JPS63151407A - Manufacture of thermoplastic resin compound - Google Patents
Manufacture of thermoplastic resin compoundInfo
- Publication number
- JPS63151407A JPS63151407A JP29769186A JP29769186A JPS63151407A JP S63151407 A JPS63151407 A JP S63151407A JP 29769186 A JP29769186 A JP 29769186A JP 29769186 A JP29769186 A JP 29769186A JP S63151407 A JPS63151407 A JP S63151407A
- Authority
- JP
- Japan
- Prior art keywords
- blade
- mixture
- thermoplastic resin
- stage
- stirring
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229920005992 thermoplastic resin Polymers 0.000 title claims abstract description 49
- 150000001875 compounds Chemical class 0.000 title claims abstract description 21
- 238000004519 manufacturing process Methods 0.000 title claims description 12
- 239000000203 mixture Substances 0.000 claims abstract description 71
- 239000000843 powder Substances 0.000 claims abstract description 57
- 238000003756 stirring Methods 0.000 claims abstract description 51
- 239000007787 solid Substances 0.000 claims abstract description 37
- 238000002844 melting Methods 0.000 claims abstract description 11
- 230000008018 melting Effects 0.000 claims abstract description 11
- 238000001816 cooling Methods 0.000 claims abstract description 9
- 239000012530 fluid Substances 0.000 claims description 25
- 239000008187 granular material Substances 0.000 claims description 11
- 238000005265 energy consumption Methods 0.000 claims description 10
- 229920005989 resin Polymers 0.000 claims description 6
- 239000011347 resin Substances 0.000 claims description 6
- 238000003825 pressing Methods 0.000 claims description 5
- 238000007790 scraping Methods 0.000 claims description 4
- 230000001154 acute effect Effects 0.000 claims description 2
- 238000000034 method Methods 0.000 abstract description 19
- 238000001125 extrusion Methods 0.000 abstract description 11
- 238000002156 mixing Methods 0.000 description 29
- 239000002245 particle Substances 0.000 description 14
- 238000005469 granulation Methods 0.000 description 10
- 230000003179 granulation Effects 0.000 description 10
- 238000000465 moulding Methods 0.000 description 6
- -1 polyethylene Polymers 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 239000011256 inorganic filler Substances 0.000 description 5
- 229910003475 inorganic filler Inorganic materials 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 4
- 239000012766 organic filler Substances 0.000 description 4
- 239000000945 filler Substances 0.000 description 3
- 238000001746 injection moulding Methods 0.000 description 3
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 238000011068 loading method Methods 0.000 description 2
- 230000033001 locomotion Effects 0.000 description 2
- 238000005453 pelletization Methods 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 229920001169 thermoplastic Polymers 0.000 description 2
- 239000004416 thermosoftening plastic Substances 0.000 description 2
- 244000025254 Cannabis sativa Species 0.000 description 1
- 235000012766 Cannabis sativa ssp. sativa var. sativa Nutrition 0.000 description 1
- 235000012765 Cannabis sativa ssp. sativa var. spontanea Nutrition 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- JHWNWJKBPDFINM-UHFFFAOYSA-N Laurolactam Chemical compound O=C1CCCCCCCCCCCN1 JHWNWJKBPDFINM-UHFFFAOYSA-N 0.000 description 1
- 229920000299 Nylon 12 Polymers 0.000 description 1
- 229920002292 Nylon 6 Polymers 0.000 description 1
- 229920002302 Nylon 6,6 Polymers 0.000 description 1
- 241000238413 Octopus Species 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 238000000071 blow moulding Methods 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 235000009120 camo Nutrition 0.000 description 1
- 235000005607 chanvre indien Nutrition 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 229910052570 clay Inorganic materials 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- NJLLQSBAHIKGKF-UHFFFAOYSA-N dipotassium dioxido(oxo)titanium Chemical compound [K+].[K+].[O-][Ti]([O-])=O NJLLQSBAHIKGKF-UHFFFAOYSA-N 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000005038 ethylene vinyl acetate Substances 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 210000003746 feather Anatomy 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 239000011487 hemp Substances 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 239000010445 mica Substances 0.000 description 1
- 229910052618 mica group Inorganic materials 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000012860 organic pigment Substances 0.000 description 1
- 239000010893 paper waste Substances 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 1
- 229920001083 polybutene Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 229920002994 synthetic fiber Polymers 0.000 description 1
- 239000012209 synthetic fiber Substances 0.000 description 1
- 239000001040 synthetic pigment Substances 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は無機充填材、有機充填材、顔料#!を配合した
熱可塑性樹脂コンパウンドの製造方法に関し、さらに適
用面からみれば、押出成形、射出成形、プロー成形等に
使用される熱可塑性樹脂コンパウンドの!J!!遣方法
に関する。[Detailed Description of the Invention] [Industrial Application Field] The present invention provides inorganic fillers, organic fillers, and pigments #! Regarding the manufacturing method of thermoplastic resin compounds containing !, from an application standpoint, thermoplastic resin compounds used in extrusion molding, injection molding, blow molding, etc. J! ! Regarding the method of sending.
無機充填材や有機充填材を配合した熱可塑性樹脂は、樹
脂の耐熱性や剛性等を改良する目的で合成樹脂産業界で
広く利用されている。Thermoplastic resins containing inorganic fillers or organic fillers are widely used in the synthetic resin industry for the purpose of improving heat resistance, rigidity, etc. of the resin.
従来、これらの固形充填材を熱可塑性樹脂に混合する方
法としては、押出機、ミキシングロール、バンバリーミ
キサ−、ニーダ等を用いる方法が知られており、これら
の方法によって溶融混練を行なり念のち、成形機で成形
し易い形に造粒して、モルダーに供給してきた。Conventionally, methods using extruders, mixing rolls, Banbury mixers, kneaders, etc. have been known as methods for mixing these solid fillers with thermoplastic resins, and these methods are used to perform melt-kneading. It has been granulated into a form that is easy to mold using a molding machine and then supplied to a molder.
しかし、上記の方法では混合混線、造粒という工程が入
るためコストがかかり、せっかく安い固形充填材を配合
しても、供給される混合物は高価なものになってし1う
場合もあった。However, the above method requires steps of mixing and granulation, which is costly, and even if a cheap solid filler is added, the supplied mixture may end up being expensive.
また、固形微粉末と熱可塑性樹脂の粒体ラミキサ−で混
合した場合は、固形微粉末の配合量が多くなると両者の
分級が起り易く、シたがって固形微粉末の配合量を多く
することは困難であり念。In addition, when mixing solid fine powder and thermoplastic resin in a granular mixer, if the amount of solid fine powder blended increases, classification of both tends to occur, and therefore it is not recommended to increase the blended amount of solid fine powder. It's difficult and I'm sorry.
とくに、?リデロピレンやポリエチVン等の熱可塑性樹
脂はペレットでモルダーに供給される場合が殆どである
九め、それに固形微粉末を混合する場合、固形微粉末の
配合量はせいぜい20重量%と1りの場合が多かった。especially,? Most thermoplastic resins such as rideropyrene and polyethylene V are supplied to the molder in the form of pellets.9) When mixing solid fine powder with it, the amount of solid fine powder blended is at most 20% by weight. There were many cases.
固形微粉末と熱可塑性樹脂の粉体を混合する場合は固形
微粉末の配合割合を高めることが可能であるが、得られ
る混合物はかさ比重が小さく、且つ安息角も大きく、流
動性が悪いため、琳軸押出機による成形においてホッパ
ーでブリッジングを起し供給不能となり念り、単軸押出
機での食い込み不良のため押出量が不安定になる等の問
題点があった。When mixing solid fine powder and thermoplastic resin powder, it is possible to increase the blending ratio of solid fine powder, but the resulting mixture has a small bulk specific gravity, a large angle of repose, and poor fluidity. However, there were problems such as bridging in the hopper during molding using a twin-screw extruder, making it impossible to supply the product, and poor penetration in the single-screw extruder, resulting in unstable extrusion volume.
これらの問題点を解決する方法としては、へyシェルミ
キサー(三井三池工業株式会社製)やスーパーミキサー
(株式会社力ワタ裏)などの高速混合ミキサーを使用し
て固形微粉末と熱可塑性樹脂粉粒体を高速混合し、固形
微粉末で被覆され且つ熱可塑性樹脂粉粒体が部分的に融
着した集合塊をつくり、さらにこの塊を粉砕機にかけて
押出成形可能な粒径に整えるという方法が知られている
(特開昭59−220319号公報3)しかし、この方
法では混合に非常な長時間を要しく冥施例では1パッチ
20分以上かかっている)、粉砕工程でで含めると、押
出機によるイレタイズ法と比較してもエネルギー的に有
利とは言えない。A method to solve these problems is to use a high-speed mixing mixer such as a Hey Shell Mixer (manufactured by Mitsui Miike Industries Co., Ltd.) or a Super Mixer (manufactured by Chikarawata Ura Co., Ltd.) to mix solid fine powder and thermoplastic resin powder. There is a method of mixing granules at high speed to create agglomerates covered with solid fine powder and partially fused thermoplastic resin powder, and then grinding this agglomerate to a particle size that can be extruded. However, this method requires a very long time for mixing, and in some cases it took more than 20 minutes for one patch). It cannot be said that this method is advantageous in terms of energy compared to the illetizing method using an extruder.
本発明の目的は、上記コスト及びトライブレンドの場合
の混合量の制限、押出不安定等の問題点を解決し、ペレ
タイズ等の造粒工程を消略して安価な原料を供給すると
ともに、これ1でのトライブレンドでは達成し得なかっ
た高光填量で押出安定性に優れた、粒径のそろった熱可
塑性樹脂フンパウンドの裏遣方法金提供することにある
。The purpose of the present invention is to solve the above-mentioned problems such as cost, limitation of mixing amount in the case of tri-blend, and instability of extrusion, eliminate the granulation process such as pelletizing, and supply inexpensive raw materials. It is an object of the present invention to provide a method for backing a thermoplastic resin powder having a uniform particle size, which has a high optical loading and excellent extrusion stability, which could not be achieved by tri-blending.
前記のヘンシェルミキサーやスーツや一ミキサー等の高
速流動型混合機を使用して、固体微粉末と熱可塑性樹脂
粉粒体を攪拌羽根の周速が35〜40m/secに力る
ように混合すると、混合物と攪拌羽根、槽壁間の摩擦熱
および粉体同志の摩擦熱により混合物の温度が上昇して
くる。そして、ついには熱可塑性樹脂の融点を越えて熱
可塑性樹脂粉粒体の表面に固体微粉末が付着するととも
に、固体微粉末で被覆された熱可塑性樹脂粉粒体が部分
的に融着し適度な顆粒状態に至る。この過程を高速流動
型混合機のモーター電流等によりう1く制御してやれば
、輸送時における分級現象や押出機のホッノ9−におけ
るブリッジング現象の起らない、定量安定性に優れた、
高充填熱可塑性樹脂コンパウンドが得られる。When the solid fine powder and the thermoplastic resin powder are mixed using a high-speed fluid mixer such as the above-mentioned Henschel mixer, Suit mixer, or one mixer, such that the peripheral speed of the stirring blade is 35 to 40 m/sec. The temperature of the mixture rises due to the frictional heat between the mixture, the stirring blade, the tank wall, and the powder particles. Finally, the melting point of the thermoplastic resin is exceeded and the solid fine powder adheres to the surface of the thermoplastic resin powder, and the thermoplastic resin powder coated with the solid fine powder partially fuses and forms a moderate amount. It reaches a granular state. If this process is further controlled by the motor current of the high-speed fluid mixer, the classification phenomenon during transportation and the bridging phenomenon in the extruder will not occur, and the product will have excellent quantitative stability.
A highly filled thermoplastic compound is obtained.
しかし、固形微粉末の配合割合が多くなると、混合物が
適度な顆粒状態になるのに時間がかかるようになって、
固形微粉末の配合量が50重量%以上になると、!パッ
チの混合が完了するのく20分から場合によっては1時
間以上もかかることもあり、非常に効率が悪くなる。こ
のため、たとえば1時間当りの押出量が600kIPの
押出機を用いて成形を行なう場合、ミキサーの容量は1
0001以上にもなり、設備費が多大になるばかりでな
く、技術的にも顆粒状態の混合物を得ることが困難にな
る。However, when the blending ratio of solid fine powder increases, it takes time for the mixture to become a suitable granule.
When the amount of solid fine powder blended is 50% by weight or more,! It can take anywhere from 20 minutes to over an hour to complete patch mixing, which is very inefficient. Therefore, for example, when molding is performed using an extruder with an extrusion rate of 600 kIP per hour, the capacity of the mixer is 1
0001 or more, which not only increases equipment costs but also makes it technically difficult to obtain a granular mixture.
本発明者らは上記問題点を解決するため高効率でコンパ
クトな造粒メカニズムを研究した結果、固形微粉末を高
充填した熱可塑性樹脂粉粒体混合物を高速流動型混合機
で混合、顆粒化する過程において、混合に要する時間は
、熱可塑性樹脂の融点を越えて攪拌抵抗が徐々に上昇し
始めるまで昇温するのに大部分を消費してし1い、いり
念ん攪拌抵抗が上昇し始めると、急速に顆粒化が進行す
る事実を見崩すことかでt!念。さらに、混合、顆粒化
に要する時間を短縮し、且つ顆粒化をう1くコントロ、
−ルするには、高速流動型混合機において昇温過程と顆
粒化過St−分離し、それぞれの過程に適した攪拌羽根
を使用するのが非常に効果的であることを見出すことが
できた。In order to solve the above problems, the present inventors researched a highly efficient and compact granulation mechanism. As a result, a thermoplastic resin powder mixture highly filled with solid fine powder was mixed and granulated using a high-speed fluid mixer. In the process of mixing, most of the time required for mixing is consumed in raising the temperature until it exceeds the melting point of the thermoplastic resin and the stirring resistance begins to rise gradually, and the stirring resistance gradually increases. Don't overlook the fact that once you start, granulation progresses rapidly! Just in case. Furthermore, the time required for mixing and granulation is shortened, and granulation is more easily controlled.
It was found that it is very effective to separate the heating process and granulation perst in a high-speed fluid mixer and use stirring blades suitable for each process. .
本発明は、第1段に固形微粉末を20重量%以上含む熱
可塑性樹脂粉粒体混合物を急速に昇温かつ混合可能な攪
拌羽根を有する高速流動型混合機を用り、第2段に熱可
塑性樹脂の融点以上に昇温した上記混合物を顆粒化して
上記熱可塑性樹脂粉粒体の表面に上記固形微粉末が付着
した顆粒化物を生成する攪拌羽根を有する高速流動型混
合機を用い、第3段に該顆粒化物を熱可塑性樹脂の融点
以下の温度に急速に冷却する攪拌羽根を有する混合機を
用いる熱可塑性樹脂コンパウンドの製造方法において、
上記第1段目の高速流動型混合機の攪拌羽根が上下2段
の羽根からなり、その上羽根が回転により混合物を押え
込む方向に傾斜したノナドル翼、下羽根が平羽根でその
前面が混合物を掻き上げる方向に傾斜しており、また前
記第2段目の高速流動型混合機の攪拌羽根が平羽根を多
数配した構造で、その最下段の羽根の前面が混合物を掻
き上げる方向に傾斜していることを、特徴とする。The present invention uses a high-speed fluid mixer having stirring blades capable of rapidly heating and mixing a thermoplastic resin powder mixture containing 20% by weight or more of solid fine powder in the first stage, and in the second stage. Using a high-speed fluid mixer having stirring blades that granulates the mixture heated to a temperature higher than the melting point of the thermoplastic resin to produce granules in which the solid fine powder is attached to the surface of the thermoplastic resin powder, In a method for producing a thermoplastic resin compound using a mixer having stirring blades that rapidly cools the granulated product to a temperature below the melting point of the thermoplastic resin in the third stage,
The stirring blade of the first stage high-speed flow mixer consists of two stages, upper and lower.The upper blade is a nonadole blade that is inclined in the direction of pressing down the mixture by rotation, and the lower blade is a flat blade, and the front side of the stirring blade is The stirring blade of the second-stage high-speed fluid mixer has a structure with many flat blades, and the front surface of the lowest blade is inclined in the direction of scraping up the mixture. It is characterized by what it does.
本発明における高速流動型混合機は、三種類の異なる機
能を有する混合機を1組として構成される。The high-speed fluid mixer according to the present invention is configured as a set of mixers having three different functions.
萱ず、第1段目の混合機は、できるだけ早く混合物を昇
温させると同時に、固形微粉末と熱可塑性樹脂粉粒体の
物理的分散を良好にする攪拌羽根を備えたもので、この
攪拌羽根は上下2段の羽根から構成され、好ましくは周
速35〜60m1secで回転する。また混合機の槽外
壁はヒータ、加熱オイルまたは蒸気等で加熱可能な構造
になっている。Kayazu: The first stage mixer is equipped with stirring blades that raise the temperature of the mixture as quickly as possible and at the same time improve the physical dispersion of the solid fine powder and thermoplastic resin powder. The blades are composed of upper and lower blades in two stages, and preferably rotate at a circumferential speed of 35 to 60 ml/sec. Furthermore, the outer wall of the tank of the mixer has a structure that can be heated with a heater, heating oil, steam, or the like.
攪拌羽根のうち上羽根は回転により混合物を下へ押え込
む方向に傾斜したAIドル翼、下羽根は、混合物を掻き
上げる方向にN斜し之平羽根である。Among the stirring blades, the upper blade is an AI dollar blade inclined in the direction of pushing the mixture downward by rotation, and the lower blade is a flat blade inclined N in the direction of stirring up the mixture.
下羽根は混合物を流動化させ槽内を循環させる働′@を
するもの、それに対して上羽根は上述の如く回転により
混合物を下へ押え込む働きをするもので、これによって
混合物は圧密され、羽根の回転によって摩擦係数が増大
し、下羽根との相乗効果もあって攪拌による発熱量が増
大する。The lower blades work to fluidize the mixture and circulate it within the tank, while the upper blades work to push the mixture down by rotation as described above, thereby consolidating the mixture. The rotation of the blades increases the coefficient of friction, which also has a synergistic effect with the lower blades, increasing the amount of heat generated by stirring.
この上羽根の働きにより通常の高速流動型混合機に比べ
てかなり昇温速度が速くなる。Due to the action of this upper blade, the temperature rise rate is considerably faster than that of a normal high-speed fluid mixer.
筐たこの上羽根には、下羽根により槽内壁に省って上羽
根より上方へ持ち上げられた混合物全速やかに下方へ送
る吸引効果があり、混合にも役立つ。ざらに本発明で使
用する上羽根、下羽根には好ましい条件が存在する。The upper blades of the housing octopus have a suction effect that quickly sends all of the mixture lifted upward from the upper blades onto the inner wall of the tank by the lower blades downwards, which is also useful for mixing. Generally speaking, there are favorable conditions for the upper and lower blades used in the present invention.
まず上羽根としては、水平面とのなす角度が15°〜7
5″のものが好ましく、さらに3011〜606の範囲
のものがより好ましい、角度が75′″より上回ると、
混合′l!171を下へ押え込む効果が薄れてしまうし
、15″を下回る場合は羽根が実際に混合物に作用する
有効面積(羽根の垂直面積)が小さくなり、効果的でな
いからである。First of all, the upper blade has an angle of 15° to 7° with the horizontal plane.
5'' is preferred, and those in the range of 3011 to 606 are more preferred, and when the angle is greater than 75'',
Mixed! This is because the effect of pressing down the blade 171 will be weakened, and if it is less than 15'', the effective area (vertical area of the blade) where the blade actually acts on the mixture will be small, making it ineffective.
次に上羽根の翼幅であるが、これは槽径の8〜25チが
好’!L<、10〜20%がより好ましい。Next is the wing span of the upper blade, which is preferably 8 to 25 inches of the tank diameter! L<, 10 to 20% is more preferable.
8%を下回る場合には混合物を下方へ押え込む作用が小
さくなり、f&25′%を越えると、混合物の循環運動
が阻害され、混合自体に問題が生ずる。If it is less than 8%, the effect of pressing the mixture downward becomes weak, and if it exceeds f&25'%, the circulation movement of the mixture is inhibited, causing problems in the mixing itself.
上羽根の翼長については槽径の85%以上が好1しく、
さらには90%以上とするのが望ましい。The length of the upper blade is preferably 85% or more of the tank diameter,
Furthermore, it is desirable to set it to 90% or more.
その翼長が85%を下回れば、混合がうまくゆかなくな
るからである。This is because if the blade length is less than 85%, mixing will not be successful.
一方、下羽根については、混合物を充分流動化させ不動
部をなくすため、羽根の厚さを槽高03〜12%にとる
のが好ましく、4〜8%であればなお好ましい。下羽根
の厚さが槽高の3%を下回るときは、混合物を充分流動
化させるのが困難となり、また槽高の12%を越える場
合には起動時の動力が過大となるので、好1しくない。On the other hand, regarding the lower blade, in order to sufficiently fluidize the mixture and eliminate stationary parts, the thickness of the blade is preferably set to 03 to 12% of the tank height, and more preferably 4 to 8%. If the thickness of the lower blade is less than 3% of the tank height, it will be difficult to fluidize the mixture sufficiently, and if it exceeds 12% of the tank height, the power at startup will be excessive, so it is preferable. It's not right.
下羽根の翼長は槽径の85チ以上が好1しく、90%以
上がより好ブしい、翼長が85%未満の場合は混合物を
流動化させるのが困難となる。The blade length of the lower blade is preferably 85 inches or more of the tank diameter, more preferably 90% or more. If the blade length is less than 85%, it becomes difficult to fluidize the mixture.
なお、下羽根と槽底とのクリアランスは混合物のかみ込
みを防ぐため1.0〜2.0mmの範囲にとどめること
が望ましい。Note that the clearance between the lower blade and the tank bottom is desirably kept within a range of 1.0 to 2.0 mm in order to prevent the mixture from getting caught.
さらに本発明では上羽根、下羽根の消費エネルギーに関
して重要な条件が見出されている。Furthermore, in the present invention, important conditions have been found regarding the energy consumption of the upper and lower blades.
すなわち、A、M、ラストグツエフとH,(N、P)ポ
ポフによって提案された高速流動型混合機の下記動力式
Eを、羽根の単位時間当りの消費エネルギーと定義すれ
ば、上羽根の単位時間当りの消費エネルギーEuと下羽
根のそれEDとの比EU/EDが0.5〜1.5の範囲
にあることが望ましいのである。That is, if we define the following power formula E of the high-speed flow mixer proposed by A. M. Rastogutsev and H. (N. P.) Popov as the energy consumption per unit time of the blade, then the unit time of the upper blade It is desirable that the ratio EU/ED of the energy consumed per unit to the energy consumed by the lower blade ED be in the range of 0.5 to 1.5.
E=C2a+””L3.5(bain C1)”68H
”74S”19#H(KW)ただし上式において、C2
:流動における抵抗係数、ω:角速度(c/5−e)、
L:翼長−1b=翼幅←)、α:傾斜角(度)、H:翼
の上にある混合物層の高ざ←)、S:翼のエツジと槽内
壁とのギャップ−1゛ρや=混合物のかさ密度(kg/
帰3)”U / EDが0.5未満の場合は上羽根の効
果が充分発揮されないし、そうかと云ってE。/EDが
1.5を越え次場合は槽内での混合物の循環がうまくゆ
かなくなり、固形微粉末と熱可塑性樹脂粉粒体との混合
に問題を生ずる。E=C2a+””L3.5(bain C1)”68H
"74S"19#H (KW) However, in the above formula, C2
: resistance coefficient in flow, ω: angular velocity (c/5-e),
L: Blade length - 1b = Blade width ←), α: Inclination angle (degrees), H: Height of mixture layer on the blade ←), S: Gap between blade edge and tank inner wall - 1゛ρ Y = Bulk density of mixture (kg/
3) If U/ED is less than 0.5, the effect of the upper blade will not be fully demonstrated, and if E./ED exceeds 1.5, the circulation of the mixture in the tank will be reduced. This causes problems in mixing the solid fine powder and the thermoplastic resin powder.
さて、第1段目の混合機によって混合物の温度が熱可塑
性樹脂の融点t−越え混合−系の攪拌抵抗が増大し始め
九ら、混合物を直ちに第2段目の混合機に排出しなけれ
ばならない。Now, when the temperature of the mixture exceeds the melting point t of the thermoplastic resin by the first-stage mixer and the stirring resistance of the mixing system begins to increase, the mixture must be immediately discharged to the second-stage mixer. No.
攪拌抵抗が増大し始める温度は、熱可塑性樹脂粉粒体の
粒径や固形微粉末の配合量によって異なるが、二股に熱
可塑性71脂粉粒体の粒径が大きいほど、また固形微粉
末の配合量が多くなるほど、高くなる。The temperature at which the stirring resistance begins to increase varies depending on the particle size of the thermoplastic resin powder and the amount of solid fine powder blended, but it can be said that the larger the particle size of the thermoplastic 71 fat powder granule, the higher the blend of solid fine powder. The higher the amount, the higher the price.
第2段目の混合機は、熱可塑性樹脂の融点以上に昇温し
念混合物を顆粒化して、熱可塑性樹脂粉粒体の表面に固
形微粉末が付着した顆粒化物を生成する攪拌羽根を備え
ている。The second stage mixer is equipped with stirring blades that raise the temperature above the melting point of the thermoplastic resin, granulate the mixture, and produce a granulated product with solid fine powder attached to the surface of the thermoplastic resin powder. ing.
混合物の温度が熱可塑性樹脂の融点以上に達すると、い
ま1で固体であった樹脂が溶融体となり、固形微粉末が
樹脂表面に付着しく一部は内部に陸送する。)、遊離し
ている固形微粉末が少なくなる。When the temperature of the mixture reaches the melting point of the thermoplastic resin or higher, the previously solid resin becomes a melt, solid fine powder adheres to the resin surface, and some of it is transported into the interior. ), the amount of free solid fine powder is reduced.
その之め、溶融した樹脂同志の接触する確率が高くなり
、混合物全体の攪拌抵抗が急激に増大し、それに伴なっ
て混合物の顆粒化が急速に進行する。Therefore, the probability that the molten resins come into contact with each other increases, the stirring resistance of the entire mixture increases rapidly, and accordingly, the mixture rapidly becomes granulated.
したがってこの領域においては攪拌羽根の形状、攪拌速
度を特別にコントロールしてやらねばならない。攪拌羽
根としては、最下段の平羽根が混合物を掻き上げる方向
にゆるやかにflNし、その上に平羽根を多段に配した
ものを使用する。攪拌羽根の周速は35〜40m/se
cが好1しく、混合物の顆粒状態の形状開国は、温度よ
りも混合機の駆動用モーターの電力もしくは電流で行な
うのが望ましい。さらに粒径を揃えたいときには、駆動
用モーターの電力またけ電流が急激に上昇した時点で羽
根の周速を15〜20 m/seaに下げ、電力または
電流で制御するのがよい。Therefore, in this region, the shape of the stirring blade and the stirring speed must be specially controlled. The stirring blade used is one in which the flat blade at the lowest stage is gently flN in the direction of stirring up the mixture, and the flat blades are arranged in multiple stages above it. The circumferential speed of the stirring blade is 35 to 40 m/sec.
c is preferred, and it is preferable that the granular shape of the mixture is determined by the electric power or current of the drive motor of the mixer rather than by temperature. If it is desired to further make the grain size uniform, it is preferable to reduce the circumferential speed of the blade to 15 to 20 m/sea at the point when the electric current of the driving motor suddenly increases, and to control the blade using electric power or current.
この第2段目の高速流動型混合機の攪拌羽根についても
、さらに好ましい条件が存在する。There are also more preferable conditions for the stirring blades of this second-stage high-speed fluid mixer.
攪拌羽根のうち、最下段の羽根は混合物を流動化させる
働きをするもの、それに対して上方の羽根は混合物に回
転運動を与え、溶融状態の熱可塑性樹脂粉粒体同志が融
着して大きな塊となるのを防ぐ役目をする。そのため、
各羽根の進行方向の面は水平面に対し30°以下の鋭角
をなしていることが好ましい。最上段と最下段の羽根の
間隔は種馬の30〜70%の範囲が好ましく、1之各羽
根の段数は2〜5段が適当である。さらに第2段目の高
速流動型混合機の攪拌羽根で重要な条件は、初期の羽根
の単位時間当りの消費エネルギーが、混合物1ゆに対し
て0.15〜0.35 KJ/ seeの範囲にあるこ
とで、0.2〜0.3KJ/sseの範囲であればなお
好ツしい。消費エネルギーが0.15 KJ/S・Cを
下回るときは顆粒化の進行が非常に遅くなってしまい、
”1 ft O,35KJ / s@eを上回ると、顆
粒化が非常に急激に進行するため、粒径制御が不能とな
ったり、粒径分布が非常に広くなっ念りして、その11
では押出成形不能なコンパウンドになってしまう。Among the stirring blades, the lowest blade works to fluidize the mixture, while the upper blade gives rotational motion to the mixture, causing the molten thermoplastic resin particles to fuse together and form a large It serves to prevent clumping. Therefore,
It is preferable that the plane of each blade in the traveling direction forms an acute angle of 30° or less with respect to the horizontal plane. The interval between the top and bottom blades is preferably in the range of 30 to 70% of that of the stallion, and the number of stages in each blade is preferably 2 to 5. Furthermore, an important condition for the stirring blades of the second-stage high-speed fluid mixer is that the initial energy consumption per unit time of the blades is in the range of 0.15 to 0.35 KJ/see per 1 yu of the mixture. It is even more preferable if it is in the range of 0.2 to 0.3 KJ/sse. When the energy consumption is less than 0.15 KJ/S・C, the progress of granulation becomes very slow.
``If it exceeds 1 ft O.
This results in a compound that cannot be extruded.
第2段目の高速流動型混合機において得られる適度の顆
粒状態は、固形微粉末と、熱可塑性樹脂粉粒体の比率に
もよるが樹脂の融点より10〜80℃はど高い温度で達
成されるので、直ちに冷却してやらないと、混合物全体
が互着して1つの大きな塊になってしまう。したがって
この工程で所定の顆粒状態が得られtら、混合物は直ち
に第3段目の冷却用高速流動型混合機に排出しなければ
ならない。The appropriate granule state obtained in the second-stage high-speed flow mixer is achieved at a temperature 10 to 80°C higher than the melting point of the resin, depending on the ratio of solid fine powder and thermoplastic resin powder. If it is not cooled immediately, the entire mixture will stick together and form one large lump. Therefore, once the desired granule state has been obtained in this step, the mixture must be immediately discharged to the third stage cooling high-flow mixer.
第3段目の高速流動型混合機は攪拌羽根のほかに適当な
冷却装置、たとえば強制水冷ジャケットを有し、冷却表
面積の大きな構造を有する。ここでの攪拌は冷熱を均一
に内容物に供給するのが主目的であるから、周速5〜2
0m/secの範囲でよい。In addition to stirring blades, the third-stage high-speed fluid mixer has a suitable cooling device, such as a forced water cooling jacket, and has a structure with a large cooling surface area. The main purpose of stirring here is to uniformly supply cold heat to the contents, so the peripheral speed is 5 to 2.
A range of 0 m/sec is sufficient.
ところで、押出成形機や射出成形機にとって必要なコン
i4つ/ドの性状は先ず成形機のスクリューに食い込め
るよう小さな粒径であることが必要で、一般的に径が5
w以下のサイズでなければならない。By the way, the properties of the condensate necessary for extrusion molding machines and injection molding machines are first of all that it needs to have a small particle size so that it can fit into the screw of the molding machine, and generally the diameter is 5.
The size must be less than or equal to w.
そこで本発明においては、ホラ141−においてブリッ
ジングの発生を抑え念りスクリ、−での供給性が良好な
適当な粒径を持つコンパウンドを製造するために、第2
段で固形微粉末によって被覆された熱可塑性樹脂の粒子
が適度の大きさに成長して造粒化される過程を混合物の
温度とモーター負荷により検出し、所定の水準に達した
ら直ちに第3段目の混合機に排出し、急速な冷却によっ
て粒子の成長を停止きせる。Therefore, in the present invention, in order to suppress the occurrence of bridging in the hole 141-, and to produce a compound having an appropriate particle size that has good feedability in the screen and the
The process in which the thermoplastic resin particles coated with solid fine powder grow to an appropriate size and become granulated in the third stage is detected by the temperature of the mixture and the motor load, and as soon as the temperature reaches a predetermined level, the process is carried out in the third stage. Discharge into a blender to stop particle growth by rapid cooling.
以上で明らかなように本発明は第1段に急速加熱機構、
第2段に造粒機構、第3段に強制冷却機構をそれぞれ保
有する3樫の混合機を組合せ、混合物の温度制御システ
ムによって従来の高速混合機では得られなかり念高効率
で粒子径のそろりたコンパウンドを製造可能とし念もの
である。As is clear from the above, the present invention includes a rapid heating mechanism in the first stage,
Combined with a three-way mixer that has a granulation mechanism in the second stage and a forced cooling mechanism in the third stage, the temperature control system for the mixture allows for highly efficient particle size control that cannot be achieved with conventional high-speed mixers. It is hoped that it will be possible to manufacture a uniform compound.
本発明で用いる固形微粉末とは、メルク、マイカ、炭酸
カルシウム、グラファイト、二酸化チタン、チタン酸カ
リウム、クレー、シリカ、アルミナ、ガラス等の無機充
填材、パルプ、古紙、モミがう、綿、絹、麻、合成繊維
等の有機充填材、それに顔料等を指す。これらの固形微
粉末は2種以上を併用してもよい。固形微粉末は熱可塑
性樹脂粉粒体に対し20iCt%以上混合される。20
重量%未満では固形微粉末を混合する意味が薄くなる。The solid fine powder used in the present invention includes inorganic fillers such as Merck, mica, calcium carbonate, graphite, titanium dioxide, potassium titanate, clay, silica, alumina, and glass, pulp, waste paper, fir, cotton, and silk. , organic fillers such as hemp and synthetic fibers, and pigments. Two or more of these solid fine powders may be used in combination. The solid fine powder is mixed in an amount of 20 iCt% or more with respect to the thermoplastic resin powder. 20
If the amount is less than % by weight, the meaning of mixing solid fine powder becomes weak.
、混合量の上限は無機充填材の場合で85重量%である
。最終的に利用するコンパウンドの物性上の制約から、
実用的くは無機充填材の配合量は20重量%から60重
!−%の範囲に大部分のものが入る。筐た有機充填材の
混合量は最大60重量%であることが好ましい。The upper limit of the mixing amount is 85% by weight in the case of inorganic fillers. Due to physical property limitations of the final compound used,
Practically speaking, the amount of inorganic filler added is 20% to 60% by weight! Most of the items fall within the -% range. Preferably, the amount of the cased organic filler mixed is at most 60% by weight.
また本発明で用いる熱可塑性樹脂粉粒体とは、文字どお
り粉体、粒体、これらの混合物いづれでもよく、熱可塑
性樹脂としては、ポリエチレン、テリプロピレン、ポリ
塩化ビニル、エチレン−プロピレン共重合体、エチレン
−酢酸ビニル共重合体、ポリブテン、ナイロン−6、ナ
イロン−66、ナイロン−12等、一般に成形分野で使
用されるものなら殆ど適用可能である。Furthermore, the thermoplastic resin powder used in the present invention may literally be powder, granules, or a mixture thereof. Examples of the thermoplastic resin include polyethylene, teripropylene, polyvinyl chloride, ethylene-propylene copolymer, Most of the materials generally used in the molding field can be used, such as ethylene-vinyl acetate copolymer, polybutene, nylon-6, nylon-66, and nylon-12.
次に実施例及び比較例を挙げて本発明をさらに具体的に
説明する。Next, the present invention will be explained in more detail with reference to Examples and Comparative Examples.
実施例1
ポリプロピレン(MFR= 0.7 、li’ / 1
0 mi n 、商品名ショウアロマ−8K711、昭
和電工株式会社製)50重量%、グラファイト(平均粒
径3μ)50重量%からなる混合物25ゆをジャケット
温度130℃に設定した槽内容量1001の第1段目の
高速流動型混合機に投入し、羽根回転数1350rpm
で攪拌羽根を回転させながら混合を開始し友。Example 1 Polypropylene (MFR=0.7, li'/1
0 min, trade name Showa Aroma-8K711, manufactured by Showa Denko K.K.)) and graphite (average particle size 3μ) 50% by weight were mixed in a tank with a jacket temperature of 130°C and a tank volume of 1001. Pour into the first stage high-speed fluid mixer, and the blade rotation speed is 1350 rpm.
Start mixing while rotating the stirring blade.
5分後に混合物の温度が170℃に達したので直ちに第
2段目の槽内容量1001の高速流動型混合機に排出し
、攪拌羽根の回転数を1350rpmに保って3分間混
合し、モーター電流が始動直後の1.8倍である65A
に到達した時点(混合物の温度は190℃であっ念)で
第3段目の高速流動型混合機(冷却ミキサー)に排出し
、顆粒化物を80℃1で急冷したのちコンパウンドを取
出し友。After 5 minutes, the temperature of the mixture reached 170°C, so it was immediately discharged to the second stage, a high-speed fluid mixer with a tank capacity of 1001, and mixed for 3 minutes while keeping the stirring blade rotation speed at 1350 rpm. is 1.8 times as much as immediately after starting, which is 65A.
When the temperature of the mixture reaches 190°C, it is discharged to the third stage high-speed fluid mixer (cooling mixer), and the granulated material is rapidly cooled to 80°C, and then the compound is taken out.
混合に要した時間は全部で8分であり念。Please note that the total time required for mixing was 8 minutes.
なお、第1段目の高速流動型混合機の攪拌槽の内径は5
7c!n、攪拌羽根としては上羽根が翼幅7α、翼長が
54mで回転により混合物を下へ押え込む方向に傾斜し
たツヤドル翼(水平面となす角度が60度)、下羽根が
厚さ3個、翼長55onで羽根の前面が混合物を掻き上
げる方向に傾斜した平羽根を使用し念。上下の羽根の単
位時間当りの消費エネルギーの比EU/EDは0.89
であった。また、第2段目の高速流動型混合機は、最下
段の攪拌羽根が厚さ2.6cW1、翼長55IyRで羽
根前面が混合物を掻き上げる方向に傾斜(水平面とのな
す角度が15’)t、念平羽根であり、その上に厚さ5
mの平羽根を4段に配した攪拌羽根を使用し念。各羽根
の進行方向の面となす角度は15°であった。The inner diameter of the stirring tank of the first stage high-speed fluid mixer is 5.
7c! n, as the stirring blade, the upper blade has a blade width of 7α, the blade length is 54 m, and is tilted in the direction of pressing the mixture downward by rotation (the angle made with the horizontal plane is 60 degrees), the lower blade is 3 pieces thick, Use a flat blade with a blade length of 55 on and the front side of the blade slanted in the direction of scraping up the mixture. The energy consumption ratio EU/ED of the upper and lower blades per unit time is 0.89
Met. In addition, the second-stage high-speed flow type mixer has a stirring blade at the lowest stage with a thickness of 2.6 cW1 and a blade length of 55 IyR, and the front surface of the blade is inclined in the direction of scraping up the mixture (the angle with the horizontal plane is 15'). t, is a nenpei feather, and has a thickness of 5
Use a stirring blade with four stages of m flat blades. The angle between each blade and the plane in the traveling direction was 15°.
ま念、攪拌羽根における初期の消費エネルギーは0、2
5 KJ/ seeであり念。Seriously, the initial energy consumption in the stirring blade is 0.2
5 KJ/ See and remember.
得られたコンパウンドのかさ比重は0.66であり、重
量平均粒径Visooμ、安息角は45″であった。The bulk specific gravity of the obtained compound was 0.66, the weight average particle diameter was Visooμ, and the angle of repose was 45''.
次にこのコンパウンドを65■単軸押出機に投入し、設
定温度220℃、スクリュー回転数8゜rpm 、押出
i170 kl / hrの条件で幅650■、肉厚0
.5■のシートを成形した。押出量のバラツキを測定し
たところ、±1.5%であり、きわめて安定した成形が
可能であった。また、このシートのフィラー分散も調べ
たがきわめて良好であった。Next, this compound was put into a 65cm single-screw extruder, and the width was 650cm and the wall thickness was 0 under the conditions of a set temperature of 220℃, a screw rotation speed of 8゜rpm, and an extrusion speed of 170 kl/hr.
.. A 5-inch sheet was molded. When the variation in extrusion amount was measured, it was ±1.5%, indicating that extremely stable molding was possible. The filler dispersion of this sheet was also examined and was found to be extremely good.
比較例1
実施例1と同一組成の混合物をジャケット温度130℃
に加熱した容量1001の高速混合機(株式会社カワタ
裂スーパーミキサー)に投入し、攪拌羽根の回転速度を
135Orpmに保って混合を開始した。20分経過後
モーター電流が上昇し始め、2分後にモーター電流が定
常状態の1.8倍に達したので、内容物全排出し比。混
合に要した時間は全部で22分であう念。この混合機の
攪拌羽根の単位時間当りの消費エネルギーの比EU/E
Dは0,40であっ念。Comparative Example 1 A mixture having the same composition as Example 1 was heated at a jacket temperature of 130°C.
The mixture was put into a high-speed mixer (Kawata-Sabi Super Mixer Co., Ltd.) with a capacity of 1,001 liters heated to 1,000 rpm, and mixing was started while keeping the rotational speed of the stirring blade at 135 rpm. After 20 minutes, the motor current started to rise, and after 2 minutes, the motor current reached 1.8 times the steady state, so the contents were completely discharged. The total time required for mixing was 22 minutes. Ratio of energy consumption per unit time of stirring blades of this mixer EU/E
D is 0.40.
本発明の製造方法によれば、ペレタイズ等の造粒工程が
油路されているため、安価な原料を押出成形機や射出成
形機等へ供給することができるとともに、これまでのト
ライブレンドでは達成し得なかった高光填量、高効率の
下で押出安定性にすぐれ且つ粒子径のそろりL熱可塑性
樹脂コンパウンドを提供することができる。According to the manufacturing method of the present invention, since the granulation process such as pelletizing is carried out through oil channels, it is possible to supply inexpensive raw materials to extrusion molding machines, injection molding machines, etc. It is possible to provide an L thermoplastic resin compound with a high light loading and high efficiency, which has never been possible before, and which has excellent extrusion stability and uniform particle diameter.
Claims (6)
性樹脂粉粒体混合物を急速に昇温かつ混合可能な攪拌羽
根を有する高速流動型混合機を用い、第2段に熱可塑性
樹脂の融点以上に昇温した上記混合物を顆粒化して上記
熱可塑性樹脂粉粒体の表面に上記固形微粉末が付着した
顆粒化物を生成する攪拌羽根を有する高速流動型混合機
を用い、第3段に該顆粒化物を熱可塑性樹脂の融点以下
の温度に急速に冷却する攪拌羽根を有する高速流動型混
合機を用いる熱可塑性樹脂コンパウンドの製造方法にお
いて、上記第1段目の高速流動型混合機の攪拌羽根が上
下2段の羽根からなり、その上羽根が回転により混合物
を押え込む方向に傾斜したパドル翼、下羽根が平羽根で
その前面が混合物を掻き上げる方向に傾斜しており、ま
た前記第2段目の高速流動型混合機の攪拌羽根が平羽根
を多数配した構造で、その最下段の羽根の前面が混合物
を掻き上げる方向に傾斜していることを特徴とする熱可
塑性樹脂コンパウンドの製造方法。(1) The first stage uses a high-speed fluid mixer with stirring blades that can rapidly heat up and mix the thermoplastic resin powder mixture containing 20% by weight or more of solid fine powder, and the second stage uses a thermoplastic resin powder mixture containing 20% by weight or more of solid fine powder. Using a high-speed fluid mixer having stirring blades for granulating the mixture heated to a temperature higher than the melting point of the resin to produce granules in which the solid fine powder is attached to the surface of the thermoplastic resin powder, a third In the method for producing a thermoplastic resin compound using a high-speed fluid mixer having stirring blades for rapidly cooling the granulated product to a temperature below the melting point of the thermoplastic resin in each stage, the first stage high-speed fluid mixer The stirring blade consists of two stages of upper and lower blades, the upper blade is a paddle blade that is inclined in the direction of pressing down the mixture by rotation, the lower blade is a flat blade whose front surface is inclined in the direction of scraping up the mixture, and A thermoplastic resin characterized in that the stirring blade of the second-stage high-speed flow type mixer has a structure in which a large number of flat blades are arranged, and the front surface of the lowest blade is inclined in a direction to scrape up the mixture. Method of manufacturing compounds.
いて、上羽根の水平面とのなす角度が15°〜75°、
翼幅が槽径の8〜25%、翼長が槽径の85%以上であ
ることを特徴とする特許請求の範囲第(1)項記載の熱
可塑性樹脂コンパウンドの製造方法。(2) In the stirring blade of the first-stage high-speed fluid mixer, the angle between the upper blade and the horizontal plane is 15° to 75°;
The method for producing a thermoplastic resin compound according to claim 1, wherein the blade span is 8 to 25% of the tank diameter, and the blade length is 85% or more of the tank diameter.
いて、下羽根の板厚が槽高の3〜12%、翼長が槽径の
85%以上であることを特徴とする特許請求の範囲第(
1)項記載の熱可塑性樹脂コンパウンドの製造方法。(3) A patent characterized in that, in the stirring blade of the first-stage high-speed fluid mixer, the plate thickness of the lower blade is 3 to 12% of the tank height, and the blade length is 85% or more of the tank diameter. Claims No. (
1) A method for producing a thermoplastic resin compound as described in section 1).
いて、下記に定義される上羽根の単位時間当りの消費エ
ネルギーE_Uと下羽根の消費エネルギーE_Dの比E
_U/E_Dが0.5〜1.5であることを特徴とする
特許請求の範囲第(1)項記載の熱可塑性樹脂コンパウ
ンドの製造方法。 E=C_2ω^2^.^5^6L^3^.^5(bsi
nα)^0^.^6^8H^0^.^7^4S^0^.
^1^9ρ_H(KW)ただしC_2:流動における抵
抗係数、ω:角速度(C/sec)、L:翼長(m)、
b:翼幅(m)、α:傾斜角度(度)、H:翼の上にあ
る混合物層の高さ(m)、S:翼のエッジと槽内壁との
ギャップ(m)、ρ_H:混合物のかさ密度(kg/m
^3)。(4) In the stirring blades of the first-stage high-speed fluid mixer, the ratio E of the energy consumption E_U of the upper blade per unit time to the energy consumption E_D of the lower blade defined below.
The method for producing a thermoplastic resin compound according to claim (1), wherein _U/E_D is 0.5 to 1.5. E=C_2ω^2^. ^5^6L^3^. ^5 (bsi
nα)^0^. ^6^8H^0^. ^7^4S^0^.
^1^9ρ_H (KW) where C_2: drag coefficient in flow, ω: angular velocity (C/sec), L: blade length (m),
b: Blade span (m), α: Inclination angle (degrees), H: Height of the mixture layer on the blade (m), S: Gap between the edge of the blade and the tank inner wall (m), ρ_H: Mixture Bulk density (kg/m
^3).
いて、各羽根の進行方向の面が水平面に対し30°以下
の鋭角をなしていることを特徴とする特許請求の範囲第
(1)項記載の熱可塑性樹脂コンパウンドの製造方法。(5) In the stirring blades of the second-stage high-speed fluid mixer, the surface of each blade in the advancing direction forms an acute angle of 30° or less with respect to a horizontal plane. 1) A method for producing a thermoplastic resin compound as described in section 1).
いて、初期の羽根の単位時間当りの消費エネルギーが混
合物に対し0.15〜0.35KJ/secの範囲にあ
ることを特徴とする特許請求の範囲第(1)項記載の熱
可塑性樹脂コンパウンドの製造方法。(6) In the stirring blade of the second-stage high-speed fluid mixer, the initial energy consumption per unit time of the blade is in the range of 0.15 to 0.35 KJ/sec for the mixture. A method for producing a thermoplastic resin compound according to claim (1).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29769186A JPS63151407A (en) | 1986-12-16 | 1986-12-16 | Manufacture of thermoplastic resin compound |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29769186A JPS63151407A (en) | 1986-12-16 | 1986-12-16 | Manufacture of thermoplastic resin compound |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63151407A true JPS63151407A (en) | 1988-06-24 |
Family
ID=17849903
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP29769186A Pending JPS63151407A (en) | 1986-12-16 | 1986-12-16 | Manufacture of thermoplastic resin compound |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63151407A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008037527A (en) * | 2006-08-02 | 2008-02-21 | Kyokuto Kaihatsu Kogyo Co Ltd | Garbage collecting vehicle and discharge plate position indicating device |
CN105171949A (en) * | 2015-09-30 | 2015-12-23 | 华润包装材料有限公司 | Mixing preparing method for plastic master batch |
CN105171946A (en) * | 2015-07-27 | 2015-12-23 | 永高股份有限公司 | Material mixing and stirring mechanism of automatic feeding system of plastic mixing device |
-
1986
- 1986-12-16 JP JP29769186A patent/JPS63151407A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008037527A (en) * | 2006-08-02 | 2008-02-21 | Kyokuto Kaihatsu Kogyo Co Ltd | Garbage collecting vehicle and discharge plate position indicating device |
CN105171946A (en) * | 2015-07-27 | 2015-12-23 | 永高股份有限公司 | Material mixing and stirring mechanism of automatic feeding system of plastic mixing device |
CN105171949A (en) * | 2015-09-30 | 2015-12-23 | 华润包装材料有限公司 | Mixing preparing method for plastic master batch |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3778288A (en) | Methods for preparing master batches of additive concentrates | |
US7842221B2 (en) | Process and apparatus for the production of filled thermoplastic polymers | |
CN100448919C (en) | Method for production of water-absorbent resin and plow-shaped mixing device | |
DK152370B (en) | GRANULATES OR TABLETS OF A CONCENTRATE BASED ON FUEL AND POLYAMIDE AND PROCEDURES FOR PREPARING THEREOF | |
JPS5858223B2 (en) | How to clean the inside of an extruder | |
JPS63151407A (en) | Manufacture of thermoplastic resin compound | |
US20080259724A1 (en) | Rotating Gap Granulation | |
JPS63189222A (en) | Method for extruding thermoplastic compound | |
JP2904770B1 (en) | Method for producing waste paper-containing resin composition and mixing apparatus | |
JPH09123169A (en) | Thermoplastic resin synthetic material with plastic bottle as material, manufacture thereof, thermoplastic resin molding using the material and manufacture thereof | |
JPH0222094B2 (en) | ||
CA3006236A1 (en) | Process for manufacturing a precursor material | |
JPH044075A (en) | Coating method of surface reforming agent | |
US20060165981A1 (en) | Method for brightening synthetic fibers and plastics with granulated optical brighteners | |
JPH028962B2 (en) | ||
JPS6378704A (en) | Manufacture of thermoplastic resin compound | |
JP3727804B2 (en) | Method for producing woody synthetic resin composition | |
JP3312931B2 (en) | Powder granulated product and method for producing the same | |
JPS5841170B2 (en) | Polyester pine tree | |
JP2000343529A (en) | Manufacture of woody resin composition, woody resin composition obtained thereby and its molded product | |
JPS644892B2 (en) | ||
JPH02129251A (en) | Production of plasticized polyvinyl chloride mixture | |
JPS585333A (en) | Granular resin containing functional additive | |
JPS5839847B2 (en) | tenkazaigan | |
JP3370195B2 (en) | Method for producing polyester film |