JPS63151724A - Steel plate shell structure - Google Patents

Steel plate shell structure

Info

Publication number
JPS63151724A
JPS63151724A JP29795386A JP29795386A JPS63151724A JP S63151724 A JPS63151724 A JP S63151724A JP 29795386 A JP29795386 A JP 29795386A JP 29795386 A JP29795386 A JP 29795386A JP S63151724 A JPS63151724 A JP S63151724A
Authority
JP
Japan
Prior art keywords
steel plate
air
shell
plate cell
air supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29795386A
Other languages
Japanese (ja)
Inventor
Hiroshi Kida
浩 喜田
Takeshi Iida
毅 飯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP29795386A priority Critical patent/JPS63151724A/en
Publication of JPS63151724A publication Critical patent/JPS63151724A/en
Pending legal-status Critical Current

Links

Landscapes

  • Piles And Underground Anchors (AREA)

Abstract

PURPOSE:To secure the stability of steel-plate shell as well as to raise the workability and economy of the shell without disturbing the surrounding ground by a method in which an air supply pipe serving in combination as an excavating compartment and a vertical rib is provided between the steel plate sheet body and the inner wall. CONSTITUTION:A vertical rib 2, a side rib 3, and a vertical rib 2' with an air supply pipe 6 are welded to the cylindrical steel plate of a steel plate shell 1. A cylindrical inner wall 4 lower than the shell 1 is provided in contact with the rib 2 inside the lower part to form compartments 5. A band steel plate 10 having a knife-shaped tip is welded to the lower end of the shell 1. Air is supplied through an air supply pipe 6 from an air compressor and jetted from the lower end to generate a gas-liquid mixed stream in the compartments 5 to disturb the soil particles of the bottom ground under water. The solid-gas- liquid mixed stream so formed is sent out and the penetrating resistance is removed to settle the shell 1 down.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は港湾工事、河川工事等で使用する鋼板セルの
構造に関するもので、エアリフトを利用して施工される
ものである。
[Detailed Description of the Invention] [Field of Industrial Application] This invention relates to the structure of a steel plate cell used in port construction, river construction, etc., and is constructed using an air lift.

〔従来の技術〕[Conventional technology]

セル構造、ケーソン構造等の構造体を水底地盤に貫入沈
設せしめる従来の手段としては、■構造体の頂部に多数
のバイブロハンマーを取付けその起振力により地盤に貫
入せしめる方法、■予め地盤を掘削し、構造体を据付け
たのち埋戻す方法、■構造体の外壁内側を掘削し、構造
体自重により沈設する方法等がある。しかし、いずれの
場合にも多数のバイブロハンマーや地盤掘削専用船、埋
戻し機器、構造体内で用いる掘削機器等の大規模かつ特
殊な装置を必要とし、場合によっては潜水夫も必要とす
る。また、例えば、第4図(a)、 (b)に示すよう
にバイブロハンマー14を使用する場合は、バイブロハ
ンマー14とこれを支持する治具の重量が大きくまた高
さも高くなるため、設置すべき構造体の重量や高さに見
合う以上の吊り能力を有する起重機が必要である。なお
、図中1は鋼板セル、7は吊治具、15はバイブロハン
マー支持治具、16はチャック、17はダンパーである
Conventional methods for penetrating and sinking structures such as cell structures and caisson structures into the underwater ground include: - Installing a number of vibrohammers on the top of the structure and using their vibratory force to penetrate the ground; - Pre-excavation of the ground. However, there are two methods: one method is to backfill the structure after it has been installed, and the other method is to excavate the inside of the outer wall of the structure and sink it using the structure's own weight. However, in either case, large-scale and special equipment such as a large number of vibrohammers, ground excavation vessels, backfill equipment, and excavation equipment used inside the structure are required, and in some cases, divers are also required. Furthermore, for example, when using the vibrohammer 14 as shown in FIGS. 4(a) and 4(b), the weight and height of the vibrohammer 14 and the jig that supports it are large, so installation is difficult. A hoist with a lifting capacity that is at least commensurate with the weight and height of the structure to be lifted is required. In the figure, 1 is a steel plate cell, 7 is a hanging jig, 15 is a vibrohammer support jig, 16 is a chuck, and 17 is a damper.

さらに、近年、港湾工事等における多様化に伴い、従来
、水面上に突き出ていた構造物は水面下で施工されるケ
ースも増加しており、例えば、鋼製セル構造体ではバイ
ブロハンマーを水中仕様とするか、または長大なセルを
気中バイブロハンマーにて打設後、所定高さで切断しな
ければならず、多大の費用を必要とする。
Furthermore, in recent years, with the diversification of port and harbor construction, structures that previously protruded above the water surface are increasingly being constructed below the water surface. Alternatively, a long cell must be cut with an aerial vibrohammer and then cut at a predetermined height, which requires a large amount of cost.

このような問題を解決するため、出願人は先にエアリフ
トポンプの原理を応用して、特開昭61−176719
号公報に開示される構造体の水底地盤への貫入工法およ
び貫入装置を出願しており、その要旨は次ぎの通りであ
る。
In order to solve such problems, the applicant first applied the principle of an air lift pump and published Japanese Patent Application Laid-Open No. 176719/1986.
An application has been filed for a method and apparatus for penetrating a structure into underwater ground, which is disclosed in the above publication, and the gist thereof is as follows.

(1)  水底地盤に貫入沈設すべき構造体の下端部か
ら下方に向は空気を噴出し、該構造体の下側の地盤構成
粒子を流出せしめ、これにより生じる地盤内の空洞部に
構造体をその自重により貫入せしめること。
(1) Air is ejected downward from the lower end of the structure to be penetrated into the underwater ground, causing the particles that make up the ground below the structure to flow out, and the structure is inserted into the resulting cavity in the ground. to penetrate by its own weight.

(2)  水底地盤に貫入沈設すべき構造体の外壁板下
端部内側面に対向し所定の間隔を保ち配した整流板と、
前記外壁板と整流板との間の下端部寄りに下方に向は空
気を噴射する圧気パイプとを有すること。
(2) A rectifier plate arranged at a predetermined interval and facing the inner surface of the lower end of the outer wall plate of the structure to be penetrated into the underwater ground;
A pressurized air pipe for injecting air downward is provided near the lower end between the outer wall plate and the rectifying plate.

第5図18)、 (b)、 (C)は上記発明の貫入装
置を鋼板セルに適用した場合の例で、外周に所定間隔を
おいて送気パイプ19を取付けた円筒状の整流板18を
鋼板セル1内に挿入し、送気ホース9を送気パイプ19
に接続して鋼板セル1と整流板18との間で下方に向け
て空気を噴出し、地盤構成粒子を乱し、鋼板セル1を水
底地盤に貫入して行く。
Figures 5 and 18), (b), and (C) are examples of the case where the penetration device of the above invention is applied to a steel plate cell, in which a cylindrical rectifying plate 18 with air supply pipes 19 attached at predetermined intervals on the outer periphery is shown. into the steel plate cell 1, and connect the air supply hose 9 to the air supply pipe 19.
Air is ejected downward between the steel plate cell 1 and the rectifying plate 18, disturbing the ground constituent particles, and penetrating the steel plate cell 1 into the underwater ground.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、上述のエアリフトポンプの原理を応用した貫入
装置では、鋼板セルとその内側に設置する整流板間のス
リットに対し、エアリフト効果を適用しているため、気
泡による・流れの発生が円周方向に一様でなく、地盤の
掘削状態にも差が生じ、効率が悪い。また、地盤構成粒
子を巻き込む流れによって、鋼板セルの外側の掘削量も
大きくなるため埋戻しが必要となる。
However, in the penetration device that applies the principle of the air lift pump described above, the air lift effect is applied to the slit between the steel plate cell and the rectifier plate installed inside it, so the generation of air flow due to air bubbles occurs in the circumferential direction. The excavation conditions of the ground are not uniform, and there are differences in the excavation conditions of the ground, resulting in poor efficiency. In addition, the amount of excavation outside the steel plate cells becomes large due to the flow that entrains the ground constituent particles, making backfilling necessary.

この発明はこのような問題点を解決することを目的とし
たもので、エアリフトポンプを利用した施工方法におい
て、鋼板セルの先端部のみを掘削し、鋼板セルを効率良
く根入できる鋼板セル構造を提供するものである。
The purpose of this invention is to solve these problems, and to create a steel plate cell structure in which only the tips of the steel plate cells are excavated and the steel plate cells can be efficiently embedded in the construction method using an air lift pump. This is what we provide.

〔問題点を解決するための手段〕[Means for solving problems]

以下、この発明の概要を実施例に対応する1面の符号を
用いて説明する。
Hereinafter, an outline of the present invention will be explained using the numerals on page 1 corresponding to the embodiments.

この発明の鋼板セル構造では、鋼板セルl下の水底地盤
をエアリフトの原理により掘削しながら、当該地盤内に
鋼板セルlを根入れするために鋼板セルlの躯体を構成
する縦リブの一部にパイプを用い、これを送気バイブロ
として利用する。また筒状の鋼板セル1本体の内側には
鋼板セル1本体より高さの低い筒状の内壁4を設け、鋼
板セルlの縦リブ2によって鋼板セル1本体と内壁4間
を複数のコンパートメント5に仕切る。前述の送気バイ
ブロと仕切りとしての縦リブ2は通常1つおきに設ける
が、一つのコンパートメント5に2以上の縦リブを兼ね
た送気パイプ6を配置することも考えられる。
In the steel plate cell structure of the present invention, while excavating the underwater ground below the steel plate cell l by the principle of air lift, a part of the vertical ribs constituting the frame of the steel plate cell l is used to embed the steel plate cell l into the ground. A pipe is used for this purpose, and this is used as an air supply vibro. Furthermore, a cylindrical inner wall 4 having a lower height than the steel plate cell 1 body is provided inside the cylindrical steel plate cell 1 body, and a plurality of compartments 5 are formed between the steel plate cell 1 body and the inner wall 4 by the vertical ribs 2 of the steel plate cell 1. Divided into. The above-mentioned air-feeding vibro and vertical ribs 2 as partitions are normally provided every other space, but it is also conceivable to arrange two or more air-feeding pipes 6 that also serve as vertical ribs in one compartment 5.

施工は吊治具7、ワイヤー8等を介して起重機で、鋼板
セル1を水底地盤上の所定位置に設置し、送気バイブロ
より空気を噴射して、各コンパートメント5直下をエア
リフトにより掘削することにより、鋼板セル1を沈設し
て行(。
The construction involves installing the steel plate cell 1 at a predetermined position on the underwater ground using a hoist using a lifting jig 7, wire 8, etc., injecting air from an air supply vibro, and excavating the area directly below each compartment 5 using an air lift. Then, the steel plate cell 1 was sunk (.

エアリフトにより舞い上がった地盤構成粒子は主として
筒状の内壁4の内側に堆積する。
The ground constituent particles lifted up by the air lift are mainly deposited inside the cylindrical inner wall 4.

〔作  用〕[For production]

この発明における綱板セル1の沈設方法の基本原理は第
1図(a)、 (b)に示すように、縦リブに設けた送
気バイブロから空気を圧入することで、コンパートメン
ト6内に気液混相流を生じせしめ、この流れにより水底
地盤構成粒子を乱し、固・気・液温相流として流送する
ことにより、躯体先端の貫入抵抗を取り除き、沈めるこ
とである。
The basic principle of the method for submerging the steel plate cell 1 in this invention is as shown in FIGS. By creating a liquid multiphase flow, which disturbs the particles constituting the underwater ground, and transporting them as a solid, air, and liquid temperature phase flow, the penetration resistance at the tip of the structure is removed and the structure is submerged.

空気の圧送により水底粒子を流送することは周知であり
、例えば採鉱、浚渫等で用いられているが、一般に採鉱
、浚渫等のエアリフトポンプでは、第1図(a)に示す
空気吹き出し位置から水面までの高さH3および固・気
・液温相流の出口までの高さLの比H,/Lが、Hs/
L<1のところで用いられており、地盤構成粒子を取り
除(ことを目的としている。第5図(a)〜(C)に示
した従来例においても、この発明と同様、沈設プロセス
当初からHs/L>1であるが、この発明におけるコン
パートメント5に相当するものがなく、沈設効率が悪い
It is well known to transport underwater particles by pumping air, and is used, for example, in mining, dredging, etc., but in general, air lift pumps for mining, dredging, etc. The ratio H,/L of the height H3 to the water surface and the height L to the outlet of the solid/air/liquid temperature phase flow is Hs/
It is used where L<1, and its purpose is to remove particles constituting the ground. In the conventional example shown in Fig. 5 (a) to (C), as well as the present invention, from the beginning of the sedimentation process, Although Hs/L>1, there is no equivalent to compartment 5 in this invention, and the sinking efficiency is poor.

空気圧入による掘削量そのものは、空気圧−足下で同一
形状、同一本数の送気パイプを用いる場合、コンパート
メント5の有無にかかわらず、水底地盤の掘削量は同等
である。しかし、コンパートメント5を設けることによ
り、掘削域をコンパートメント5直下に限定することが
可能である。これにより掘削量当りの沈設量(鋼板セル
沈下量)が増加し、沈設効果を高めることとなる。さら
に、その空気圧送方法を以下の手順で実施することによ
り、沈設効果が大幅に増大する。
As for the amount of excavation by air pressure injection, when the same shape and the same number of air supply pipes are used under the air pressure, the amount of excavation of the underwater ground is the same regardless of the presence or absence of the compartment 5. However, by providing the compartment 5, it is possible to limit the excavation area directly below the compartment 5. This increases the amount of submergence per excavation amount (amount of steel plate cell subsidence) and enhances the effect of submergence. Furthermore, by carrying out the pneumatic feeding method according to the following steps, the sinking effect can be greatly increased.

イ、掘削初期段階で全送気バイブロからの空気圧送を実
施し、鋼板セル1を所要量沈下させる。
B. At the initial stage of excavation, air is fed under pressure from all the air-feeding vibros, and the steel plate cell 1 is lowered by the required amount.

口、その後、空気圧送量を増加する。mouth, then increase the pneumatic delivery rate.

上記簡単な操作により、掘削箇所は確実に鋼板セルlの
内側の内壁近傍およびコンパートメント5下部で生じ、
外側の地盤を乱さずに沈設し得る。
By the above-mentioned simple operation, the excavation location is reliably generated near the inner wall of the steel plate cell l and at the bottom of the compartment 5,
It can be submerged without disturbing the outside ground.

すなわち、コンパートメント5がない場合、掘削初期に
給水ルートができ上ると、掘削場所が限定されるととも
に該当箇所への送気を止めても、流れのパターンは変化
せず、沈設コントロールが困難であり、起重機の操作に
負うところが大となるが、コンパートメント5がある場
合、この点が大幅に改善され、施工時間が短縮される。
In other words, if there is no compartment 5, if a water supply route is established in the early stage of excavation, the excavation location will be limited, and even if the air supply to the relevant area is stopped, the flow pattern will not change, making it difficult to control the sinking. However, when the compartment 5 is provided, this point is greatly improved and the construction time is shortened.

〔実 施 例〕〔Example〕

次に、図示した実施例について説明する。 Next, the illustrated embodiment will be described.

第2図(a)、 (b)はこの発明の一実施例を示した
もので、鋼板セル1本体の円筒状鋼板に従来用いられて
いるプレートによる補強用の縦リブ2゜横リプ3とこの
発明による送気パイプ6を用いた縦リブ2′を溶接し、
その下方内側に縦リブ2に接して、円筒状の内壁4を設
けである。この内壁4と鋼板セル1本体の円筒状鋼板お
よび縦リブ2により複数のコンパートメント5が形成さ
れている。また、鋼板セル1本体の円筒状鋼板の下端に
は、周面摩擦抵抗を減じるため先端をナイフ状に加工し
た帯状鋼板10を溶接しである。施工は前述の第1図(
a)、 (b)のようにして、ニアコンプレッサーから
の空気を送気ホース9より、各コンパートメント5内の
縦リブ2の送気バイブロに圧入し、下端から空気を噴出
させて行なう。
FIGS. 2(a) and 2(b) show an embodiment of the present invention, in which the cylindrical steel plate of the main body of the steel plate cell 1 has a reinforcing vertical rib 2° and a horizontal rib 3, which are conventionally used for reinforcement. Welding the vertical rib 2' using the air supply pipe 6 according to the present invention,
A cylindrical inner wall 4 is provided in contact with the vertical rib 2 on the lower inner side thereof. A plurality of compartments 5 are formed by this inner wall 4, the cylindrical steel plate of the steel plate cell 1 body, and the vertical ribs 2. Further, a belt-shaped steel plate 10 whose tip is shaped into a knife shape is welded to the lower end of the cylindrical steel plate of the steel plate cell 1 body to reduce peripheral frictional resistance. The construction is as shown in Figure 1 above (
As shown in a) and (b), air from the near compressor is forced into the air supply vibro of the vertical rib 2 in each compartment 5 through the air supply hose 9, and the air is blown out from the lower end.

送気パイプ6を鋼板セル1の構造材兼用とし、内壁4の
高さを有効最小高さまで減することにより、重量が低減
され、これに伴ない起重機も従来より吊り能力の小さい
ものが使用できる。
By using the air supply pipe 6 as a structural member of the steel plate cell 1 and reducing the height of the inner wall 4 to the effective minimum height, the weight is reduced, and accordingly, a hoist with a smaller lifting capacity than before can be used. .

第3図(a)、 (b)は他の実施例として、鋼板セル
1の上端が、沈設により水面下となる場合を示したもの
である。この場合、鋼板セル1の上端にビニールシート
その他可撓性のシート等からなるシルトプロテクタ−1
2を取り付け、シルトプロテクタ−12のフロート13
により、綱板セル1が水面下に没してもエアリフトによ
り舞い上がった土砂等の地盤構成粒子−が海水を汚濁す
るのを防止することができる。
FIGS. 3(a) and 3(b) show another example in which the upper end of the steel plate cell 1 is below the water surface by being submerged. In this case, a silt protector 1 made of a vinyl sheet or other flexible sheet is placed on the upper end of the steel plate cell 1.
2, and float 13 of silt protector 12.
Therefore, even if the rope cell 1 is submerged under the water surface, it is possible to prevent ground constituent particles such as earth and sand thrown up by the airlift from polluting the seawater.

〔発明の効果〕〔Effect of the invention〕

この発明の鋼板セル構造によれば、エアリフトポンプの
原理により、水底地盤・を掘削しながら鋼板セルを沈設
する場合において、鋼板セルの躯体自体に掘削用コンパ
ートメントと縦リブを兼ねた送気パイプを備えるもので
あるため、掘削領域を鋼板セルのコンパートメント直下
に限定することができる。従って、この発明によれば、
周辺地盤を乱すことなく、施工のスピードを速めること
ができ、地盤構成粒子は内壁の内側に堆積して施工直後
の鋼板セルの安定性を確保し得る。
According to the steel plate cell structure of the present invention, when the steel plate cell is submerged while excavating the underwater ground based on the principle of an air lift pump, an air supply pipe that serves as an excavation compartment and a vertical rib is provided in the frame of the steel plate cell itself. Therefore, the excavation area can be limited to just below the compartment of the steel plate cell. Therefore, according to this invention,
The speed of construction can be increased without disturbing the surrounding ground, and the particles constituting the ground are deposited inside the inner wall, ensuring the stability of the steel plate cell immediately after construction.

また、バイブロハンマー等の大規模な施工機器が不要で
、躯体寸法8重量に見合った起重機が使用でき、施工性
、経済性が向上する。
In addition, large-scale construction equipment such as a vibrohammer is not required, and a hoist suitable for the weight of the building frame can be used, improving construction efficiency and economic efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(al、 (blはそれぞれこの発明の鋼板セル
構造の原理を示す施工初期と施工完了時の要部断面図、
第2図(a)、 (b)はそれぞれ一実施例の正面図お
よび平面図、第3図(a)、 (b)はそれぞれ他の実
施例における施工初期と沈設完了時の正面図、第4図(
al、 (b)はそれぞれ従来例の施工初期と沈設完了
時の正面図、第5図(1り、 (b)はそれぞれもう一
つの従来例の施工初期と沈設完了時の正面図、第5図(
C)はその水平断面図である。 1・−・−・鋼板セル、2・・−−−−−・縦リブ、3
・−−−一−−−横リブ、4・・−−一−−内壁、5−
・−・−・−・コンパートメント、6・−・−・送気パ
イプ、7・・−・・−吊治具、8−・−・−・−・ワイ
ヤー、9−−−−−−−一送気パイブ、10−・−一一
−−帯状鋼板、11・−−−−−・−・堆積土砂、12
−−−−−−・・シルトプロテクタ−113−−一一一
・−・−フロート。 BS1図 (a) (b) 第 2 図 (a)              (a)(b>(b
Figure 1 (al, (bl) are sectional views of the main parts at the initial stage of construction and at the completion of construction, respectively, showing the principle of the steel plate cell structure of the present invention,
Figures 2 (a) and (b) are respectively a front view and a plan view of one embodiment, and Figures 3 (a) and (b) are front views and a top view of another embodiment at the initial stage of construction and at the completion of submergence, respectively. Figure 4 (
al, (b) is a front view of the conventional example at the initial stage of construction and at the completion of submergence, respectively. figure(
C) is a horizontal sectional view thereof. 1.------・Steel plate cell, 2.------・Vertical rib, 3
・---1---Horizontal rib, 4...---1---Inner wall, 5-
・−・−・−・Compartment, 6・−・−・Air supply pipe, 7・・−・・−Hanging jig, 8−・−・−・−・Wire, 9−−−−−−1 Air supply pipe, 10--11--belt steel plate, 11-------accumulated earth and sand, 12
-------- Silt protector-113--111 --- Float. BS1 diagram (a) (b) Figure 2 (a) (a) (b>(b
)

Claims (1)

【特許請求の範囲】[Claims] (1)筒状の鋼板セル1本体の内側に鋼板セル1本体よ
り高さの低い筒状の内壁4を設け、該鋼板セル1の縦リ
ブ2によって鋼板セル1本体と内壁4間を複数のコンパ
ートメント5に仕切るとともに各コンパートメント5に
は鋼板セル1の縦リブを兼ねたエアリフト用の送気パイ
プ6を設けたことを特徴とする鋼板セル構造。
(1) A cylindrical inner wall 4 having a lower height than the steel plate cell 1 body is provided inside the cylindrical steel plate cell 1 body, and the vertical ribs 2 of the steel plate cell 1 form a plurality of walls between the steel plate cell 1 body and the inner wall 4. A steel plate cell structure characterized in that it is partitioned into compartments 5 and each compartment 5 is provided with an air supply pipe 6 for air lift which also serves as a vertical rib of the steel plate cell 1.
JP29795386A 1986-12-15 1986-12-15 Steel plate shell structure Pending JPS63151724A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29795386A JPS63151724A (en) 1986-12-15 1986-12-15 Steel plate shell structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29795386A JPS63151724A (en) 1986-12-15 1986-12-15 Steel plate shell structure

Publications (1)

Publication Number Publication Date
JPS63151724A true JPS63151724A (en) 1988-06-24

Family

ID=17853223

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29795386A Pending JPS63151724A (en) 1986-12-15 1986-12-15 Steel plate shell structure

Country Status (1)

Country Link
JP (1) JPS63151724A (en)

Similar Documents

Publication Publication Date Title
CN107542101B (en) Construction method of offshore four-buoy-buoyancy tank combined foundation structure
CN108842807A (en) A kind of construction technology of the embedding rock single pile of offshore wind power foundation embedded type
JP5342300B2 (en) Collection device and method for collecting bottom resources
US20200080282A1 (en) Hydraulic Excavation Around a Pipeline Buried Under Shallow Water
CN102561404A (en) Steel reinforced concrete column type joint and construction method of underground diaphragm wall using same
CN106948353A (en) A kind of deep water combined steel plate pile cofferdam construction method
CN101289867B (en) Construction process for removing foundation ditch in water
JP6052691B1 (en) Mining equipment and method for mining rare earth resources in the deep sea
CN105714748A (en) Excavating construction method for surge shaft in gravel and sandy soil layer
US2678540A (en) Process for the production and sinking of caissons of any desired shape
CN209538258U (en) A kind of construction equipment for replacing bored concrete pile
KR20160037693A (en) Floating transfer ocean structure and construction method thereof
US4069681A (en) Offshore structure for deltaic substrates
JP6850052B1 (en) Dredging device
CN211646415U (en) Prefabricated enclosure structure for narrow deep foundation pit
CN111764417A (en) Construction method for dismantling riverbank cofferdam structure
CN108005659B (en) A kind of diving excavation construction method for the construction of city vertical shaft
JPS63151724A (en) Steel plate shell structure
CN102733391A (en) Construction method of pile body underwater cutting
KR20170080051A (en) Supporting system for tide generator
CN105401564A (en) Construction method for fixing tidal current energy power generation device to water bottom and tidal current energy power generation device
JP4260448B2 (en) Connection method and structure of submerged shaft and horizontal shaft
CN113356190A (en) Pile forming method for cast-in-place pile in karst development area
US3738115A (en) Method and apparatus for plastic hydraulic material
CN108487285A (en) No-dig technique or drilling immersed tube, open caisson or Caisson method