JPS63152117A - Device for manufacturing polycrystalline silicon thin film - Google Patents

Device for manufacturing polycrystalline silicon thin film

Info

Publication number
JPS63152117A
JPS63152117A JP29877486A JP29877486A JPS63152117A JP S63152117 A JPS63152117 A JP S63152117A JP 29877486 A JP29877486 A JP 29877486A JP 29877486 A JP29877486 A JP 29877486A JP S63152117 A JPS63152117 A JP S63152117A
Authority
JP
Japan
Prior art keywords
gas
polycrystalline silicon
chamber
thin film
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29877486A
Other languages
Japanese (ja)
Inventor
Takako Kashio
樫尾 多佳子
Hirosaku Yamada
山田 啓作
Yuichi Mikata
見方 裕一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP29877486A priority Critical patent/JPS63152117A/en
Publication of JPS63152117A publication Critical patent/JPS63152117A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce the contamination by carbon atoms and to obtain the silicon crystal of high quality by a method wherein the reaction, in which polycrystalline silicon is adhered to a substrate, makes progress on the first heating part, and the non-reacted raw gas is decomposed by heat on the region ranging from the first heating part arranged on the down stream to the high temperature second heating part. CONSTITUTION:A silicon substrate 1 is held in the first reaction chamber 2 by reducing pressure using a vacuum pump 3, and raw gas 4 is fed to the chamber 2. Also, the chamber 2 is heated up to the prescribed temperature by a heater 5, the decomposition reaction of the raw gas by heating makes progress, and a polycrystalline silicon thin film is formed on the substrate 1. The mixed gas 4' of the decomposition reaction gas passed through the chamber 2 and non-reaction gas is allowed to flow into the second reaction chamber 6, and it is heated up to a high temperature by a heater 7. All the non-reacted gas is thermally decomposed by heating at a high temperature, decomposition product gas 4'' passes through a liquid nitrogen trap 8 and exhausted from the pump 3, thereby enabling the title device to reduce the contamination by carbon atoms.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) この発明は、半導体基体上に多結晶シリコン薄膜を形成
する多結晶シリコン薄膜の製造装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a polycrystalline silicon thin film manufacturing apparatus for forming a polycrystalline silicon thin film on a semiconductor substrate.

(従来の技術) 多結晶シリコン薄膜は、 、M OS型半導体装置にお
いて、ゲート電極あるいはp型、n型の導電層等に用い
られ、用途は広い。この多結晶シリコン薄膜を、シリコ
ン基板上あるいはシリコン基板上に形成した各種薄膜に
付着させる方法としては、シラン(SiH4)あるいは
ジシラン(S l IH4)を原料ガスとする減圧CV
D法が一般に用いられている。
(Prior Art) Polycrystalline silicon thin films are used for gate electrodes, p-type and n-type conductive layers, etc. in MOS type semiconductor devices, and have a wide range of uses. A method for attaching this polycrystalline silicon thin film to a silicon substrate or to various thin films formed on a silicon substrate is a low pressure CV method using silane (SiH4) or disilane (S l IH4) as a raw material gas.
D method is generally used.

通常用いられている装置の構成を第2図に示す。FIG. 2 shows the configuration of a commonly used device.

シリコン基板11が設置されたチャンバー12の中は真
空ポンプ13により減圧に保たれ、チャンバー内には原
料ガス14が供結され、ヒーター15により加熱される
。加熱により、チャンバー内では原料ガスの分解反応が
進行し1反応生成物のシリコンがシリコン基板上あるい
はシリコン基板上に形成された各種薄膜上に付着し、多
結晶シリコン薄膜が形成される。また、このとと、p型
あるいは0厘の不純物を熱分解により形成する各種ガス
を原料ガス中に含ませると、p型あるいはn型の不純物
を含有する多結晶シリコン薄膜が形成される。
The inside of the chamber 12 in which the silicon substrate 11 is installed is maintained at a reduced pressure by a vacuum pump 13, and a raw material gas 14 is introduced into the chamber and heated by a heater 15. By heating, a decomposition reaction of the raw material gas progresses in the chamber, and one reaction product, silicon, adheres to the silicon substrate or various thin films formed on the silicon substrate, forming a polycrystalline silicon thin film. Furthermore, when various gases that form p-type or n-type impurities by thermal decomposition are included in the raw material gas, a polycrystalline silicon thin film containing p-type or n-type impurities is formed.

各種半導体装置に用いられる多結晶シリコン薄膜には、
高い品質が要求される。膜厚及び導電性不純物の濃度の
均一性、制御性の保障以外にも、膜中に余儀なく入る不
純物量を減少させることが望まれる。この不純物の主た
る物として、真空ポンプ中に用いられているオイルのオ
イルバ、りに起因する炭素原子が挙げられる。このオイ
ルバンクを極力抑制するためには、真空ポンプとチャン
バーの間で、オイル蒸気を低温でトラップすれば艮いO しかし、多結晶シリコン#膜の原料カスに用いられるシ
ラン及びジシランは、高反応性の物質であり、チャンバ
ー内で未反応の残留原料ガスが。
Polycrystalline silicon thin films used in various semiconductor devices include
High quality is required. In addition to ensuring uniformity and controllability of the film thickness and the concentration of conductive impurities, it is desirable to reduce the amount of impurities that inevitably enter the film. The main impurities include carbon atoms originating from the oil used in the vacuum pump. In order to suppress this oil bank as much as possible, it is possible to trap oil vapor at a low temperature between the vacuum pump and the chamber. It is a chemical substance, and residual raw material gas that has not reacted in the chamber.

前記低温トラップに蓄積された場合には、装置運転中に
爆発する恐れがあり、第1図に示した従来の装置には、
低温トラップを設ける事ができず、多結晶シリコン中へ
の炭素原子の混入を防ぐ事ができない。
If accumulated in the cryogenic trap, there is a risk of explosion during operation of the device, and the conventional device shown in FIG.
It is not possible to provide a low-temperature trap, and it is not possible to prevent carbon atoms from entering polycrystalline silicon.

(発明が解決しようとする問題点) 本発明は、減圧CVD法による多結晶シリコン薄膜の製
造において、従来の装置で防げない真空ポンプのオイル
蒸気による薄膜の汚染を低温トラップを用い、かつ安全
に除去する装置を提供することを目的とする。
(Problems to be Solved by the Invention) The present invention uses a low-temperature trap to safely prevent contamination of the thin film by oil vapor from a vacuum pump, which cannot be prevented with conventional equipment, in the production of polycrystalline silicon thin films by the low-pressure CVD method. The purpose is to provide a device for removing.

〔発明の構成〕[Structure of the invention]

C問題点を解決するための手段) 従来の多結晶シリコン薄膜製造装置においては。 Measures to solve problem C) In conventional polycrystalline silicon thin film manufacturing equipment.

反応チャンバーと真空ポンプの間に安全上低温トラップ
を設置できない。これは反応チャンバー内で未反応のま
ま排気される原料ガスがあるからである。そこで、原料
ガスを全て反応させた後、ガスが排気系へ導入される装
置を開発した。
For safety reasons, a cold trap cannot be installed between the reaction chamber and the vacuum pump. This is because there is raw material gas that is exhausted unreacted in the reaction chamber. Therefore, we developed a device that introduces the gas into the exhaust system after all the raw material gases have reacted.

本発明における多結晶シリコン薄膜製造、装置は。The apparatus for producing polycrystalline silicon thin films in the present invention is as follows.

2段の反応チャンバーから成る。原料ガスの流れ方向に
おいて、上流には、シリコン基板を設置し。
It consists of two reaction chambers. A silicon substrate is installed upstream in the flow direction of the source gas.

基板上に多結晶シリコン薄膜を形成するところの第1の
反応チャンバーを設け、下流には、第1の反応チャンバ
ー内で未反応の原料ガスを熱分解させるための第2の反
応チャンバーを設ける。これにより、未反応ガスを無く
シ、第2の反応チャンバーと真空ポンプの間に低温トラ
ップを設ける事が可能となり、炭素原子による汚染が大
きく減少された高品質の多結晶シリコン薄膜を製造でき
る。
A first reaction chamber is provided for forming a polycrystalline silicon thin film on a substrate, and a second reaction chamber is provided downstream for thermally decomposing raw material gas that has not reacted in the first reaction chamber. This makes it possible to eliminate unreacted gases and provide a low-temperature trap between the second reaction chamber and the vacuum pump, making it possible to produce a high-quality polycrystalline silicon thin film with greatly reduced contamination by carbon atoms.

(作用) 本発明における多結晶シリコン薄膜製造装置において1
m1段の反応チャンバーは、何かなる温度に設定されて
も良く、薄膜形成条件として最適の条件に設定できる。
(Function) In the polycrystalline silicon thin film manufacturing apparatus of the present invention, 1
The m1 stage reaction chamber may be set at any temperature, and can be set to the optimum conditions for thin film formation.

つまり、未反応ガスが何に残存しようとも構わない。第
2の反応チャンバーは未反応ガスを全て分解させる条件
に設定する。
In other words, it does not matter what unreacted gas remains. The second reaction chamber is set under conditions to decompose all unreacted gas.

すなわち、第2の反応チャンバーは第1の反応チャンバ
ーよりも高温に設定される。この2段の反応チャンバー
構成により、低温トラップの設置が可能となり、また薄
膜製造条件においては何ら規制を受けない。
That is, the second reaction chamber is set at a higher temperature than the first reaction chamber. This two-stage reaction chamber configuration allows the installation of a low-temperature trap and is not subject to any restrictions on thin film production conditions.

(実施例) 本発明における多結晶シリコン薄膜製造゛装置の装置例
を第1図に示す。シリコン基板lが設置された第1の反
応チャンバー2の中は真空ポンプ3により減圧に保たれ
、第1の反応チャンバーの中には原料ガス4としてシラ
ンあるいはジシランあるいはn型、p型の不純物を形成
するカスが供給される。第1の反応子ヤンバーはヒータ
ー5により摂氏500度前後の適温に設定され、加熱さ
れる。加熱により、第1の反応チャンバー内で原料ガス
の分解反応が進行し、シリコン基板上に多結晶シリコン
薄膜が形成される。第1チヤンバーを通過したガス4′
は1分解生成ガスと未反応ガスの混合ガスであり、第2
の反応チャンバー6に流れる。第2の反応チャンバー内
は、ヒーター7によって高温に加熱され、未反応ガスは
全て熱分解される。分解生成ガス4′′は液体窒素トラ
ップ8を通り、真空ポンプ3により排気される。オイル
蒸気9は液体窒素によりトラップされる。
(Example) FIG. 1 shows an example of an apparatus for producing a polycrystalline silicon thin film according to the present invention. The inside of the first reaction chamber 2 in which the silicon substrate 1 is installed is maintained at a reduced pressure by a vacuum pump 3, and silane or disilane or n-type and p-type impurities are supplied as a raw material gas 4 into the first reaction chamber. The forming dregs are fed. The first reactor Yanbar is set to an appropriate temperature of about 500 degrees Celsius by the heater 5 and heated. By heating, a decomposition reaction of the raw material gas progresses in the first reaction chamber, and a polycrystalline silicon thin film is formed on the silicon substrate. Gas 4' passed through the first chamber
is a mixed gas of 1 decomposition product gas and unreacted gas, and 2nd is a mixed gas of decomposed gas and unreacted gas.
into the reaction chamber 6. The inside of the second reaction chamber is heated to a high temperature by the heater 7, and all unreacted gas is thermally decomposed. The decomposition product gas 4'' passes through a liquid nitrogen trap 8 and is exhausted by a vacuum pump 3. Oil vapor 9 is trapped by liquid nitrogen.

〔発明の効果〕〔Effect of the invention〕

本発明により、炭素原子による汚染の極めて少ない高品
質の多結晶シリコン薄膜が形成され得る。
According to the present invention, a high quality polycrystalline silicon thin film with extremely little contamination by carbon atoms can be formed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す構成図、第2図は従来
装置の構成図である。 1・・・シリコン基板。 2・・・反応チャンバー。 3・・・真空ポンプ。 4・・・原料ガス。 5・・・ヒーター。 6・・・反応チャンバー。 7・・・ヒーター、 8・・・液体窒素トラップ、 9・・・オイル蒸気。 11・・・シリコン基板、 12・・・反応チャンバー。 13・・・真空ポンプ、 14・・・原料ガス。 15・・・ヒーター。 代理人 弁理士 則 近 憲 佑 同    竹 花 喜久男 第1図
FIG. 1 is a block diagram showing an embodiment of the present invention, and FIG. 2 is a block diagram of a conventional device. 1...Silicon substrate. 2...Reaction chamber. 3...Vacuum pump. 4... Raw material gas. 5... Heater. 6...Reaction chamber. 7... Heater, 8... Liquid nitrogen trap, 9... Oil vapor. 11... Silicon substrate, 12... Reaction chamber. 13... Vacuum pump, 14... Raw material gas. 15...Heater. Agent Patent Attorney Noriyuki Chika Yudo Kikuo Takehana Figure 1

Claims (1)

【特許請求の範囲】[Claims]  多結晶シリコン薄膜を減圧CVD法により半導体上に
形成する装置において、前記多結晶シリコン薄膜を基体
上に付着させる反応を進行させる第1の加熱部と、前記
加熱部の下流に、前記加熱部よりも高温の第2の加熱部
を有することを特徴とする多結晶シリコン薄膜の製造装
置。
In an apparatus for forming a polycrystalline silicon thin film on a semiconductor by a low pressure CVD method, there is provided a first heating section that advances a reaction for adhering the polycrystalline silicon thin film onto a substrate, and a first heating section downstream of the heating section that is connected to the heating section. An apparatus for manufacturing a polycrystalline silicon thin film, characterized in that it also has a second heating section at a high temperature.
JP29877486A 1986-12-17 1986-12-17 Device for manufacturing polycrystalline silicon thin film Pending JPS63152117A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29877486A JPS63152117A (en) 1986-12-17 1986-12-17 Device for manufacturing polycrystalline silicon thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29877486A JPS63152117A (en) 1986-12-17 1986-12-17 Device for manufacturing polycrystalline silicon thin film

Publications (1)

Publication Number Publication Date
JPS63152117A true JPS63152117A (en) 1988-06-24

Family

ID=17864040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29877486A Pending JPS63152117A (en) 1986-12-17 1986-12-17 Device for manufacturing polycrystalline silicon thin film

Country Status (1)

Country Link
JP (1) JPS63152117A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5154773A (en) * 1990-08-10 1992-10-13 Kabushiki Kaisha Toshiba Vapor phase epitaxial growth apparatus having exhaust unit for removing unwanted deposit
US5261963A (en) * 1991-12-04 1993-11-16 Howmet Corporation CVD apparatus comprising exhaust gas condensation means
US5919799A (en) * 1995-03-13 1999-07-06 Nikken Chemicals Co., Ltd. Imidazothiazole compound

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5154773A (en) * 1990-08-10 1992-10-13 Kabushiki Kaisha Toshiba Vapor phase epitaxial growth apparatus having exhaust unit for removing unwanted deposit
US5261963A (en) * 1991-12-04 1993-11-16 Howmet Corporation CVD apparatus comprising exhaust gas condensation means
US5407704A (en) * 1991-12-04 1995-04-18 Howmet Corporation CVD apparatus and method
US5919799A (en) * 1995-03-13 1999-07-06 Nikken Chemicals Co., Ltd. Imidazothiazole compound

Similar Documents

Publication Publication Date Title
US4592933A (en) High efficiency homogeneous chemical vapor deposition
US4501769A (en) Method for selective deposition of layer structures consisting of silicides of HMP metals on silicon substrates and products so-formed
KR100273602B1 (en) Manufacturing Method of Semiconductor Device
GB1346938A (en) Reactors and method of manufacture of semiconductor devices using such a reactor
US6132514A (en) Catalytic breakdown of reactant gases in chemical vapor deposition
EP0671484B1 (en) Gas flow system for CVD reactor
JPS61234534A (en) Fabrication of silicon nitride coating
JPS63152117A (en) Device for manufacturing polycrystalline silicon thin film
US5700736A (en) Method for making semiconductor device
US4945857A (en) Plasma formation of hydride compounds
US6436353B1 (en) Gas recovering apparatus
JP2000502212A (en) Method of forming insulating film with reduced metal contaminants
JPH02259074A (en) Method and apparatus for cvd
JP3076268B2 (en) Low pressure vapor phase growth equipment
JPH05335250A (en) Cvd device
JPH0458530A (en) Manufacturing apparatus for semiconductor
JPS63260124A (en) Vapor growth apparatus
JP2001023910A (en) Semiconductor manufacturing apparatus
JPH06295870A (en) Chemical vapor deposition system
KR950007671B1 (en) Method for evaporation a thin film of tungsten
JPH0421751B2 (en)
JPS61250172A (en) Method for growing tungsten silicide film
JP2968085B2 (en) Vapor phase growth equipment
JPH01312833A (en) Vapor phase growth device
JPH01152631A (en) Formation of sixoynz insulating film