硫化銅等を好ましく用いることができる。測定対
象となるイオン種は上記固体電解質の材料によってほぼ
決まるものであるが、ナトリウムの他に、カリウム、リ
チウム等のアルカリ族のイオン、水素イオン、酸素イオ
ン、フッ素イオン、塩素イオン、炭酸イオンなどが挙げ
られる。これらの異なる固体電解質をそれぞれ最外層と
する複数のイオン感応極を一つの支持体上に設けること
により、異なるイオン種を同時に測定することのできる
多機能イオンセンサとして構成することもできる。
The solid electrolyte described above is, for example, Nasicon ceramics (Na 1 + X Zr 2 Si X P 3-X O).
12 , 0 ≦ x ≦ 3), beta-alumina ceramics (M
2 O.nAl 2 O 3 , 5 ≦ n ≦ 11, M is an alkali metal), lanthanum fluoride (LaF 3 ), silver halide, silver sulfide, copper sulfide and the like can be preferably used. The ion species to be measured are almost determined by the material of the solid electrolyte, but in addition to sodium, ions of alkaline groups such as potassium and lithium, hydrogen ions, oxygen ions, fluorine ions, chlorine ions, carbonate ions, etc. Is mentioned. By providing a plurality of ion sensitive electrodes each having these different solid electrolytes as the outermost layers on a single support, it is possible to configure a multifunctional ion sensor capable of simultaneously measuring different ion species.

【0016】上記固体電解質のうち、ナシコン、ベータ
・アルミナ等のイオン伝導性セラミックスは本発明のイ
オンセンサの感応部材として特に好ましいものである。
これらの材料を用いる場合は緻密な焼結体であることが
望ましく、その製造は、感応部材の形状や大きさに応じ
て公知の成形法(たとえば、金型プレス成形法、スリッ
プキャスト成形法等)及び焼成法を適宜用いることがで
きる。セラミックス焼結体は機械的強度が高く、機械加
工性にも優れるため、焼結後に研削加工や穴あけ加工等
を施すことも容易であるが、焼結前の成形体の段階で上
記の加工を施した後に焼結させることも可能である。そ
の他に、厚膜法やスパッタリング法などの手法を用い
て、予め内部電極の形成されている支持体上に固体電解
質膜を形成してもよい。
Of the above solid electrolytes, ion conductive ceramics such as NASICON and beta-alumina are particularly preferable as the sensitive member of the ion sensor of the present invention.
When these materials are used, it is desirable that the material is a dense sintered body, and the production thereof is performed according to the shape and size of the sensitive member by a known molding method (for example, die press molding method, slip cast molding method, etc.). ) And a firing method can be appropriately used. Since the ceramics sintered body has high mechanical strength and excellent machinability, it is easy to perform grinding and drilling after sintering, but the above processing is required at the stage of the molded body before sintering. It is also possible to sinter after application. In addition, the solid electrolyte membrane may be formed on the support in which the internal electrodes are formed in advance by using a technique such as a thick film method or a sputtering method.

【0017】参照極は、内部極と吸水性部材とから構成
される。支持体の参照極形成部に一定深さの凹部を設け
てその底部に内部極を形成しておき、その上部または内
部極に接する状態で吸水性部材を配置する。内部極とし
ては通常、金属銀の表面に塩化銀層を形成させたいわゆ
る銀/塩化銀電極が特に好ましく用いられる。また、吸
水性部材としては、ガーゼや不織布等の親水性多孔質体
の他、各種の吸水性樹脂等を用いることができる。
The reference electrode is composed of an inner electrode and a water absorbing member. A concave portion having a certain depth is provided in the reference electrode forming portion of the support to form an internal pole at the bottom thereof, and the water absorbing member is arranged in contact with the upper portion or the internal pole. As the inner electrode, a so-called silver / silver chloride electrode in which a silver chloride layer is formed on the surface of metallic silver is usually particularly preferably used. As the water absorbent member, various water absorbent resins and the like can be used in addition to the hydrophilic porous body such as gauze and non-woven fabric.

【0018】電解質溶液溜部は、前記イオン感応極及び
参照極の形成された支持体内に一体に設けられ、参照極
に隣接して設けられることが特に好ましい。この電解質
溶液溜部は、一定量の電解質溶液を密閉保持可能な空間
を有するとともに、その空間を包囲する壁面の少なくと
も一部が破損または除去可能な隔壁によって構成され
る。イオンセンサの使用の際に内部の電解質溶液を浸出
させるために、その隔壁は破損または除去され得るもの
でなければならない。そのような隔壁としては、耐水性
の膜材質からなるとともに、浸出部材の動作によって破
棄または除去可能な材質及び形状をもって支持体に取着
されている必要がある。例えば、隔壁として厚さ20〜
100μmのポリ塩化ビニルフィルムを用い、熱接着法
によりポリカーボネート質の枠体の開口端部に接着する
ことで作製することができる。
It is particularly preferable that the electrolyte solution reservoir is integrally provided in the support body in which the ion sensitive electrode and the reference electrode are formed, and adjacent to the reference electrode. The electrolyte solution reservoir has a space capable of hermetically holding a fixed amount of electrolyte solution, and at least a part of the wall surface surrounding the space is constituted by a partition wall that can be damaged or removed. The partition must be capable of being damaged or removed in order to leach out the electrolyte solution therein during use of the ion sensor. Such a partition must be made of a water-resistant film material and attached to the support with a material and a shape that can be discarded or removed by the action of the leaching member. For example, the partition wall has a thickness of 20 to
It can be manufactured by using a 100 μm polyvinyl chloride film and adhering it to the open end of a polycarbonate frame by a thermal bonding method.

【0019】前記電解質溶液溜部に封入される電解質溶
液としては、例えば塩化カリウムの飽和水溶液などが用
いられるが、さらに安定化剤として塩化リチウム等を溶
解させたものであってもよい。また、参照極の内部極と
して前述の銀/塩化銀電極を用いる場合には、電解質溶
液中に塩化銀を飽和状態に溶解させておくと基準となる
電位の安定性が向上するので特に好ましい。
The electrolyte solution filled in the electrolyte solution reservoir is, for example, a saturated aqueous solution of potassium chloride, but may be a solution in which lithium chloride or the like is further dissolved as a stabilizer. Further, when the above-mentioned silver / silver chloride electrode is used as the inner electrode of the reference electrode, it is particularly preferable to dissolve silver chloride in the electrolyte solution in a saturated state because the stability of the reference potential is improved.

【0020】浸出部材は、前記隔壁を破損または除去す
るために可動式に設けられ、隔壁を破損等した後は、電
解質溶液溜部内の電解質溶液の一部を浸出せしめる働き
をする。例えば浸出部材を押しピンの如き一部が針状部
を有するような形状とし、その針状部を上記隔壁の正面
にほぼ直角に配置するとともに、これを隔壁側へ移動さ
せて隔壁に針入させることができるように一定距離を移
動可能な構造としたものが好ましい。浸出部材は隔壁を
破損等することができるのであれば、特定の形状に限定
されることはなく、例えば上記の針状部を複数設けた
り、先端を刃状のものとしたり、ネジ溝を設けたもの等
であってもよい。
The leaching member is movably provided to damage or remove the partition wall, and has a function of leaching a part of the electrolyte solution in the electrolyte solution reservoir after the partition wall is damaged. For example, the leaching member is shaped such that a part such as a push pin has a needle-like portion, and the needle-like portion is arranged at a right angle to the front surface of the partition wall, and this is moved to the partition wall side to insert the needle into the partition wall. It is preferable to have a structure capable of moving a certain distance so that the moving can be performed. The leaching member is not limited to a specific shape as long as it can damage the partition wall, and for example, a plurality of needle-shaped portions as described above are provided, the tip is blade-shaped, or a screw groove is provided. It may be something like a fish.

【0021】浸出部材は少なくともその一部、特に電解
質溶液溜部内の電解質溶液と接する部分から吸水性部材
及び拡散部材に接する部分までが連通気孔を有する親水
性の多孔質体からなることが望ましい。電解質溶液が毛
細管力により細孔構造内に吸水され、浸出部材内を浸透
しやすくするためである。
It is desirable that at least a part of the leaching member, in particular, a hydrophilic porous body having continuous ventilation holes from the portion in contact with the electrolyte solution in the electrolyte solution reservoir to the portion in contact with the water absorbing member and the diffusing member. This is because the electrolyte solution absorbs water into the pore structure due to the capillary force and facilitates permeation into the leaching member.

【0022】さらに、上記浸出部材が使用前に動いて前
記隔壁を破損等することを防止するための固定手段を設
けることが望ましい。例えば、前述の押しピン形状の浸
出部材の場合にはその頭部(傘状部)を支持体外表面か
ら突出させるとともに、頭部下面と支持体外表面との間
に脱着可能な止め具(ストッパー)を設けるとよい。ま
た、このストッパーの形状を支持体に合わせること等に
より、滴下孔や端子部をも覆うようにすれば保護カバー
してとしての役割を負わせることもできる。
Furthermore, it is desirable to provide a fixing means for preventing the leaching member from moving and damaging the partition wall before use. For example, in the case of the push-pin-shaped leaching member described above, the head (umbrella-shaped portion) of the leaching member is protruded from the outer surface of the support, and a stopper (stopper) that is detachable between the lower surface of the head and the outer surface of the support Should be provided. Further, by matching the shape of the stopper with the support, the stopper can also serve as a protective cover by covering the dropping hole and the terminal portion.

【0023】拡散部材は、イオン感応極の上方より滴下
された被検液の一部を拡散させて前記浸出部材によって
浸出した電解質溶液と接触させるためのものであり、そ
の一端部は被検液の滴下部に位置し、他端部が前記浸出
部材と接するように配置されている。この場合、被検液
の滴下部側の端部は必ずしも固体電解質表面と直接接触
している必要はないが、一定量の被検液を滴下したとき
にその被検液の一部が固体電解質と接触できるような形
状、配置がなされていればよい。電解質溶液の浸透をよ
くするために、拡散部材はガーゼや不織布等の如き連通
気孔を有する親水性の多孔質体からなることが望まし
い。また、拡散部材は前記浸出部材と一体に形成されて
いるものであってもよい。
The diffusing member is for diffusing a part of the test solution dropped from above the ion-sensing electrode and bringing it into contact with the electrolyte solution leached by the leaching member, and one end thereof is the test solution. Is located at the drip part and the other end is arranged to be in contact with the leaching member. In this case, the end of the test solution on the dropping part side does not necessarily have to be in direct contact with the solid electrolyte surface, but when a certain amount of the test solution is dropped, part of the test solution is solid electrolyte. Any shape and arrangement that allows contact with In order to improve the permeation of the electrolyte solution, the diffusing member is preferably made of a hydrophilic porous body having continuous ventilation holes such as gauze and non-woven fabric. The diffusing member may be formed integrally with the leaching member.

【0024】上述のようにして構成されるイオンセンサ
を用いたイオン濃度の測定は以下のようにして行なわれ
る。まず、上記イオンセンサのイオン感応極及び参照極
より導出される各々の端子部を電位差計測器(例えばエ
レクトロメーター等)に接続した後、浸出部材の固定手
段が設けられている場合にはその固定状態を解除し、浸
出部材を動かして参照極の隔壁を破損もしくは除去す
る。例えば前述の押しピン形状の浸出部材の場合であれ
ば、ストッパーをはずして浸出部材の頭部を押し込み、
浸出部材の針状部を隔壁に突き刺す。隔壁を針状部が貫
通することにより電解質溶液中に浸漬した針状部の先端
から多孔質体中を浸透しながら電解質溶液が浸出し、浸
出した電解質溶液の一部は参照極上の吸水性部材にも吸
水される。
Measurement of the ion concentration using the ion sensor constructed as described above is performed as follows. First, after connecting the respective terminal portions derived from the ion-sensing electrode and the reference electrode of the ion sensor to a potentiometer (for example, an electrometer), fixing the leaching member, if any, is provided. The state is released, and the leaching member is moved to damage or remove the partition wall of the reference electrode. For example, in the case of the push pin-shaped leaching member described above, remove the stopper and push in the head of the leaching member,
The needle portion of the leaching member is pierced into the partition. The electrolyte solution is leached while penetrating the porous body from the tip of the needle-shaped portion immersed in the electrolyte solution by penetrating the partition wall, and part of the leached electrolyte solution is a water-absorbing member on the reference electrode. Is also absorbed.

【0025】その後、イオン感応極の上方より(または
イオン感応極の近傍に)所定量の被検液を滴下して固体
電解質と被検液とを接触させるとともに、その一部を拡
散部材内を拡散させて前記電解質溶液とも接触せしめ、
前記イオン感応極と前記参照極との電気的導通を確保
し、両極間に生ずる電位差を前記電位差計測器により測
定する。予め既知のイオン濃度を有する基準液を用いて
作成しておいたイオン濃度と電位差との関係を示す検量
線を基に、得られた電位差より目的とするイオン濃度を
求める。
Thereafter, a predetermined amount of the test liquid is dropped from above the ion sensitive electrode (or in the vicinity of the ion sensitive electrode) to bring the solid electrolyte and the test liquid into contact with each other, and a part of them is moved inside the diffusion member. Diffuse and contact with the electrolyte solution,
Electrical conduction between the ion sensitive electrode and the reference electrode is secured, and the potential difference generated between the two electrodes is measured by the potential difference measuring device. The target ion concentration is determined from the obtained potential difference based on a calibration curve showing the relationship between the ion concentration and the potential difference, which has been prepared in advance using a reference solution having a known ion concentration.

【0026】[0026]

【作用】本発明のイオンセンサでは、イオン感応極と参
照極はともに固体状の電極として形成されており、従来
の内部液型のイオン電極や参照電極のように感応部材や
内部極が液中に浸漬された状態で保存されるものではな
いため、湿潤状態での長期間の保存安定性に劣る固体電
解質を感応部材として用いた場合や参照極の内部極を微
小化した場合であってもその経時劣化の心配はない。そ
して、イオン濃度の測定の際に浸出部材の動作によって
参照極の吸水性部材に電解質溶液を吸水させて内部極と
接触させることにより参照極を機能し得る状態にし、イ
オン感応極の上方より被検液が滴下されると、参照極の
近傍の拡散部材上で被検液と電解質溶液とが接触し、イ
オン感応極と参照極との間の電気的導通がとられる。
In the ion sensor of the present invention, both the ion-sensing electrode and the reference electrode are formed as solid electrodes, and the sensing member and the inner electrode are submerged in liquid like the conventional internal liquid type ion electrode and reference electrode. Since it is not stored in the state of being immersed in the electrolyte, even when a solid electrolyte having poor long-term storage stability in a wet state is used as a sensitive member or when the inner electrode of the reference electrode is miniaturized There is no concern about its deterioration over time. Then, when the ion concentration is measured, the water-absorbing member of the reference electrode absorbs the electrolyte solution by the action of the leaching member to bring it into contact with the inner electrode so that the reference electrode can function, and the reference electrode is placed above the ion-sensitive electrode. When the test solution is dropped, the test solution and the electrolyte solution come into contact with each other on the diffusion member in the vicinity of the reference electrode, and electrical conduction is established between the ion sensitive electrode and the reference electrode.

【0027】このとき、参照極の内部極は吸水性部材に
より一定濃度の電解質溶液で浸されているため一定の基
準電位を発生し、一方、イオン感応極の固体電解質は被
検液に接触しているため、被検液中の測定対象イオンの
濃度に応じた電位を発生する。したがって、両極間に生
じる電位差を測定することにより、イオン濃度に応じた
電位差が測定され、予め作成された濃度と電位差との関
係を示す検量線を用いてイオン濃度が求められる。
At this time, since the inner electrode of the reference electrode is immersed in the electrolyte solution having a constant concentration by the water absorbing member, a constant reference potential is generated, while the solid electrolyte of the ion-sensing electrode comes into contact with the test liquid. Therefore, an electric potential is generated according to the concentration of the ions to be measured in the test liquid. Therefore, the potential difference corresponding to the ion concentration is measured by measuring the potential difference generated between the two electrodes, and the ion concentration is obtained using a calibration curve that shows the relationship between the concentration and the potential difference created in advance.

【0028】[0028]

【実施例】以下、本発明の実施例を図面に基づいて説明
する。本発明のイオンセンサの正面図及びその縦断面図
をそれぞれ図1、図2に示す。イオンセンサ1は、支持
体基板2、イオン感応極3、参照極4、浸出部材7、電
解質溶液溜部8、拡散部材9及びこれらを収めるケース
25とストッパー28とから主に構成される。なお、本
実施例ではイオン感応極としてNaイオン感応極3aと
Kイオン感応極3bとClイオン感応極3cとを備えて
おり、これら3つのイオン種を測定対象とするイオンセ
ンサである。このイオンセンサ1を以下のようにして作
製した。
Embodiments of the present invention will be described below with reference to the drawings. A front view and a vertical sectional view of the ion sensor of the present invention are shown in FIGS. 1 and 2, respectively. The ion sensor 1 is mainly composed of a support substrate 2, an ion sensitive electrode 3, a reference electrode 4, a leaching member 7, an electrolyte solution reservoir 8, a diffusing member 9, a case 25 accommodating them, and a stopper 28. In this embodiment, the ion sensitive electrode is provided with a Na ion sensitive electrode 3a, a K ion sensitive electrode 3b, and a Cl ion sensitive electrode 3c, and is an ion sensor for measuring these three ion species. This ion sensor 1 was manufactured as follows.

【0029】まず、ガラスエポキシ基板の片面を銅箔で
覆った銅張積層板をエッチング加工することにより、図
3に示すような3本のイオン感応極用配線21a、21
b、21cと1本の参照極用配線21dとを形成し、支
持体基板2とした。そして図4、図5に示すように、前
記イオン感応極用配線21a、21b、21cの一端部
上に導電性ブリッジ材31を介してイオン感応部材30
をそれぞれ搭載し、イオン感応極3a、3b、3cを形
成した。
First, a copper-clad laminate having one surface of a glass epoxy substrate covered with copper foil is etched to form three ion-sensitive electrode wirings 21a and 21 as shown in FIG.
b and 21c and one reference electrode wiring 21d were formed to obtain the support substrate 2. As shown in FIGS. 4 and 5, the ion sensitive member 30 is provided on one end of the ion sensitive electrode wirings 21a, 21b, 21c with a conductive bridge material 31 interposed therebetween.
Were mounted respectively to form the ion sensitive electrodes 3a, 3b and 3c.

【0030】なお、Naイオン感応極3aでは、外径2
mm×厚さ2mmの円板状のナシコンセラミックス(N
3Zr2Si2PO12 )の焼結体を感応部材とし、Kイ
オン感応極3bでは、上記ナシコンセラミックス焼結体
表面にバリノマイシンを含有したポリ塩化ビニル膜(厚
さ0.01mm)を被覆したものを感応部材とし、Cl
イオン感応極3cでは、トリドデシルメチルアンモニウ
ム塩を含有したポリ塩化ビニル膜(厚さ0.01mm)
を感応部材として用いた。なお、上記塩化ビニル膜に
は、可塑剤としてo−ニトロフェニルオクチルエーテル
を、陰イオン除去剤としてテトラキス(パラクロロフェ
ニル)ホウ酸カリウムを所定量含有させてある。また、
導電性ブリッジ材31として、フェノール樹脂にカーボ
ン粒子を含有させてなる導電性ペースト(ドータイト:
FC−403R,藤倉化成(株)製)を用意し、前記各
感応部材の支持体基板側の面に一定量を塗布した後、支
持体基板2の所定の位置に密着させ、その状態を保持し
つつ150℃で30分間の加熱処理を行ない前記導電性
ペーストを熱硬化させて、イオン感応部材と支持体基板
とを接着した。
The Na ion sensitive electrode 3a has an outer diameter of 2
mm disk-shaped NASICON ceramics with a thickness of 2 mm (N
The a 3 Zr 2 Si 2 sintered PO 12) and sensitive members, the K ion sensitive electrode 3b, the NASICON ceramics sintered body surface polyvinyl chloride containing valinomycin membrane (thickness 0.01 mm) The coated material is used as a sensitive member and Cl
For the ion-sensitive electrode 3c, a polyvinyl chloride film containing a tridodecylmethylammonium salt (thickness 0.01 mm)
Was used as the sensitive member. The vinyl chloride film contains a predetermined amount of o-nitrophenyl octyl ether as a plasticizer and potassium tetrakis (parachlorophenyl) borate as an anion removing agent. Also,
As the conductive bridge material 31, a conductive paste (Dotite: made of phenol resin containing carbon particles) is used.
FC-403R, manufactured by Fujikura Kasei Co., Ltd. is prepared, and a certain amount is applied to the surface of each of the sensitive members on the side of the support substrate, and then adhered to a predetermined position of the support substrate 2 to maintain the state. While conducting heat treatment at 150 ° C. for 30 minutes, the conductive paste was thermally cured to bond the ion sensitive member and the support substrate.

【0031】また、直径0.1mmのAg線の先端部1
0mmを0.1規定の塩酸中でアノード分極下、0.4
mA/cm2 の電流密度で30分間電気分解することに
より、前記Ag線の表面に塩化銀層を生成させて銀/塩
化銀電極を形成し、これを他端部にて参照極用配線21
dに半田付けして参照極4の内部極42とした。
The tip portion 1 of the Ag wire having a diameter of 0.1 mm
0 mm in 0.1N hydrochloric acid under anodic polarization 0.4
By electrolyzing at a current density of mA / cm 2 for 30 minutes, a silver chloride layer is formed on the surface of the Ag wire to form a silver / silver chloride electrode, and the silver / silver chloride electrode is formed at the other end of the reference electrode wiring 21.
The inner electrode 42 of the reference electrode 4 was soldered to d.

【0032】次に、図6、図7に示すように、各イオン
感応極、参照極及び電解質溶液溜部の形成位置と大きさ
を合わせた貫通孔23a、23b、23c、23d及び
23eを設けた厚さ3mmのポリカーボネート製の枠体
23をエポキシ接着剤にて前記支持体基板2の電極形成
側の面に接着した。貫通孔23eは、これと支持体基板
とから囲まれる凹部を電解質溶液溜部8として構成する
ためのものであり、各イオン感応極と参照極との概ね中
間に位置するように形成してある。なお、各配線の他端
部は計測器と接続するための端子部22a、22b、2
2c、22dとして露出させてある。参照極用の貫通孔
23dの内部に吸水性部材43としてガーゼを挿入し
た。電解質溶液溜部8に封入する電解質溶液6として、
AgCl飽和のKCl飽和水溶液を用意し、これを前記
貫通孔23eの内部に注入した。
Next, as shown in FIGS. 6 and 7, through-holes 23a, 23b, 23c, 23d and 23e having the same size and position as the ion sensitive electrode, the reference electrode and the electrolyte solution reservoir are formed. A polycarbonate frame 23 having a thickness of 3 mm was adhered to the surface of the support substrate 2 on the electrode formation side with an epoxy adhesive. The through hole 23e serves to configure a recess surrounded by the through hole 23e and the support substrate as the electrolyte solution reservoir 8, and is formed so as to be positioned approximately in the middle between each ion sensitive electrode and the reference electrode. . The other end of each wire is connected to a terminal unit 22a, 22b, 2
It is exposed as 2c and 22d. Gauze was inserted as the water absorbent member 43 into the through hole 23d for the reference electrode. As the electrolyte solution 6 sealed in the electrolyte solution reservoir 8,
An AgCl-saturated KCl saturated aqueous solution was prepared, and this was injected into the through hole 23e.

【0033】次に、図8、図9に示すように、厚さ50
μmの塩化ビニルフィルムよりなる隔壁5を熱接着法に
て上記貫通孔23eの開口端周縁に接着し電解質溶液6
を密封し電解質溶液溜部8とした。その後、溌水性のフ
ッ素樹脂フィルム(図示省略)を各電極部及び電解質溶
液溜部の上部のみが露出するように被覆し、次いで、図
10、図11に示すように、ガーゼよりなる拡散部材9
を前記貫通孔23a、23b、23c、23d、23e
の形成位置を覆うように配置し、周縁部を接着剤で固定
した。
Next, as shown in FIG. 8 and FIG.
A partition wall 5 made of a vinyl chloride film having a thickness of μm is adhered to the peripheral edge of the opening end of the through hole 23e by a thermal adhesion method to form an electrolyte solution 6
Was sealed to form an electrolyte solution reservoir 8. Then, a water-repellent fluororesin film (not shown) is coated so that only the upper parts of the electrode parts and the electrolyte solution storage part are exposed, and then, as shown in FIGS.
Through holes 23a, 23b, 23c, 23d, 23e
Was formed so as to cover the formation position of the, and the peripheral portion was fixed with an adhesive.

【0034】次に、図12、図13に示すように、上記
の各電極等を形成した支持体基板2を収納するアクリル
樹脂製ケース25の所定位置に直径5mmの貫通孔と直
径1.2mmの貫通孔を設けて、それぞれ被検液の滴下
孔26及び浸出部材7の針状部の通し孔27とした。そ
して前記支持体基板2を前記ケース25に挿入した。さ
らに、前述の図2に示すように、多孔質のアルミナ磁器
製の針状部71(直径1mm、長さ7mm、気孔率35
%、平均気孔径1.5μm)の一端部を尖状とし他端部
に直径5mmの傘部72を接着剤で取り付け、浸出部材
7とした。これを前記通し孔27にはめ込み、ケース2
5と傘部72との間隙部にポリエチレン製のストッパー
28を脱着可能に挿入して一時的に固定した。ストッパ
ー28の厚さは、前記針状部71の先端が隔壁5に接し
ない位置で止まるように設定されている。
Next, as shown in FIGS. 12 and 13, a through hole having a diameter of 5 mm and a diameter of 1.2 mm are provided at predetermined positions of an acrylic resin case 25 for accommodating the support substrate 2 having the above-mentioned electrodes and the like formed therein. The through holes are provided as a dropping hole 26 for the test liquid and a through hole 27 for the needle-like portion of the leaching member 7, respectively. Then, the support substrate 2 was inserted into the case 25. Further, as shown in FIG. 2 described above, a needle-shaped portion 71 (diameter 1 mm, length 7 mm, porosity 35 made of porous alumina porcelain) is used.
%, The average pore diameter is 1.5 μm), one end of which is pointed and the other end is attached with an umbrella portion 72 having a diameter of 5 mm with an adhesive to form a leaching member 7. This is fitted into the through hole 27, and the case 2
A polyethylene stopper 28 was removably inserted into the gap between the No. 5 and the umbrella portion 72 and was temporarily fixed. The thickness of the stopper 28 is set so that it stops at a position where the tip of the needle-shaped portion 71 does not contact the partition wall 5.

【0035】こうして得られたイオンセンサ1を10本
用意し、応答時間、検出電位の再現性、個体間のばらつ
き、イオン濃度勾配について評価した。イオン濃度の測
定は図14に示すように、まず、イオンセンサ1のスト
ッパー28を取り外し、端子部22a、22b、22
c、22dをそれぞれエレクトロメーター(図示省略)
に接続した。次いで、浸出部材7の傘部72を指で押し
込んで針状部71を拡散部材9に貫通させるとともに隔
壁5を破り、針状部71の先端部を電解質溶液6の中に
浸漬させた。その後、被検液100μlを滴下孔26に
滴下し、イオン感応極3a、3b、3cと参照極4との
間の各々の電位差をエレクトロメーターを用いて温度2
5℃で測定した。
Ten ion sensors 1 thus obtained were prepared and evaluated for response time, reproducibility of detected potential, variation among individuals, and ion concentration gradient. To measure the ion concentration, as shown in FIG. 14, first, the stopper 28 of the ion sensor 1 is removed, and the terminal portions 22a, 22b, 22.
c and 22d are electrometers (not shown)
Connected to. Next, the umbrella portion 72 of the leaching member 7 was pushed by a finger to penetrate the needle-shaped portion 71 into the diffusion member 9 and the partition wall 5 was broken, and the tip portion of the needle-shaped portion 71 was immersed in the electrolyte solution 6. Then, 100 μl of the test liquid is dropped into the dropping hole 26, and the potential difference between each of the ion sensitive electrodes 3a, 3b, 3c and the reference electrode 4 is measured at a temperature of 2 using an electrometer.
It was measured at 5 ° C.

【0036】被検液として、Naイオン濃度:140m
M、Kイオン濃度:4mM、Clイオン濃度:100m
Mである標準血清を用いた。応答時間は、イオンセンサ
に被検液を滴下してから検出電位が一定値を示すまでの
時間を用いた。検出電位の再現性は、1本のセンサにつ
いて一定のイオン濃度の被測定液での測定を5回繰り返
して行ない、その検出電位の中心値からのシフト量を用
いた。個体間のばらつきは、同一条件での10本のセン
サを測定した場合の差(最大−最小)を用いた。イオン
濃度勾配は、濃度10〜1000mMにおける検出電位
から作成した検量線からその勾配を算出した。
As a test solution, Na ion concentration: 140 m
M, K ion concentration: 4 mM, Cl ion concentration: 100 m
A standard serum of M was used. The response time was the time from when the test liquid was dropped on the ion sensor until the detected potential showed a constant value. The reproducibility of the detection potential was obtained by repeating measurement with a solution to be measured having a constant ion concentration five times for one sensor, and using the shift amount from the center value of the detection potential. As the variation between individuals, the difference (maximum-minimum) when 10 sensors were measured under the same condition was used. The ion concentration gradient was calculated from a calibration curve prepared from the detection potential at a concentration of 10 to 1000 mM.

【0037】Naイオン、Kイオン、Clイオンに対す
る応答性を図15に示す。Naイオンについては約30
秒以内、Kイオン及びClイオンについては約1分以内
で電位が安定した。また、繰り返し測定した場合の再現
性については±2mV、個体間のばらつきについては約
4mV、イオン濃度勾配は55.0〜58.0mV/d
ecadeであった。この結果から明らかなように、本
発明のイオンセンサは、応答時間が従来法のものに比べ
ても短縮されており、再現性及び個体間のばらつきにつ
いても実用的なレベルにあることが確認された。また、
イオン濃度勾配に関しても従来法によるものと比較して
遜色はなく、良好であった。
FIG. 15 shows the responsiveness to Na, K and Cl ions. About 30 for Na ion
Within seconds, the potentials of K and Cl ions were stable within about 1 minute. The reproducibility when repeatedly measured is ± 2 mV, the variation between individuals is about 4 mV, and the ion concentration gradient is 55.0 to 58.0 mV / d.
It was ecade. As is clear from these results, the response time of the ion sensor of the present invention is shorter than that of the conventional method, and it is confirmed that reproducibility and variation among individuals are at a practical level. It was Also,
The ion concentration gradient was also comparable to that of the conventional method and was good.

【0038】[0038]

【発明の効果】本発明のイオンセンサは、上記のように
固体状のイオン感応極と参照極とが一体化された構成と
することにより、イオン感応極の感応部材である固体電
解質を乾燥状態で安定に保存することができるととも
に、参照極と内部液(電解質溶液)との経時変化も抑え
ることができる。また、使用時においては参照極の発生
する基準電位を従来の内部液型と同様に安定させること
ができる。その結果、応答時間(検出電位が安定化する
までの時間)が短縮され、検出電位の再現性が向上し、
センサ個体間の検出電位のばらつきが低減され、検出電
位のイオン濃度勾配がネルンスト則の理論値(59.2
mV/decade:25℃)に近似した高い測定精度
を有する測定が簡便な操作で可能となる、という効果を
奏する。
As described above, the ion sensor of the present invention has a configuration in which the solid ion sensitive electrode and the reference electrode are integrated as described above, so that the solid electrolyte, which is the sensitive member of the ion sensitive electrode, is in a dry state. It is possible to stably store it in, and it is possible to suppress the change with time of the reference electrode and the internal liquid (electrolyte solution). Further, during use, the reference potential generated by the reference electrode can be stabilized as in the conventional internal liquid type. As a result, the response time (the time until the detected potential stabilizes) is shortened, the reproducibility of the detected potential is improved,
Variations in the detected potential among the individual sensors are reduced, and the ion concentration gradient of the detected potential is the theoretical value of the Nernst law (59.2).
(MV / decade: 25 ° C.), which has the effect of enabling measurement with high measurement accuracy close to that of a simple operation.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明のイオンセンサの正面図。FIG. 1 is a front view of an ion sensor of the present invention.

【図2】 本発明のイオンセンサの断面図。FIG. 2 is a sectional view of the ion sensor of the present invention.

【図3】 配線の形成された支持体基板の正面図。FIG. 3 is a front view of a support substrate on which wiring is formed.

【図4】 支持体基板上に感応部材及び参照極を形成し
た状態を示す正面図。
FIG. 4 is a front view showing a state in which a sensitive member and a reference electrode are formed on a support substrate.

【図5】 図4のA−A面における断面図。5 is a cross-sectional view taken along the line AA of FIG.

【図6】 枠体を装着した状態を示す正面図。FIG. 6 is a front view showing a state in which a frame body is attached.

【図7】 図6のB−B面における断面図。7 is a sectional view taken along the line BB of FIG.

【図8】 隔壁を装着した状態を示す正面図。FIG. 8 is a front view showing a state in which a partition is attached.

【図9】 図8のC−C面における断面図。9 is a cross-sectional view taken along the line CC of FIG.

【図10】 拡散部材を装着した状態を示す正面図。FIG. 10 is a front view showing a state in which a diffusion member is attached.

【図11】 図10のD−D面における断面図。11 is a cross-sectional view taken along the line DD of FIG.

【図12】 ケースに挿入した状態を示す正面図。FIG. 12 is a front view showing a state of being inserted into a case.

【図13】 図12のE−E面における断面図。13 is a cross-sectional view taken along the line EE of FIG.

【図14】 本発明のイオンセンサの使用時の状態を説
明するための断面図。
FIG. 14 is a sectional view for explaining a state when the ion sensor of the present invention is used.

【図15】 本発明のイオンセンサの応答性を示すグラ
フ。
FIG. 15 is a graph showing the responsiveness of the ion sensor of the present invention.

【符号の説明】[Explanation of symbols]

1 イオンセンサ 7 浸出
部材 2 支持体基板 8 電解
質溶液溜部 3a,3b,3c イオン感応極 9 拡散
部材 4 参照極 25 ケー
ス 5 隔壁 28 スト
ッパー 6 電解質溶液
1 Ion Sensor 7 Leaching Member 2 Support Substrate 8 Electrolyte Solution Reservoir 3a, 3b, 3c Ion Sensing Electrode 9 Diffusing Member 4 Reference Electrode 25 Case 5 Partition Wall 28 Stopper 6 Electrolyte Solution

───────────────────────────────────────────────────── フロントページの続き (72)発明者 奥山雅彦 名古屋市瑞穂区高辻町14番18号 日本特殊 陶業株式会社内 (72)発明者 堀部尚子 名古屋市瑞穂区高辻町14番18号 日本特殊 陶業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Masahiko Okuyama 14-18 Takatsuji-cho, Mizuho-ku, Nagoya City Nippon Special Ceramics Co., Ltd. (72) Naoko Horibe 14-18 Takatsuji-cho, Mizuho-ku, Nagoya City Japan Special Ceramics Within the corporation

Claims (15)

【特許請求の範囲】[Claims] 【請求項1】 固体電解質を用いた固体状のイオン感応
極と、内部極上に吸水性部材を有する固体状の参照極
と、少なくとも一部が破損または除去可能な隔壁によっ
て電解質溶液が封入された電解質溶液溜部と、前記隔壁
を破損または除去して前記電解質溶液溜部より電解質溶
液を浸出させるための可動式の浸出部材と、滴下した被
検液を拡散させて前記浸出部材により浸出した電解質溶
液と接触させるための拡散部材とを備えることを特徴と
するイオンセンサ。
1. An electrolyte solution is enclosed by a solid ion-sensing electrode using a solid electrolyte, a solid reference electrode having a water-absorbing member on the inner electrode, and a partition that is at least partially damaged or removable. Electrolyte solution reservoir, movable leaching member for leaching electrolyte solution from the electrolyte solution reservoir by damaging or removing the partition wall, and electrolyte leached by the leaching member by diffusing the dropped test liquid An ion sensor, comprising: a diffusing member for contacting with a solution.
【請求項2】 前記浸出部材の一部が針状部を有し、前
記隔壁の一部が前記針状部が針入可能な耐水性膜よりな
ることを特徴とする請求項1に記載のイオンセンサ。
2. The water-repellent film according to claim 1, wherein a part of the leaching member has a needle-shaped portion, and a part of the partition wall is made of a water resistant film into which the needle-shaped portion can be inserted. Ion sensor.
【請求項3】 前記針状部が連通気孔を有する親水性の
多孔質体からなることを特徴とする請求項2に記載のイ
オンセンサ。
3. The ion sensor according to claim 2, wherein the needle-shaped portion is made of a hydrophilic porous body having continuous ventilation holes.
【請求項4】 前記浸出部材が使用前に前記隔壁を破損
もしくは除去することを防止するための固定手段を備え
ることを特徴とする請求項1に記載のイオンセンサ。
4. The ion sensor according to claim 1, wherein the leaching member includes fixing means for preventing the partition wall from being damaged or removed before use.
【請求項5】 前記拡散部材が連通気孔を有する親水性
の多孔質体からなることを特徴とする請求項1に記載の
イオンセンサ。
5. The ion sensor according to claim 1, wherein the diffusion member is made of a hydrophilic porous body having continuous ventilation holes.
【請求項6】 前記浸出部材と前記拡散部材とが一体に
形成されていることを特徴とする請求項1に記載のイオ
ンセンサ。
6. The ion sensor according to claim 1, wherein the leaching member and the diffusing member are integrally formed.
【請求項7】 それぞれ異なるイオン種に選択的に応答
する固体電解質を用いた複数のイオン感応極を備えるこ
とを特徴とする請求項1に記載のイオンセンサ。
7. The ion sensor according to claim 1, further comprising a plurality of ion sensitive electrodes using a solid electrolyte that selectively responds to different ion species.
【請求項8】 前記固体電解質がセラミックスよりなる
ことを特徴とする請求項1に記載のイオンセンサ。
8. The ion sensor according to claim 1, wherein the solid electrolyte is made of ceramics.
【請求項9】 固体電解質を用いた固体状のイオン感応
極と、内部極上に吸水性部材を有する固体状の参照極
と、隔壁によって電解質溶液が封入された電解質溶液溜
部と、前記隔壁を破損または除去して前記電解質溶液溜
部より電解質溶液を浸出させるための可動式の浸出部材
と、滴下した被検液を拡散させて前記浸出部材により浸
出した電解質溶液と接触させるための拡散部材とを備え
るイオンセンサを用いたイオン濃度測定方法であって、
前記浸出部材の動作により前記隔壁を破損または除去し
て電解質溶液を浸出させ、浸出した電解質溶液の一部を
前記吸水性部材に吸水させるとともに前記内部極に接触
させた後、前記イオン感応極の上方より被検液を滴下
し、前記拡散部材中を拡散させて固体電解質に接触させ
るとともに、その一部を前記浸出部材により浸出した電
解質溶液にも接触せしめ、前記イオン感応極と前記参照
極との間に生ずる電位差を測定することを特徴とするイ
オン濃度測定方法。
9. A solid ion-sensing electrode using a solid electrolyte, a solid reference electrode having a water-absorbing member on an inner electrode, an electrolyte solution reservoir in which an electrolyte solution is sealed by a partition wall, and the partition wall. A movable leaching member for leaching the electrolyte solution from the electrolyte solution reservoir after being damaged or removed, and a diffusing member for diffusing the dropped test liquid and bringing it into contact with the electrolyte solution leached by the leaching member. An ion concentration measuring method using an ion sensor comprising:
After the partition wall is broken or removed by the operation of the leaching member to leaching the electrolyte solution, the water-absorbing member is caused to absorb part of the leached electrolyte solution, and the inner electrode is brought into contact with the electrolyte solution. A test liquid is dropped from above, and while contacting with the solid electrolyte by diffusing in the diffusion member, a part thereof is also contacted with the electrolyte solution leached by the leaching member, and the ion sensitive electrode and the reference electrode. An ion concentration measuring method characterized by measuring a potential difference generated between the two.
【請求項10】 前記浸出部材の一部が針状部を有する
とともに、前記隔壁の一部が前記針状部が針入可能な耐
水性膜よりなり、前記針状部を前記隔壁に圧接もしくは
圧入することによりこれを破損もしくは除去し、前記電
解質溶液を浸出させることを特徴とする請求項9に記載
のイオン濃度測定方法。
10. A part of the leaching member has a needle-shaped portion, and a part of the partition wall is made of a water resistant film into which the needle-shaped part can be inserted. The ion concentration measuring method according to claim 9, wherein the electrolyte solution is leached out by damaging or removing it by press-fitting.
【請求項11】 前記針状部が連通気孔を有する親水性
の多孔質体からなり、前記電解質溶液を前記連通気孔を
通して浸出させることを特徴とする請求項10に記載の
イオン濃度測定方法。
11. The ion concentration measuring method according to claim 10, wherein the needle-shaped portion is made of a hydrophilic porous body having continuous ventilation holes, and the electrolyte solution is leached out through the continuous ventilation holes.
【請求項12】 前記拡散部材が連通気孔を有する親水
性の多孔質体からなることを特徴とする請求項9に記載
のイオン濃度測定方法。
12. The ion concentration measuring method according to claim 9, wherein the diffusion member is made of a hydrophilic porous body having continuous ventilation holes.
【請求項13】 前記浸出部材と前記拡散部材とが一体
に形成されていることを特徴とする請求項9に記載のイ
オン濃度測定方法。
13. The ion concentration measuring method according to claim 9, wherein the leaching member and the diffusing member are integrally formed.
【請求項14】 前記イオンセンサが、それぞれ異なる
イオン種に選択的に応答する固体電解質を用いた複数の
イオン感応極を備えており、複数のイオン種のイオン濃
度を同時に測定することを特徴とする請求項9に記載の
イオン濃度測定方法。
14. The ion sensor comprises a plurality of ion-sensing electrodes using a solid electrolyte that selectively responds to different ion species, and simultaneously measures the ion concentrations of the plurality of ion species. The ion concentration measuring method according to claim 9.
【請求項15】 前記固体電解質がセラミックスよりな
ることを特徴とする請求項9に記載のイオン濃度測定方
法。
15. The ion concentration measuring method according to claim 9, wherein the solid electrolyte is made of ceramics.
JP7351762A 1995-12-26 1995-12-26 Ion sensor and method for measuring ion concentration Pending JPH09178690A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7351762A JPH09178690A (en) 1995-12-26 1995-12-26 Ion sensor and method for measuring ion concentration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7351762A JPH09178690A (en) 1995-12-26 1995-12-26 Ion sensor and method for measuring ion concentration

Publications (1)

Publication Number Publication Date
JPH09178690A true JPH09178690A (en) 1997-07-11

Family

ID=18419442

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7351762A Pending JPH09178690A (en) 1995-12-26 1995-12-26 Ion sensor and method for measuring ion concentration

Country Status (1)

Country Link
JP (1) JPH09178690A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014095692A (en) * 2012-10-11 2014-05-22 Horiba Ltd Multiple ion sensor
JP2014528062A (en) * 2011-09-06 2014-10-23 フェーズ2 マイクロテクノロジーズ, エルエルシー Measuring device with reader and disposable probe
JP2015514996A (en) * 2012-04-19 2015-05-21 ルオクシス ダイアグノスティクス インコーポレイテッドLuoxis Diagnostics,Inc. Multilayer gel
JP2015224904A (en) * 2014-05-26 2015-12-14 国立大学法人 岡山大学 Ion sensor
US9410913B2 (en) 2012-10-23 2016-08-09 Aytu Bioscience, Inc. Methods and systems for measuring and using the oxidation-reduction potential of a biological sample
WO2023276380A1 (en) * 2021-07-02 2023-01-05 シスメックス株式会社 Ion sensor, method for manufacturing ion sensor, and method for measuring ion
WO2023199694A1 (en) * 2022-04-12 2023-10-19 キヤノン株式会社 Microanalysis chip

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014528062A (en) * 2011-09-06 2014-10-23 フェーズ2 マイクロテクノロジーズ, エルエルシー Measuring device with reader and disposable probe
JP2015514996A (en) * 2012-04-19 2015-05-21 ルオクシス ダイアグノスティクス インコーポレイテッドLuoxis Diagnostics,Inc. Multilayer gel
US9372167B2 (en) 2012-04-19 2016-06-21 Aytu Bioscience, Inc. Oxidation-reduction potential test device including a multiple layer gel
US10281425B2 (en) 2012-04-19 2019-05-07 Aytu Bioscience, Inc. Multiple layer gel
JP2014095692A (en) * 2012-10-11 2014-05-22 Horiba Ltd Multiple ion sensor
US9410913B2 (en) 2012-10-23 2016-08-09 Aytu Bioscience, Inc. Methods and systems for measuring and using the oxidation-reduction potential of a biological sample
JP2015224904A (en) * 2014-05-26 2015-12-14 国立大学法人 岡山大学 Ion sensor
WO2023276380A1 (en) * 2021-07-02 2023-01-05 シスメックス株式会社 Ion sensor, method for manufacturing ion sensor, and method for measuring ion
WO2023199694A1 (en) * 2022-04-12 2023-10-19 キヤノン株式会社 Microanalysis chip

Similar Documents

Publication Publication Date Title
CN107037107B (en) Electric potential sensor
CA1202079A (en) Ph and co.sub.2 sensing device
US4682602A (en) Probe for medical application
US9011670B2 (en) Three-dimensional metal ion sensor arrays on printed circuit boards
JP5809969B2 (en) Ion analyzer
JPH0465975B2 (en)
EP2506000B1 (en) Electrode assembly
CN112268946B (en) Structure and manufacturing method of miniature electrochemical sensor based on miniature three-dimensional electrode
JP3700878B2 (en) Planar bicarbonate sensor and method for making and using the same
EP0494382A1 (en) Cathode in a layered circuit and electrochemical cell for measurement of oxygen in fluids
US5384031A (en) Reference electrode
JPH09178690A (en) Ion sensor and method for measuring ion concentration
JPH089636Y2 (en) Ion concentration measuring device
JP2001514760A (en) Manufacturing method of wiring substrate with subminiature through hole
US4495052A (en) Replaceable junctions for reference electrodes
JP2859458B2 (en) Ion sensor
JPH09171000A (en) Ion sensor and method for measuring concentration of ion
JPS5962039A (en) Electrochemical sensor for subcataneous measurement of carb-on dioxide partitial pressure in living body
JPH0463340B2 (en)
JPH075145A (en) Cartridge type analyzer and cartridge
JP2861131B2 (en) Ion electrode
EP0103031B1 (en) Electro-chemical cell for determining a particular property or component of a fluid
CA1116696A (en) Ion-selective electrode
JPH0442623B2 (en)
TWI676026B (en) Disposable Reference Electrode And Manufacturing Method Thereof