JPS63151397A - Method for removing silicon compound in waste hydrochloric acid pickling for steel sheet or the like - Google Patents

Method for removing silicon compound in waste hydrochloric acid pickling for steel sheet or the like

Info

Publication number
JPS63151397A
JPS63151397A JP29925886A JP29925886A JPS63151397A JP S63151397 A JPS63151397 A JP S63151397A JP 29925886 A JP29925886 A JP 29925886A JP 29925886 A JP29925886 A JP 29925886A JP S63151397 A JPS63151397 A JP S63151397A
Authority
JP
Japan
Prior art keywords
hydrochloric acid
acid pickling
separation
colloid
molecular weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29925886A
Other languages
Japanese (ja)
Other versions
JPH0325235B2 (en
Inventor
Takashi Yoshimura
尚 吉村
Masayuki Kurokami
黒髪 正幸
Toshiaki Takato
高頭 稔明
Osamu Umekawa
梅川 治
Kazushige Kaimoto
開本 和繁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TETSUGEN KK
Katayama Chemical Inc
Nippon Steel Corp
Original Assignee
TETSUGEN KK
Katayama Chemical Inc
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TETSUGEN KK, Katayama Chemical Inc, Nippon Steel Corp filed Critical TETSUGEN KK
Priority to JP29925886A priority Critical patent/JPS63151397A/en
Publication of JPS63151397A publication Critical patent/JPS63151397A/en
Publication of JPH0325235B2 publication Critical patent/JPH0325235B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/36Regeneration of waste pickling liquors

Abstract

PURPOSE:To efficiently remove silicon compd. by adding cationic polymeric substance to the title waste liquid and thereafter adding a cationic polymeric flocculating agent and separating an aggregate. CONSTITUTION:10-100ppm cationic polymeric substance (i.e. amine- epichlorohydrin condensate, diallylamine polymer or the like) having means mol.wt. of not less than 0.5 million and colloid equivalent not less than 4meq/g (pH4.0) is added to waste hydrochloric acid pickling agent. Then 1-10ppm cationic polymeric flocculating agent (i.e. acrylamide-aminomethyl acrylamide copolymer or the like) having mean mol.wt. of not less than 2 million and colloid equivalent not more than 3.0meq/g (pH4.0) is added to produce an aggregate. This aggregate is removed by a method such as settling separation or floating separation. Thereby silicon compd. can be efficiently removed.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、鋼板等の塩酸酸洗廃液中に含有されているケ
イ素化合物の除去方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for removing silicon compounds contained in a waste solution from hydrochloric acid pickling of steel plates and the like.

(従来の技術) 鋼板等の塩酸酸洗廃液は、焙焼し、熱分解して塩酸と酸
化鉄に再生され、酸化鉄は顔料やフェライト用原料とし
て有効に利用されている。
(Prior Art) Waste liquid from hydrochloric acid pickling of steel plates and the like is roasted and thermally decomposed to be recycled into hydrochloric acid and iron oxide, and iron oxide is effectively used as a raw material for pigments and ferrite.

フェライト用原料として使用する場合、特に酸化鉄中に
ケイ素化合物が多いと、磁気特性に大きな影響を与える
ので、ケイ素化合物の含有量の低いものが好ましい。
When used as a raw material for ferrite, iron oxide containing a large amount of silicon compounds has a large effect on magnetic properties, so it is preferable to use iron oxide with a low content of silicon compounds.

しかしながら、上記塩酸酸洗廃液に含まれるケイ素化合
物の含有量は酸洗する鋼板の種類によって大きく左右さ
れ、SiO□換算で数十mg/Il〜数千mg/βの広
範囲に及んでおり、これらの大半は安定なコロイドで分
散している。よって、上記塩酸酸洗廃液をそのままの状
態で焙焼し、熱分解し酸化鉄を得た場合、必然的にケイ
素化合物含有量の低い酸化鉄を得ることが困難である。
However, the content of silicon compounds contained in the hydrochloric acid pickling waste liquid greatly depends on the type of steel plate to be pickled, and ranges over a wide range from several tens of mg/Il to several thousand mg/β in terms of SiO□. Most of them are dispersed as stable colloids. Therefore, when the hydrochloric acid pickling waste liquid is roasted as it is and thermally decomposed to obtain iron oxide, it is inevitably difficult to obtain iron oxide with a low content of silicon compounds.

この為に、従来、ケイ素化合物の含有量の低い酸化鉄を
塩酸酸洗廃液から製造する際には、該廃液を濃縮し、塩
化鉄の結晶を析出させて分離回収した後、ケイ素化合物
の含有量の少ない水にその塩化鉄の結晶を再溶解しこの
水溶液を焙焼し、熱分解して目的のケイ素化合物の含有
量の低い酸化鉄を得る方法(以下再結晶焙焼法と記す)
が行われていた。
For this reason, conventionally, when producing iron oxide with a low content of silicon compounds from hydrochloric acid pickling waste liquid, the waste liquid was concentrated, iron chloride crystals were precipitated, separated and recovered, and then iron oxide containing silicon compounds was produced. A method of redissolving the iron chloride crystals in a small amount of water, roasting this aqueous solution, and thermally decomposing it to obtain the desired iron oxide with a low content of silicon compounds (hereinafter referred to as the recrystallization roasting method)
was being carried out.

この点に関し、最近において、濾過により鉄鋼塩酸酸洗
廃液中のケイ素化合物を除去する方法が提案されている
。例えば、特公昭61−31056号公報ではカチオン
性ポリアクリルアミド系高分子凝集剤を塩酸酸洗廃液中
に含まれるケイ素分SiO□換算重量に対して重量比で
0.04以上添加し、該凝集剤を添加した塩酸酸洗廃液
を20分間以上の養生時間をおいてSiO□を凝集させ
た後、凝集されたSingを濾過分離する方法が提案さ
れている。また、特開昭60−122087号公報では
鉄鋼塩酸酸洗廃液中のケイ素含有化合物を表面積の大き
い吸着体を充填したフィルタ一層で除去するに際し、1
親性化合物(界面活性物質)を添加することを特徴とす
る一該廃液中のケイ素含有化合物の除去方法が提案され
ている。
In this regard, a method has recently been proposed for removing silicon compounds from the waste solution from hydrochloric acid pickling of steel by filtration. For example, in Japanese Patent Publication No. 61-31056, a cationic polyacrylamide-based polymer flocculant is added at a weight ratio of 0.04 or more to the silicon content SiO□ equivalent weight contained in the hydrochloric acid pickling waste liquid, and the flocculant is A method has been proposed in which SiO□ is aggregated by curing the hydrochloric acid pickling waste liquid to which Sing is added for 20 minutes or more, and then the aggregated Sing is separated by filtration. In addition, Japanese Patent Application Laid-Open No. 60-122087 discloses that when removing silicon-containing compounds from a steel hydrochloric acid pickling waste solution using a single layer filter filled with an adsorbent having a large surface area,
A method for removing silicon-containing compounds from the waste liquid has been proposed, which is characterized by adding a philic compound (surfactant).

(発明が解決しようとする問題点) 従来の再結晶焙焼法においては、製造設備が大規模にな
り、その操作も煩雑で、しかも塩化鉄の再結晶のため、
多大のエネルギーを必要とし、かつシリカ分の少ない用
水を使用しなければならないという問題があり、さらに
廃塩酸中に含有される原料鉄分に対する製品歩留りが低
いこともあって、製品もコスト高となる欠点がある。
(Problems to be solved by the invention) In the conventional recrystallization roasting method, the manufacturing equipment is large-scale and its operation is complicated.Moreover, since iron chloride is recrystallized,
There are problems in that it requires a large amount of energy and requires the use of water with low silica content.Furthermore, the product yield is low compared to the raw material iron contained in waste hydrochloric acid, making the product expensive. There are drawbacks.

また、前記特公昭61−31056号公報、特開昭60
−122087号公報に記載の濾過処理による方法にお
いては、濾材の目詰りにより濾過液量の変動が生じるこ
とから、一定して濾過液量を得る為には、複数の濾過設
備が必要であり、また、一定時間当りの濾過液量を大量
に得る為には設備が大型化すると言った以外に廃塩酸中
にはケイ素化合物以外にSS成分が含まれており、これ
らの含有量は洗浄する鋼板の種類によって大きく左右さ
れる故に、濾材の洗浄、取り換え等を含む一連の操作や
その運転管理が煩雑である等の問題点がある。
Also, the above-mentioned Japanese Patent Publication No. 61-31056, Japanese Patent Application Laid-Open No. 60-60
In the method using filtration treatment described in Publication No. 122087, the amount of filtrate fluctuates due to clogging of the filter medium, so in order to obtain a constant amount of filtrate, multiple filtration equipment is required. In addition to the fact that the equipment needs to be large in order to obtain a large amount of filtrate per certain period of time, waste hydrochloric acid also contains SS components in addition to silicon compounds, and the content of these components varies depending on the steel plate being cleaned. Since it is largely influenced by the type of filter media, there are problems such as a series of operations including cleaning and replacement of filter media, and operational management thereof are complicated.

この点に関し、前記特公昭61−31056号公報のよ
うな凝集処理を応用した方法において、凝集体を濾過す
ることなく沈降分離や浮上分離で簡便に分離できれば、
設備上、管理上さらには処理コスト上極めて有利である
In this regard, if the aggregates can be easily separated by sedimentation or flotation without filtration using a method that applies flocculation treatment such as the one disclosed in Japanese Patent Publication No. 61-31056,
This is extremely advantageous in terms of equipment, management, and processing costs.

しかし、かかる従来の凝集処理ではケイ素化合物につい
て濾過分離が必要であり、単に沈降分離や浮上分離で該
凝集体を分離することは不可能であった。
However, such conventional flocculation treatment requires filtration separation of silicon compounds, and it has been impossible to separate the aggregates simply by sedimentation separation or flotation separation.

この発明は、このような従来技術の問題点に鑑みなされ
たものであり、塩酸酸洗廃液中のケイ素含有量に左右さ
れることなく、常にケイ素含有量の低い品質の酸化鉄が
得られるように、その原料となる鋼板等の塩酸酸洗廃液
中のケイ素化合物を工業的な規模で簡便かつ効率よく除
去する新規な方法を提供するものである。
This invention was made in view of the problems of the prior art, and is designed to always obtain high quality iron oxide with a low silicon content, regardless of the silicon content in the hydrochloric acid pickling waste liquid. Another object of the present invention is to provide a new method for easily and efficiently removing silicon compounds from a waste solution from hydrochloric acid pickling of steel sheets, etc., which is a raw material thereof, on an industrial scale.

(問題点を解決する為の手段及び作用)かくしてこの発
明によると、 鋼板等の塩酸酸洗廃液に平均分子量50万以下であり、
コロイド当量が4meq/g (pH4,0)以上のコ
ロイド破壊作用をもつカチオン性高分子物質を10〜1
100pp添加した後、平均分子R200万以上であり
、コロイド当量が3.0meq/ g (pH4,0)
以下のカチオン性高分子凝集剤を1〜10ppm添加し
、ついで生じた凝集体を分離して該廃液中に含有するケ
イ素化合物を除去することを特徴とする鋼板等の塩酸酸
洗廃液中のケイ素化合物の除去方法が提供される。
(Means and effects for solving the problem) Thus, according to this invention, the waste solution from hydrochloric acid pickling of steel plates, etc. has an average molecular weight of 500,000 or less,
10 to 1 cationic polymeric substances with colloid-destroying action with a colloid equivalent of 4 meq/g (pH 4,0) or more
After adding 100pp, the average molecular R is 2 million or more, and the colloid equivalent is 3.0meq/g (pH 4.0)
Silicon in a waste solution from hydrochloric acid pickling of steel plates, etc., characterized in that 1 to 10 ppm of the following cationic polymer flocculant is added, and then the resulting aggregates are separated to remove silicon compounds contained in the waste solution. A method for removing a compound is provided.

この発明の方法によれば、塩酸酸洗廃液に含有するケイ
素化合物をすみやかに凝集分離させることが出来るため
、煩雑な濾過操作を要することなく該ケイ素化合物を除
去することが出来るという利点を有する。
According to the method of the present invention, the silicon compounds contained in the hydrochloric acid pickling waste liquid can be quickly coagulated and separated, so the silicon compounds can be removed without the need for complicated filtration operations.

この発明においては、まず鋼板等の塩酸酸洗廃液に平均
分子量50万以下であり、コロイド当量が4 meq/
 g (pH4,0)以上のコロイド破壊作用をもつカ
チオン性高分子物質(以下、低分子カチオンという)が
10〜1100pp添加される。この低分子カチオンは
、塩酸酸洗廃液中に含有されている安定なケイ素化合物
や、その他のSS成分のコロイドを短時間で破壊し、ま
ず微細な凝集体とする作用がある。
In this invention, first, the waste solution from hydrochloric acid pickling of steel plates, etc. has an average molecular weight of 500,000 or less and a colloid equivalent of 4 meq/
10 to 1100 pp of a cationic polymer substance (hereinafter referred to as a low molecular weight cation) having a colloid-destroying effect with a pH of 4.0 or more is added. This low-molecular-weight cation has the effect of destroying stable silicon compounds and other colloids of SS components contained in the hydrochloric acid pickling waste solution in a short time, and first turning them into fine aggregates.

この低分子カチオンとしては平均分子量が1万〜30万
のものが好ましく、具体的にはアミン−エピクロルヒド
リン縮合物、ジアリルアミン重合物、ポリアルキレンポ
リアミン、ポリアミンスルホン等があげられ、コロイド
破壊作用の点で特に好ましいのはアミン−エピクロルヒ
ドリン縮合物である。
The low molecular weight cation preferably has an average molecular weight of 10,000 to 300,000, and specific examples thereof include amine-epichlorohydrin condensates, diallylamine polymers, polyalkylene polyamines, polyamine sulfones, etc. Particularly preferred is an amine-epichlorohydrin condensate.

コロイド当量が4 meq/ g (pt+4.0)未
満であると安定なケイ素化合物やその他のSS成分のコ
ロイド破壊作用が低下する為好ましくない。これら低分
子カチオンの添加量がlOppm未満では上記作用が低
く、1100pp以上添加しても経済的なデメリットを
打ち消す効果が得られない為好ましくない。
If the colloid equivalent is less than 4 meq/g (pt+4.0), the colloid-destroying action of the stable silicon compound and other SS components will decrease, which is not preferable. If the amount of these low-molecular-weight cations added is less than 10 ppm, the above-mentioned effect will be low, and even if 1100 pp or more is added, the effect of canceling out the economical disadvantages will not be obtained, which is not preferable.

この発明においては、上記低分子カチオンの添加処理後
、平均分子量が200万以上であり、コロイド当量が3
.0meq/ g (pH4,0)以下のカチオン性高
分子凝集剤(以下高分子カチオンという)が1〜10p
pm添加される。
In this invention, after the addition treatment of the low molecular weight cation, the average molecular weight is 2 million or more, and the colloidal equivalent is 3.
.. 1 to 10 p of a cationic polymer flocculant (hereinafter referred to as polymer cation) with a pH of 0 meq/g (pH 4,0) or less
pm is added.

この高分子カチオンは、前記コロイド破壊された微細な
凝集体をすみやかに粗大かつフロック強−7= 度の大きいフロックに凝集させ、沈降分離あるいは浮上
分離に適した凝集物を得る作用を有する。
This polymer cation has the function of quickly flocculating the fine aggregates that have been destroyed by the colloid into coarse flocs with a high floc strength -7, thereby obtaining aggregates suitable for sedimentation separation or flotation separation.

この高分子カチオンとしては平均分子量が300〜60
0万のものが好ましい。また、凝集体を沈降分離する場
合には、コロイド当量が0.2〜1.2meq/g(p
H4,0)のものが好ましく、凝集体を浮上分離する場
合には、コロイド当量が1.0〜2.5maq/g(p
H14,0)のものが好ましい。
This polymer cation has an average molecular weight of 300 to 60.
00,000 is preferable. In addition, when the aggregate is separated by sedimentation, the colloid equivalent is 0.2 to 1.2 meq/g (p
H4,0) is preferable, and in the case of flotation separation of aggregates, the colloid equivalent is 1.0 to 2.5 maq/g (p
H14,0) is preferred.

好ましい化合物としては、例えば、アクリルアミド−ア
ミノメチルアクリルアミド共重合物、アクリルアミド−
ジアルキルアミノエチルメタクリレート共重合物等があ
げられる。
Preferred compounds include, for example, acrylamide-aminomethylacrylamide copolymer, acrylamide-aminomethylacrylamide copolymer,
Examples include dialkylaminoethyl methacrylate copolymer.

コロイド当量が3.Omeq/ g (pH4,0)よ
り大きいと、凝集体のフロックが小さく、かつフロック
強度も小さい等のことから好ましくない。
Colloid equivalent is 3. If it is larger than Omeq/g (pH 4.0), the floc of the aggregate is small and the floc strength is also low, which is not preferable.

また、添加量が1 ppm未満であると、粗大かつフロ
ック強度の大きい凝集体が得られず、10ppm以上添
加してもよいが通常10ppm以下で目的を達成できる
Further, if the amount added is less than 1 ppm, coarse aggregates with high floc strength cannot be obtained, and although it may be added in an amount of 10 ppm or more, the purpose can usually be achieved with 10 ppm or less.

かかるケイ素化合物(SSを含む)の凝集体は公知の方
法で沈降分離あるいは浮上分離することにより、濾過工
程を行うことなくすみやかに分離され、それにより該塩
酸酸洗廃液中のケイ素化合物は効率よく除去されること
となる。そしてこの分離液を焙焼し、熱分解することに
よりシリカ化合物含有量の低い酸化鉄を得ることが出来
る。
Such aggregates of silicon compounds (including SS) can be quickly separated without performing a filtration process by sedimentation or flotation separation using a known method, thereby efficiently removing the silicon compounds in the hydrochloric acid pickling waste solution. It will be removed. By roasting and thermally decomposing this separated liquid, iron oxide with a low silica compound content can be obtained.

なお、この発明に用いられる低分子カチオン単独添加で
は、凝集体が微細で軽いことから、沈降分離は効率が悪
く、大量処理に適さない。また、加圧浮上による分離は
、凝集体が微細でしかも強度が弱いことから全く出来な
い。
In addition, when the low-molecular-weight cation used in this invention is added alone, since the aggregates are fine and light, sedimentation separation is inefficient and is not suitable for large-scale processing. Further, separation by pressurized flotation is not possible at all because the aggregates are fine and weak.

また、高分子カチオン単独添加では、低分子カチオンに
比較し、ケイ素化合物のコロイドの破壊能力が劣り、効
果的に不充分である。
Furthermore, when a polymer cation is added alone, the colloidal destruction ability of a silicon compound is inferior to that of a low molecular cation, and the effect is insufficient.

さらに、この発明の低分子カチオンを添加後、高分子カ
チオンの代わりにノニオン性高分子凝集剤や弱アニオン
性高分子凝集剤を用いても、粗大かつフロック強度の大
きい凝集体は得られず、実用に供し得ない。このことよ
り、この発明は初期の目的を得る為、より選択された発
明であると言える。低分子カチオン及び高分子カチオン
の添加量は例えば机上でのジャーテスト法及び加圧浮上
法(フローテーション法)に従って決めることが出来る
が、塩酸酸洗廃液中のケイ素化合物の含有量に左右され
ることなく、所定の添加量で該塩酸酸洗廃液中に含有す
るケイ素化合物を低い濃度のレベルに沈降あるいは浮上
分離等の方法で除去することが出来、従来の方法に比較
し、簡素な設備で円滑にしかも大量処理を行うことが出
来る利点があり、かつ、これらの運転管理は容易である
為、工業的な見地から極めて有益なものと言える。
Furthermore, even if a nonionic polymer flocculant or a weak anionic polymer flocculant is used in place of the polymer cation after adding the low molecular cation of the present invention, coarse aggregates with high floc strength cannot be obtained. It cannot be put to practical use. From this, it can be said that this invention is an invention that was selected to achieve the initial objective. The amount of low-molecular-weight cations and high-molecular-weight cations added can be determined, for example, according to the desk jar test method and the pressure flotation method, but it depends on the content of silicon compounds in the hydrochloric acid pickling waste solution. The silicon compounds contained in the hydrochloric acid pickling waste solution can be removed to a low concentration level by methods such as sedimentation or flotation separation at a predetermined addition amount without having to be added, and with simpler equipment compared to conventional methods. It has the advantage of being able to smoothly perform large-scale processing, and its operational management is easy, so it can be said to be extremely useful from an industrial standpoint.

以下にこの発明の一実施態様を第1図に従って説明する
An embodiment of the present invention will be described below with reference to FIG.

鋼板等の塩酸酸洗廃液1゛を受入タンク1に受は入れ、
ある程度の量に達した時移送ポンプ6で撹拌槽2へ移送
し、低分子カチオンを10〜1100pp添加し、5〜
15分間撹拌混合する。その後撹拌槽2′で高分子のカ
チオンを1〜10ppm添加し、2〜5分間分間撹拌後
、凝集沈澱槽5において凝集物を沈降分離除去し分離液
8を得る。
Pour 1゛ of the waste solution from hydrochloric acid pickling of steel plates, etc. into the receiving tank 1,
When a certain amount is reached, it is transferred to the stirring tank 2 using the transfer pump 6, and 10 to 1100 pp of low molecular weight cations are added.
Stir to mix for 15 minutes. Thereafter, 1 to 10 ppm of polymeric cations are added in the stirring tank 2', and after stirring for 2 to 5 minutes, the aggregates are sedimented and removed in the coagulation-sedimentation tank 5 to obtain a separated liquid 8.

この発明を以下の実施例により例示する。The invention is illustrated by the following examples.

実施例1 鋼板の酸洗工場から排出された塩酸酸洗廃液を使用して
沈降分離による除去試験を行った。
Example 1 A removal test by sedimentation separation was conducted using hydrochloric acid pickling waste discharged from a steel plate pickling factory.

塩酸酸洗廃液の性状は次の通りである。The properties of the hydrochloric acid pickling waste liquid are as follows.

全鉄120g/j!、   S i 02 768mg
/A(Fe2O3換算171.6gA) CI−200g/CSS   1360mg/j!まず
、塩酸酸洗廃液をllづつ21部に分け、5部は低分子
カチオン、5部は高分子カチオンを各々別個に添加し、
15分間撹拌を行った。
All iron 120g/j! , S i 02 768mg
/A (Fe2O3 equivalent 171.6gA) CI-200g/CSS 1360mg/j! First, the hydrochloric acid pickling waste liquid was divided into 21 parts of 1 liter each, and 5 parts of low molecular cations and 5 parts of high molecular cations were added separately.
Stirring was performed for 15 minutes.

それから5分間静置し、上部より分離液として試験液6
0〇−量を採取して、JIS法に−1462にのっとっ
て分離液中の二酸化ケイ素濃度を定量した。
Then, let it stand for 5 minutes and separate the test solution 6 from the top.
An amount of 0.00 was taken and the silicon dioxide concentration in the separated liquid was determined according to JIS method -1462.

さらに5分間静置時に於ける凝集物の沈降状態を観察し
て、その間の平均沈降速度を測定した。
Further, the state of sedimentation of the aggregates was observed while standing for 5 minutes, and the average sedimentation rate during that period was measured.

9部については、それぞれ第1表のように低分子カチオ
ンを添加し、10分間撹拌した後、高分子カチオンを添
加し、5分間撹拌した。
For 9 parts, low molecular weight cations were added as shown in Table 1 and stirred for 10 minutes, then high molecular weight cations were added and stirred for 5 minutes.

その後の操作は上述した通りである。The subsequent operations are as described above.

残りの2部は比較対象として低分子カチオンを   ・
添加後、高分子カチオンの代わりに平均分子量1500
万、加水分解率1.0mof%のノニオン性高子子凝集
剤(以下n−1と記す)を添加して、同様な操作を行っ
た。ここで用いた低分子カチオンとその物性は次の通り
である。
The remaining two parts contain low molecular weight cations for comparison.
After addition, instead of the polymer cation, an average molecular weight of 1500
A similar operation was performed by adding a nonionic polymer flocculant (hereinafter referred to as n-1) with a hydrolysis rate of 1.0 mof%. The low molecular weight cations used here and their physical properties are as follows.

(以下余白 次頁に続く) 一方、ここで用いた高分子カチオンとその物性は次の通
りである。
(Margin continues on next page) On the other hand, the polymer cations used here and their physical properties are as follows.

それぞれの物質を用いた時の試験結果を第1表に示す。Table 1 shows the test results using each substance.

表中の沈降速度の項×印は懸濁化しており、清澄な透明
感の分離境界面が出来ていなく、測定対象外としたこと
をあられす。
In the table, the sedimentation rate section marked with an x indicates suspension, and a clear and transparent separation boundary has not been formed, so it is excluded from the measurement.

(以下余白 次頁に続く) 一16= 実施例2 実施例1で用いた塩酸酸洗廃液を使用して、加圧浮上分
離による除去試験を行った。
(The following margin continues on the next page) 116 = Example 2 Using the hydrochloric acid pickling waste liquid used in Example 1, a removal test by pressure flotation separation was conducted.

まず、塩酸酸洗廃液を1j2づつ8部に分け、3部は低
分子カチオン、1部は高分子カチオンを各々別個に添加
し、15分間撹拌した後、フローテーションテスターM
S−9006(−官本製作所)に移し、浮上分離を行っ
た(加圧圧力3.5kg/ad、循環比30%)、5分
間経過後、下部より分離液として60〇−量採取し、J
IS法に−1462にのっとって分離液中の二酸化ケイ
素濃度を定量した。
First, the hydrochloric acid pickling waste liquid was divided into 8 parts of 1j2 each, 3 parts of low molecular weight cations and 1 part of high molecular weight cations were added separately, and after stirring for 15 minutes, a flotation tester M was added.
It was transferred to S-9006 (Kanmoto Seisakusho) and subjected to flotation separation (pressure 3.5 kg/ad, circulation ratio 30%). After 5 minutes, 600 ml of separated liquid was collected from the bottom. J
The silicon dioxide concentration in the separated liquid was determined according to IS method -1462.

更に、5分間経過時に於ける凝集物の浮上状態を観察し
て、その間の平均浮上速度を測定した。
Furthermore, the floating state of the aggregates after 5 minutes was observed, and the average floating speed during that period was measured.

4部については、それぞれ第2表のように、低分子カチ
オンを添加し、10分間撹拌した後、高分子カチオンを
添加し、5分間撹拌した後、加圧浮上試験装置に移した
For 4 parts, as shown in Table 2, low molecular cations were added and stirred for 10 minutes, then high molecular cations were added, stirred for 5 minutes, and then transferred to a pressurized flotation test apparatus.

以降の操作は上述した通りである。The subsequent operations are as described above.

ここで用いた低分子カチオンは、実施例1の項で示した
ところのLK−2、LK−4である。
The low molecular weight cations used here are LK-2 and LK-4 shown in the section of Example 1.

一方、高分子カチオンも同じ〈実施例1の項で示したと
ころのPK−3である。それぞれの物質を用いた時の試
験結果を第2表に示す。
On the other hand, the polymer cation is also the same (PK-3 shown in the section of Example 1). Table 2 shows the test results using each substance.

(以下余白 次頁に続く) 実施例3 実施例1で用いた塩酸酸洗廃液よりもケイ素化合物の含
有量が高いところの鋼板の酸洗工場から排出された塩酸
酸洗廃液を使用して低分子カチオンと高分子カチオンを
併用して、沈降分離による除去試験(試験操作は実施例
1と同様である)及び加圧浮上分離による除去試験(試
験操作は実施例2と同様である)を行い、その効果の確
認を行った。
(The following margin continues on the next page) Example 3 A hydrochloric acid pickling waste solution discharged from a steel plate pickling plant, which has a higher content of silicon compounds than the hydrochloric acid pickling waste solution used in Example 1, was used. A removal test by sedimentation separation (the test procedure is the same as in Example 1) and a removal test by pressure flotation separation (the test procedure is the same as in Example 2) was conducted using a combination of molecular cations and polymer cations. , and confirmed its effectiveness.

使用した塩酸酸洗廃液の性状は次の通りである。The properties of the hydrochloric acid pickling waste liquid used are as follows.

塩素イオン 300gA、S S   4481mgA
ここで用いた低分子カチオンは LK−2,LK−4で
あり、高分子カチオンはPK−2,PK−3である。
Chlorine ion 300gA, SS 4481mgA
The low molecular cations used here are LK-2 and LK-4, and the high molecular cations used are PK-2 and PK-3.

それぞれの物質を用いた時の沈降分離による除去試験の
結果を第3表に、一方加圧浮上分離による除去試験の結
果を第4表に示す。
Table 3 shows the results of a removal test using sedimentation separation using each substance, while Table 4 shows the results of a removal test using pressure flotation separation.

(発明の効果) 本発明によれば、濾過工程を経ることなく塩酸酸洗廃液
中に含まれるケイ素化合物を低い濃度のレベルまて効率
よく除去することが出来る。そしてこのものを原料とし
て公知手段で焙焼し、熱分解して酸化鉄を製造すれば、
ケイ素含有量の低い、しかも品質の安定した酸化鉄を容
易に得ることが可能てありその効果は顕著なものである
(Effects of the Invention) According to the present invention, silicon compounds contained in the hydrochloric acid pickling waste liquid can be efficiently removed to a low concentration level without going through a filtration step. If this material is used as a raw material and roasted by known means and thermally decomposed to produce iron oxide,
It is possible to easily obtain iron oxide with a low silicon content and stable quality, and its effects are remarkable.

しかも通常の既存の廃液処理設備に若干の設備を補足し
ただけで容易に実施出来るので工業上その有用性が極め
て高いものである。
Moreover, it can be easily implemented by simply adding some equipment to the existing waste liquid treatment equipment, making it extremely useful industrially.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の方法を実施するシステムの一実施態
様を示すフローシート図である。 1°−・−・・−鋼板等の塩酸酸洗廃液、l−・−・・
−1°の廃液受入タンク、2.2”−・撹拌槽、 3・−・・−・−・−低分子カチオン熔解タンク、4−
−−−−・−・・高分子カチオン溶解タンク、5−・−
−−−−・・・−凝集沈澱槽、6−・−・−−−−−一
移送ポンプ、 7−−−−−・・・−沈澱物、 8−・・−−−−−−・−分離液。 第 1 図
FIG. 1 is a flow sheet diagram illustrating one embodiment of a system implementing the method of the present invention. 1°−・−・・− Hydrochloric acid pickling waste liquid for steel plates, etc., l−・−・・
-1° waste liquid receiving tank, 2.2”-・Stirring tank, 3・-・・−・−・−Low molecular cation melting tank, 4-
−−−−・−・Polymer cation dissolution tank, 5−・−
----------Coagulation and sedimentation tank, 6-------1 transfer pump, 7---------Sediment, 8--------- - Separation liquid. Figure 1

Claims (1)

【特許請求の範囲】 1、鋼板等の塩酸酸洗廃液に平均分子量50万以下であ
り、コロイド当量が4meq/g(pH4.0)以上の
コロイド破壊作用をもつカチオン性高分子物質を10〜
100ppm添加した後、平均分子量200万以上であ
り、コロイド当量が3.0meq/g(pH4.0)以
下のカチオン性高分子凝集剤を1〜10ppm添加し、
ついで生じた凝集体を分離して該廃液中に含有するケイ
素化合物を除去することを特徴とする鋼板等の塩酸酸洗
廃液中のケイ素化合物の除去方法。 2、コロイド破壊作用をもつカチオン性高分子物質の平
均分子量が1〜30万である特許請求の範囲第1項記載
の方法。 3、コロイド破壊作用をもつカチオン性高分子物質がア
ミン−エピクロルヒドリン縮合物、ジアリルアミン重合
物、ポリアルキレンポリアミン及びポリアミンスルホン
から選ばれた一種以上の高分子物質である特許請求の範
囲第1項又は第2項記載の方法。 4、カチオン性高分子凝集剤の平均分子量が300〜6
00万である特許請求の範囲第1項記載の方法。 5、カチオン性高分子凝集剤がアクリルアミド−アミノ
メチルアクリルアミド共重合物及び/またはアクリルア
ミド−ジアルキルアミノエチルメタクリレート共重合物
である特許請求の範囲第1項又は第4項記載の方法。 6、分離が沈降分離である特許請求の範囲第1項〜第5
項いづれかに記載の方法。 7、分離が浮上分離である特許請求の範囲第1項〜第5
項いづれかに記載の方法。
[Scope of Claims] 1. A cationic polymer substance having an average molecular weight of 500,000 or less and a colloid equivalent of 4 meq/g (pH 4.0) or more and having a colloid-destroying effect is added to the waste solution from hydrochloric acid pickling of steel plates, etc.
After adding 100 ppm, add 1 to 10 ppm of a cationic polymer flocculant having an average molecular weight of 2 million or more and a colloid equivalent of 3.0 meq/g (pH 4.0) or less,
A method for removing silicon compounds from a waste solution from hydrochloric acid pickling of steel plates, etc., which comprises the steps of separating the resulting aggregates and removing the silicon compounds contained in the waste solution. 2. The method according to claim 1, wherein the cationic polymer substance having colloid-destroying action has an average molecular weight of 10,000 to 300,000. 3. Claim 1 or 3, wherein the cationic polymer substance having a colloid-destroying effect is one or more polymer substances selected from amine-epichlorohydrin condensates, diallylamine polymers, polyalkylene polyamines, and polyamine sulfones. The method described in Section 2. 4. The average molecular weight of the cationic polymer flocculant is 300 to 6.
1,000,000. 5. The method according to claim 1 or 4, wherein the cationic polymer flocculant is an acrylamide-aminomethylacrylamide copolymer and/or an acrylamide-dialkylaminoethyl methacrylate copolymer. 6. Claims 1 to 5 in which the separation is sedimentation separation
The method described in any of the sections. 7. Claims 1 to 5 in which the separation is floating separation
The method described in any of the sections.
JP29925886A 1986-12-15 1986-12-15 Method for removing silicon compound in waste hydrochloric acid pickling for steel sheet or the like Granted JPS63151397A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29925886A JPS63151397A (en) 1986-12-15 1986-12-15 Method for removing silicon compound in waste hydrochloric acid pickling for steel sheet or the like

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29925886A JPS63151397A (en) 1986-12-15 1986-12-15 Method for removing silicon compound in waste hydrochloric acid pickling for steel sheet or the like

Publications (2)

Publication Number Publication Date
JPS63151397A true JPS63151397A (en) 1988-06-23
JPH0325235B2 JPH0325235B2 (en) 1991-04-05

Family

ID=17870206

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29925886A Granted JPS63151397A (en) 1986-12-15 1986-12-15 Method for removing silicon compound in waste hydrochloric acid pickling for steel sheet or the like

Country Status (1)

Country Link
JP (1) JPS63151397A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5720887A (en) * 1996-11-21 1998-02-24 Betzdearborn Inc. Methods for sludge dewatering
CN1041538C (en) * 1992-07-10 1999-01-06 S·C·瓦德哈万 Method for treating pickle liquor
WO2015190445A1 (en) * 2014-06-09 2015-12-17 日鉄住金環境株式会社 Polymer aggregator and method for removing matter suspended in water using said aggregator
CN105236536A (en) * 2015-10-19 2016-01-13 巩义市友邦供水材料有限公司 Preparation method of steel industry sewage flocculants
JP2016013541A (en) * 2014-06-09 2016-01-28 日鉄住金環境株式会社 High polymer coagulant
JP2016013540A (en) * 2014-06-09 2016-01-28 日鉄住金環境株式会社 Removal processing method of suspended substances in water
CN112159033A (en) * 2020-09-16 2021-01-01 天津市市政工程设计研究院 Photovoltaic wastewater advanced treatment system and application method
CN112158983A (en) * 2020-09-16 2021-01-01 天津市市政工程设计研究院 Efficient silicon and fluorine removal system and method for photovoltaic wastewater

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1041538C (en) * 1992-07-10 1999-01-06 S·C·瓦德哈万 Method for treating pickle liquor
US5720887A (en) * 1996-11-21 1998-02-24 Betzdearborn Inc. Methods for sludge dewatering
WO2015190445A1 (en) * 2014-06-09 2015-12-17 日鉄住金環境株式会社 Polymer aggregator and method for removing matter suspended in water using said aggregator
JP2016013541A (en) * 2014-06-09 2016-01-28 日鉄住金環境株式会社 High polymer coagulant
JP2016013540A (en) * 2014-06-09 2016-01-28 日鉄住金環境株式会社 Removal processing method of suspended substances in water
CN105236536A (en) * 2015-10-19 2016-01-13 巩义市友邦供水材料有限公司 Preparation method of steel industry sewage flocculants
CN112159033A (en) * 2020-09-16 2021-01-01 天津市市政工程设计研究院 Photovoltaic wastewater advanced treatment system and application method
CN112158983A (en) * 2020-09-16 2021-01-01 天津市市政工程设计研究院 Efficient silicon and fluorine removal system and method for photovoltaic wastewater

Also Published As

Publication number Publication date
JPH0325235B2 (en) 1991-04-05

Similar Documents

Publication Publication Date Title
US3350302A (en) Clarification of surface waters
US3171801A (en) Process for clarifying water
EP0473653B1 (en) Effluent treatment
TWI715110B (en) Vorrichtung und verfahren zur reinigung von mit elektrolyten und farbstoffen verunreinigtem abwasser
US6210587B1 (en) Method for the physico-chemical treatment of effluents, in particular of surface water for consumption
CN1699223A (en) Method of preparing pure water using metallurgic sewage
JPS63151397A (en) Method for removing silicon compound in waste hydrochloric acid pickling for steel sheet or the like
JPS59500047A (en) A method for purifying suspensions, in particular those resulting from processing steps in the wood processing industry.
EP0087268A2 (en) Process for treating sludge
JPH09141006A (en) Flocculating and settling device
US3259569A (en) Flocculation of sewage having controlled solids concentrations
CA1115437A (en) Process for treating waste water
US3798160A (en) Treatment of aluminum waste liquors
JPS60261519A (en) Filter
JPH0463142A (en) Apparatus for treating suspension by ion exchange
JPH1034161A (en) Treatment of silica-containing waste water
US5344572A (en) Method for treating waste pickle liquor
US5158688A (en) Process for removing inorganic gels and incompressible solids from acidic media
JPS62501575A (en) Method and apparatus for flaking suspension flakeable substances, in particular for purifying return water of deinking equipment
JP4799888B2 (en) Treatment method of brewing wastewater
CN215559636U (en) Wastewater treatment system
JP4786786B2 (en) Floor cleaning waste liquid treatment agent, floor cleaning waste liquid processing method, and reuse method of floor cleaning waste liquid
CN210012712U (en) Wastewater desalination treatment system
JPH0669551B2 (en) Filtration method by filtration membrane
JPH1043770A (en) Treatment of waste water containing suspended particle

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term