JPS6315091B2 - - Google Patents

Info

Publication number
JPS6315091B2
JPS6315091B2 JP19091383A JP19091383A JPS6315091B2 JP S6315091 B2 JPS6315091 B2 JP S6315091B2 JP 19091383 A JP19091383 A JP 19091383A JP 19091383 A JP19091383 A JP 19091383A JP S6315091 B2 JPS6315091 B2 JP S6315091B2
Authority
JP
Japan
Prior art keywords
cutter
workpiece
groove
cutting
circumferential direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP19091383A
Other languages
Japanese (ja)
Other versions
JPS6085824A (en
Inventor
Takamichi Fukuya
Masao Ookita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd filed Critical Alps Electric Co Ltd
Priority to JP19091383A priority Critical patent/JPS6085824A/en
Publication of JPS6085824A publication Critical patent/JPS6085824A/en
Publication of JPS6315091B2 publication Critical patent/JPS6315091B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C5/00Milling-cutters
    • B23C5/003Milling-cutters with vibration suppressing means

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Milling Processes (AREA)
  • Drilling Tools (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、例えば間欠送り用部品の外周部に設
けられる螺旋状の溝を切削加工するのに好適なカ
ツターに関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a cutter suitable for cutting, for example, a spiral groove provided on the outer periphery of an intermittent feed component.

〔発明の背景〕[Background of the invention]

従来より、軸の外周部に螺旋状溝を設けたねじ
部材を用い、このねじ部材を所定角度回転するこ
とにより螺旋状溝に係合した移動部材を所定距離
だけ往復移動させる間欠送り機構が知られてい
る。
Conventionally, an intermittent feed mechanism has been known that uses a screw member provided with a spiral groove on the outer periphery of a shaft, and rotates the screw member by a predetermined angle to reciprocate a moving member engaged with the spiral groove by a predetermined distance. It is being

第1図はかかる間欠送り機構の概略構成図であ
つて、1はステツピングモータ、2は軸受、3は
回転連結部材、4はねじ部材、5はガイドバー、
6は移動部材、7は板ばね、8は尖端部、9は螺
旋状溝である。
FIG. 1 is a schematic configuration diagram of such an intermittent feeding mechanism, in which 1 is a stepping motor, 2 is a bearing, 3 is a rotating connection member, 4 is a screw member, 5 is a guide bar,
6 is a moving member, 7 is a leaf spring, 8 is a tip, and 9 is a spiral groove.

間欠送り用部品であるねじ部材4の外周には螺
旋状溝9が形成され、このねじ部材4の一端は回
転連結部材3を介してステツピングモータ1に連
結されるとともに、他端は軸受2に支承されてい
る。ガイドバー5はねじ部材4と平行に設置さ
れ、このガイドバー5には移動部材6が摺動自在
に嵌入され、またこの移動部材6の下端に板ばね
7を介して設けられた尖端部8は、前記ねじ部材
4の螺旋状溝9に摺動自在に嵌入されている。
A spiral groove 9 is formed on the outer periphery of the screw member 4, which is an intermittent feeding component, and one end of the screw member 4 is connected to the stepping motor 1 via the rotary connection member 3, and the other end is connected to the bearing 2. is supported by. The guide bar 5 is installed parallel to the screw member 4, and a movable member 6 is slidably fitted into the guide bar 5, and a pointed end 8 is provided at the lower end of the movable member 6 via a leaf spring 7. is slidably fitted into the spiral groove 9 of the screw member 4.

この送り機構で移動部材6を所定のピツチで間
欠送りしたい場合、ステツピングモータ1への通
電を断続的に行つてねじ部材4を間欠的に正送回
転させ、それにより移動部材6をガイドバー5に
沿つて所定の範囲内で往復移動させることができ
る。
When it is desired to intermittently feed the movable member 6 at a predetermined pitch using this feeding mechanism, the stepping motor 1 is intermittently energized to intermittently rotate the screw member 4 forward, thereby moving the movable member 6 to the guide bar. 5 within a predetermined range.

ところで、この種の送り機構に用いられている
従来の間欠送り用部品であるねじ部材4は、第2
図にその展開状態を示す如く、螺旋状溝9の進み
角Θが全周にわたつて同じになるよう設計されて
いるため、ねじ切旋盤等を使用することにより、
比較的簡単に、かつ高い精度で加工することがで
きる。しかしながら、例えばねじ部材4の回転角
の0゜、45゜、90゜、135゜、180゜、225゜、270゜、315
゜の
8個所での移動部材6の移動を間欠的に停止した
い場合に、ねじ部材4の回転角のばらつきあるい
は回転制御ずれにより、それに比例して移動部材
6の位置もずれてしまい、適正位置での停止がで
きないことがあり信頼性に問題があつた。また前
述のようにステツピングモータ1の回転制御ずれ
による送り量誤差が発生しがちであるから、これ
を少なくするためには精度の高い、すなわち高価
なステツピングモータを使用するか、あるいは螺
旋状溝9の進み角Θに工夫を施した特殊なねじ部
材を使用することが考えられるが、高価なステツ
ピングモータを使用することはコスト上マイナス
であり、また特殊形状の螺旋状溝を加工するには
NC旋盤や特殊なねじ切旋盤等が必要になり、こ
れまた高価な間欠送り用部品になつてしまうとい
う問題があつた。
By the way, the screw member 4, which is a conventional intermittent feed component used in this type of feed mechanism, is
As shown in the figure, the advance angle Θ of the spiral groove 9 is designed to be the same over the entire circumference, so by using a thread cutting lathe etc.
It can be processed relatively easily and with high precision. However, for example, the rotation angle of the screw member 4 is 0°, 45°, 90°, 135°, 180°, 225°, 270°, 315°.
When it is desired to intermittently stop the movement of the movable member 6 at 8 locations, due to variations in the rotation angle of the screw member 4 or discrepancies in the rotation control, the position of the movable member 6 will shift in proportion to the rotation angle, and the position of the movable member 6 may be shifted in proportion to the rotation angle of the screw member 4. There were problems with reliability as the engine could not be stopped at any point. In addition, as mentioned above, feed rate errors tend to occur due to deviations in the rotation control of the stepping motor 1, so in order to reduce this error, it is necessary to use a high precision, that is, an expensive stepping motor, or to use a spiral It is conceivable to use a special screw member with a modified advance angle Θ of the groove 9, but using an expensive stepping motor is a cost disadvantage, and it also requires machining a specially shaped spiral groove. for
There was also the problem that an NC lathe or special thread cutting lathe was required, resulting in an expensive part for intermittent feeding.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、上述した従来技術の欠点を除
き、進み角が不均等な特殊形状の螺旋状溝を簡単
かつ高精度に加工できる切削用カツターを提供す
るにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a cutting cutter that can easily and accurately process a special-shaped spiral groove with uneven advance angles, while eliminating the drawbacks of the prior art described above.

〔発明の概要〕[Summary of the invention]

この目的を達成するために、本発明は、円筒状
のカツター本体の外周部に周方向に当間隔でn
個、かつ軸方向に1/nピツチずつ順次ずれ、回
転方向と平行に円周方向に沿つて形成された大径
の切刃と、隣接する大径の切刃と周方向にπ/n
ラジアン、軸方向に1/2nピツチずつ順次ずれ、
回転方向と平行に円周方向に沿つて形成された小
径の切刃とを備えたを特徴とし、このカツターに
被加工物と同一方向の回転切削運動を与えて、被
加工物の外周部に進み角が不均等な螺旋状溝を形
成するものである。
In order to achieve this object, the present invention provides a method for applying n-shaped fibers to the outer circumference of a cylindrical cutter body at regular intervals in the circumferential direction.
large-diameter cutting blades that are sequentially shifted by 1/n pitch in the axial direction and formed along the circumferential direction parallel to the rotation direction, and π/n in the circumferential direction with the adjacent large-diameter cutting blades.
Radian, axially shifted by 1/2n pitch,
The cutter is characterized by a small-diameter cutting blade formed along the circumferential direction parallel to the direction of rotation, and this cutter is given a rotary cutting motion in the same direction as the workpiece to cut the outer periphery of the workpiece. This forms a spiral groove with uneven advance angles.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例を第3図乃至第12図に
基づいて詳細に説明する。
Embodiments of the present invention will be described in detail below with reference to FIGS. 3 to 12.

第3図は本発明による切削用カツターの一実施
例を示す側面図、第4図は該カツターの正面図で
ある。カツター10は、例えば炭素鋼等からなる
筒体11と超硬金属等からなる多数の切刃13と
からなり、この切刃13は前記筒体11の外周部
の所定位置に溶着等の手段により、回転方向と平
行に円周方向に沿つて正確に固着されている。前
記筒体11の中心位置にはキー溝12a付の取付
孔12が設けてあり、また前記切刃13の形状は
第5図に示すように断面山形であり、その頂部は
僅かに直線状となつている。
FIG. 3 is a side view showing an embodiment of a cutting cutter according to the present invention, and FIG. 4 is a front view of the cutter. The cutter 10 consists of a cylindrical body 11 made of carbon steel or the like, and a number of cutting blades 13 made of cemented carbide or the like. , fixed precisely along the circumferential direction parallel to the direction of rotation. A mounting hole 12 with a keyway 12a is provided at the center of the cylindrical body 11, and the cutting edge 13 has a chevron-shaped cross section as shown in FIG. It's summery.

前記各切刃13は、周方向にn個あるものを多
数列連続して設けたもので、各切刃13の外径
は、大径のものと小径のものとが交互に連続して
おり、隣り合う各切刃13は、筒体11の周方向
に2π/nラジアンずつ、かつ、筒体11の軸方向に 1/nピツチずつずれている。第6図は、前記カツ
ター10を軸方向に展開した状態を示す説明図で
あるが、この図から明らかなように、本実施例で
は、周方向に22.5度(2π/16ラジアン)の等間隔で ずれた大小計16個の切刃13を、軸方向に順次1/
16ピツチずつずらし、この16個の切刃13を1列
としてa〜lの12列設けてある。従つて、1列目
の第1番目の大径の切刃a1と同第2番目の小径の
切刃a2とは、周方向に22.5度、軸方向に1/16ピツ
チずれ、同様に1列目の第16番目の小径の切刃
a16と2列目の第1番目の大径の切刃b1も、周方
向に22.5度、軸方向に1/16ピツチずれ、12列目の
第16番目の小径の切刃l16まで、以下同様にずれ
ている。
Each of the cutting edges 13 is provided in a plurality of consecutive rows in the circumferential direction, and the outer diameter of each cutting edge 13 is such that large diameter ones and small diameter ones are continuous alternately. , the adjacent cutting edges 13 are shifted by 2π/n radians in the circumferential direction of the cylinder 11 and by 1/n pitch in the axial direction of the cylinder 11. FIG. 6 is an explanatory view showing the state in which the cutter 10 is expanded in the axial direction. The 16 large and small cutting edges 13 that were misaligned are sequentially 1/1 in the axial direction.
The 16 cutting blades 13 are shifted by 16 pitches and are arranged in 12 rows a to l. Therefore, the first large-diameter cutting edge a 1 in the first row and the second small-diameter cutting edge a 2 are offset by 22.5 degrees in the circumferential direction and 1/16 pitch in the axial direction, and similarly. 16th small diameter cutting edge in the 1st row
A 16 and the 1st large diameter cutting edge in the 2nd row, b 1 , are also offset by 22.5 degrees in the circumferential direction and 1/16 pitch in the axial direction, and the 16th small diameter cutting edge in the 12th row is up to l 16 . , and the following are similarly shifted.

第7図乃至第9図は、上述したカツター10を
用いた切削状態の側面図であり、14は被加工物
を示す。被加工物14は、前記カツター10の1/
10の直径を有する丸棒で、この被加工物14とカ
ツター10は、1:1の回転比で共に反時計回り
方向回転される。
7 to 9 are side views of cutting states using the cutter 10 described above, and 14 indicates a workpiece. The workpiece 14 is 1/1 of the cutter 10.
With a round bar having a diameter of 10, the workpiece 14 and cutter 10 are rotated together in a counterclockwise direction with a rotation ratio of 1:1.

いま、第8図に示すように、カツター10と被
加工物14を1:1の等しい回転比で矢印方向へ
回転し、カツター10を被加工物14の中心方
向、すなわちラジアル方向へ所定量送ると、切刃
13の刃先と被加工物14の接点軌跡は近似的に
直線になり、被加工物14は大径の切刃a1によつ
て斜線で示す部分が切削される。これにより、被
加工物14の外周部には、切刃13と断面形状が
同じV字状の溝部A1が形成されるが、この溝部
A1は被加工物14の軸線と直交する垂線に対し
て平行である。カツター10と被加工物14は、
直径が異なるのでそれぞれの周部は異なる周速度
で共に矢印方向に回転しており、そのため次に小
径の切刃a2が被加工物14と接点軌跡を開始し、
被加工物14には、前記の切刃a1によつて形成さ
れた溝部A1から軸方向に1/16ピツチずれた位置
に新たなV字状の溝部A2が形成される。さらに、
カツター10と被加工物14が回転すると、第9
図に示すように、今度は大径の切刃a3が被加工物
14と接点軌跡を開始し、被加工物14には前述
した切刃a1と同じ深さのV字状の溝部A3が形成
される。従つて、この切刃a3による溝部A3は、
切刃a2による溝部A2と軸方向に1/16ピツチずれ、
切刃a1による溝部A1軸方向に1/8ピツチずれてい
る。また、小径の切刃a2による溝部A2の深さは、
大径の切刃a1及び切刃a3による溝部A1,A3の深
さに比べて浅いので、図示の如く、切刃a1と切刃
a3とによる両溝部A1,A3の接続部分を切刃a2
よる溝部A2が面取りした状態になる。以下、カ
ツター10を1回転することにより、被加工物1
4の外周部には、大径の切刃による比較的長目の
直線状底部を有する溝部と小径の切刃による面取
り用の溝部とが、周方向に交互に合計16個、か
つ、軸方向に順次1/16ピツチずつずれた状態で、
カツター10の刃列(本実施例ではa〜lの12
列)と同じ長さのねじ部をもつて形成される。な
お、1度の接点軌跡で所望の深さの溝部を切削す
るのは困難であるから、この場合はカツター10
の送り量を少なくして各切刃13の1回の切削量
を少なくし、被加工物14とカツター10を連続
回転すれば良い。
Now, as shown in FIG. 8, the cutter 10 and the workpiece 14 are rotated in the direction of the arrow at an equal rotation ratio of 1:1, and the cutter 10 is sent a predetermined amount toward the center of the workpiece 14, that is, in the radial direction. Then, the contact locus between the cutting edge of the cutting blade 13 and the workpiece 14 becomes approximately a straight line, and the portion of the workpiece 14 shown by diagonal lines is cut by the large-diameter cutting blade a1 . As a result, a V-shaped groove A1 having the same cross-sectional shape as the cutting blade 13 is formed on the outer circumference of the workpiece 14.
A 1 is parallel to a perpendicular line perpendicular to the axis of the workpiece 14. The cutter 10 and the workpiece 14 are
Since the diameters are different, the respective circumferential parts rotate together in the direction of the arrow at different circumferential speeds, so that the cutting edge a2 with the smaller diameter starts a contact trajectory with the workpiece 14 next,
A new V-shaped groove A 2 is formed in the workpiece 14 at a position shifted by 1/16 pitch in the axial direction from the groove A 1 formed by the cutting edge a 1 . moreover,
When the cutter 10 and workpiece 14 rotate, the ninth
As shown in the figure, the large-diameter cutting blade a3 now starts a contact trajectory with the workpiece 14, and the workpiece 14 has a V-shaped groove A with the same depth as the aforementioned cutting blade a1 . 3 is formed. Therefore, the groove A 3 formed by this cutting edge a 3 is
1/16 pitch deviation in the axial direction from groove A 2 due to cutting edge A 2 ,
Groove A by cutting edge A1 is shifted by 1/8 pitch in the 1- axis direction. In addition, the depth of the groove A 2 due to the small diameter cutting edge A 2 is:
Since the depth of the grooves A 1 and A 3 formed by the large-diameter cutting edges A 1 and A 3 is shallow compared to the depth of the grooves A 1 and A 3 , as shown in the figure,
The groove A 2 formed by the cutting edge a 2 chamfers the connecting portion between the grooves A 1 and A 3 formed by the groove A 3 . Thereafter, by rotating the cutter 10 once, the workpiece 1
4, a total of 16 grooves having relatively long linear bottoms formed by large-diameter cutting blades and chamfering grooves formed by small-diameter cutting blades are arranged alternately in the circumferential direction, and in the axial direction. With a sequential shift of 1/16 pitch,
The row of blades of the cutter 10 (in this example, 12 blades a to l)
(column) with a threaded portion of the same length. Note that it is difficult to cut a groove of a desired depth with one contact trajectory, so in this case, cutter 10 is used.
The workpiece 14 and cutter 10 may be continuously rotated by reducing the amount of feed of each cutting blade 13 to reduce the amount of cutting per time.

第10図は、上述したカツター10によつて加
工された間欠送り用部品の正面図、第11図は第
10図に示す間欠送り用部品の右側面図、第12
図は第10図に示す間欠送り用部品の進み角を示
す説明図であり、15は軸、16は溝部、17は
面取部、18は螺旋状溝である。
FIG. 10 is a front view of the intermittent feed part processed by the cutter 10 described above, FIG. 11 is a right side view of the intermittent feed part shown in FIG. 10, and FIG.
The figure is an explanatory view showing the advance angle of the intermittent feeding part shown in FIG. 10, in which 15 is a shaft, 16 is a groove, 17 is a chamfer, and 18 is a spiral groove.

軸15の外周部には、所定の範囲にわたり、直
線状の溝底部を有する溝部16と面取り部17と
が交互に多数形成されている。この溝部16は、
軸15の軸線Xと直交する垂線Yに対して平行、
すなわち進み角Θ1が零であり、周方向に等間隔
で8個、かつ軸方向に1/8ピツチずつずれている。
また、面取り部17も、周方向に等間隔で8個、
軸方向に1/8ピツチずつずれているが、この面取
り部17の溝深さは前記溝部16に比べて浅いの
で、第11図に示すように、各面取り部17が隣
接する溝部16の接続部分を面取りしたようにな
つている。そして、これら溝部16と面取り部1
7とで1つの螺旋状溝18が形成され、面取り部
17は、後述する移動部材の送り部として作用す
る。
A large number of groove portions 16 having linear groove bottoms and chamfered portions 17 are alternately formed on the outer peripheral portion of the shaft 15 over a predetermined range. This groove portion 16 is
Parallel to the perpendicular Y that is orthogonal to the axis X of the shaft 15,
In other words, the lead angle Θ 1 is zero, and there are eight pieces spaced at equal intervals in the circumferential direction, and shifted by 1/8 pitch in the axial direction.
Additionally, eight chamfered portions 17 are provided at equal intervals in the circumferential direction.
Although the chamfers 17 are shifted by 1/8 pitch in the axial direction, the groove depth of these chamfers 17 is shallower than that of the grooves 16, so as shown in FIG. It looks like the part has been chamfered. These groove portions 16 and chamfered portions 1
7 forms one spiral groove 18, and the chamfered portion 17 acts as a feeding portion for a moving member to be described later.

かかる構成の間欠送り用部品の螺旋状溝18に
は、前述した第1図に示す移動部材6の尖端部8
が摺動自在に嵌合される。そして、このような間
欠送り用部品を備えた送り機構にあつては、軸1
5の回転にともない、尖端部8がそれぞれ前記面
取り部17内を摺動するときには、面取り部17
の進み角Θ2に対応して移動部材6が所定方向に
移動し、尖端部8が溝部16内に来たときには、
前記ステツピングモータ1への通電が遮断されて
移動部材6の移動が停止する。このように、面取
り部17で送られ溝部16で移動停止することに
より移動部材6の間欠送りがなされるが、この移
動部材6の送り動作は面取り部17によつて円滑
である。前述のように、溝部16では進み角Θ1
が零であるため、間欠送り用部品の回転角が多少
ずれても、移動部材6の停止位置は適正である。
このようなことから、ステツピングモータの精度
もさほど高く要求されず、安価なステツピングモ
ータでも使用可能である。
The spiral groove 18 of the intermittent feed component having such a structure has the pointed end 8 of the moving member 6 shown in FIG.
are slidably fitted. In the case of a feeding mechanism equipped with such an intermittent feeding component, the shaft 1
5, when the tip portions 8 slide within the chamfered portions 17, the chamfered portions 17
When the movable member 6 moves in a predetermined direction corresponding to the advance angle Θ 2 and the tip 8 comes into the groove 16,
The power supply to the stepping motor 1 is cut off, and the movement of the moving member 6 is stopped. In this way, the movable member 6 is fed intermittently by being fed at the chamfered portion 17 and stopped at the groove portion 16, but the feeding operation of the movable member 6 is smooth due to the chamfered portion 17. As mentioned above, in the groove portion 16, the advance angle Θ 1
is zero, so even if the rotation angle of the intermittent feeding component deviates somewhat, the stopping position of the moving member 6 is appropriate.
For this reason, the accuracy of the stepping motor is not required to be very high, and even inexpensive stepping motors can be used.

なお、上記実施例では周方向に22.5度の等間隔
でずれた大小計16個の切刃13を、軸方向に順次
1/16ピツチずつずらしたものを12列設けたものに
ついて説明したが、本発明による切刃13の個数
や間隔はこれに限定されるものでなく、またカツ
ター10と被加工物14の直径比や切削時におけ
る回転比も上記実施例に限定されるものではな
い。
In addition, in the above embodiment, a case was described in which 12 rows of cutting blades 13 of different sizes, 16 in total, which were shifted at equal intervals of 22.5 degrees in the circumferential direction, were sequentially shifted by 1/16 pitch in the axial direction. The number and spacing of the cutting blades 13 according to the present invention are not limited to these, nor are the diameter ratio of the cutter 10 and the workpiece 14 or the rotation ratio during cutting to be limited to the above embodiments.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、大径の
切刃による被加工物の外周部に進み角が零で直線
状の底部を有する溝部を1/nピツチずつ順次ず
らして1周につきn個連設し、小径の切刃により
角溝部の接続部分を面取りして進み角が不均等な
間欠送り用螺旋状溝を、NC旋盤や特殊なねじ切
旋盤で加工したものに比べて、加工時間を速くか
つ簡単に加工することができ、しかもカツターの
各切刃の精度によつて螺旋状溝の精度が決まるの
で精度を高く形成できる。そして、かかる螺旋状
溝を有する部材を間欠送り機構等に用いると、高
精度の高価なステツピングモータを使用しなくて
も移動部材の停止位置を高めることができるばか
りでなく、移動部材を円滑に送ることができる。
As explained above, according to the present invention, grooves having a linear bottom with a lead angle of zero are sequentially shifted by 1/n pitch on the outer periphery of the workpiece by a large-diameter cutting blade, and are Compared to machining a spiral groove for intermittent feed with uneven advance angles by chamfering the connection part of the square groove with a small-diameter cutting edge using an NC lathe or special thread cutting lathe, the machining time is longer. can be processed quickly and easily, and since the precision of the spiral groove is determined by the precision of each cutting edge of the cutter, it can be formed with high precision. If a member having such a spiral groove is used in an intermittent feed mechanism, etc., it is possible not only to increase the stopping position of the moving member without using a high-precision and expensive stepping motor, but also to smoothly move the moving member. can be sent to.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は送り機構の概略図、第2図は従来の間
欠送り用部品の進み角を示す説明図、第3図乃至
第12図は本発明の実施例を示すもので、第3図
は本発明によるカツターの側面図、第4図は第3
図に示したカツターの正面図、第5図は切刃の拡
大断面図、第6図は切刃の展開状態を示す説明
図、第7図、第8図、第9図は本発明のカツター
による被加工物の切削状態を示す側面図、第10
図は第3図に示したカツターによつて加工された
間欠送り用部品の正面図、第11図は第10図に
示した間欠送り用部品の右側面図、第12図は第
10図に示した間欠送り用部品の進み角を示す説
明図である。 10……カツター、11……筒体、13……切
刃、14……被加工物、16……溝部、17……
面取り部、18……螺旋状溝。
Fig. 1 is a schematic diagram of the feeding mechanism, Fig. 2 is an explanatory diagram showing the advance angle of a conventional intermittent feeding component, Figs. 3 to 12 show embodiments of the present invention, and Fig. A side view of the cutter according to the invention, FIG.
FIG. 5 is an enlarged sectional view of the cutting blade, FIG. 6 is an explanatory diagram showing the expanded state of the cutting blade, and FIGS. 7, 8, and 9 show the cutter of the present invention. 10th side view showing the cutting state of the workpiece by
The figure is a front view of the intermittent feed part machined by the cutter shown in Fig. 3, Fig. 11 is a right side view of the intermittent feed part shown in Fig. 10, and Fig. 12 is the same as Fig. 10. It is an explanatory view showing the lead angle of the shown part for intermittent feeding. 10... Cutter, 11... Cylindrical body, 13... Cutting blade, 14... Workpiece, 16... Groove, 17...
Chamfered portion, 18... spiral groove.

Claims (1)

【特許請求の範囲】[Claims] 1 被加工物とこの被加工物を切削するカツター
とを同一方向に回転し、カツターを被加工物のラ
ジアル方向から当接させて間欠送り用の溝を切削
する螺旋状溝の切削用カツターにおいて、前記カ
ツターが、円筒形のカツター本体の外周部に周方
向に等間隔でn個、かつ軸方向に1/nピツチず
つ順次ずれ、回転方向と平行に円周方向に沿つて
形成された大径の切刃と、隣接する大径の切刃と
周方向にπ/nラジアン、軸方向に1/2nピツ
チずつ順次ずれ、回転方向と平行に円周方向に沿
つて形成された小径の切刃とを備えていることを
特徴とする螺旋状溝の切削用カツター。
1. In a spiral groove cutting cutter that rotates a workpiece and a cutter that cuts the workpiece in the same direction, and brings the cutter into contact with the workpiece from the radial direction to cut an intermittent feed groove. , the cutters are formed on the outer periphery of the cylindrical cutter main body in n pieces at equal intervals in the circumferential direction and sequentially shifted by 1/n pitch in the axial direction, parallel to the rotation direction and along the circumferential direction. A small-diameter cutting edge is formed along the circumferential direction parallel to the direction of rotation, and is sequentially offset from the adjacent large-diameter cutting edge by π/n radians in the circumferential direction and 1/2n pitch in the axial direction. A spiral groove cutting cutter characterized by having a blade.
JP19091383A 1983-10-14 1983-10-14 Cutter for spiral grooving Granted JPS6085824A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19091383A JPS6085824A (en) 1983-10-14 1983-10-14 Cutter for spiral grooving

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19091383A JPS6085824A (en) 1983-10-14 1983-10-14 Cutter for spiral grooving

Publications (2)

Publication Number Publication Date
JPS6085824A JPS6085824A (en) 1985-05-15
JPS6315091B2 true JPS6315091B2 (en) 1988-04-02

Family

ID=16265792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19091383A Granted JPS6085824A (en) 1983-10-14 1983-10-14 Cutter for spiral grooving

Country Status (1)

Country Link
JP (1) JPS6085824A (en)

Also Published As

Publication number Publication date
JPS6085824A (en) 1985-05-15

Similar Documents

Publication Publication Date Title
US4278374A (en) Apparatus for screw-threading
KR0180954B1 (en) Rotational machining method
CN1134319C (en) Method of machining gears during indexing
US4726720A (en) Method of milling teeth surfaces from the free end of a workpiece
US4779318A (en) Multiple spindle machine having independently variable speed and feed rates
US9782842B2 (en) Method of manufacturing an elbow, cutting tool, and elbow
US5373631A (en) Method for machining a radially symmetrical workpiece surface and a tool for performing the method
JPH03117516A (en) Threading device
US20230158591A1 (en) Method for machining a tooth flank region of a workpiece tooth arrangement, chamfering tool, control program having control instructions for carrying out the method, and gear-cutting machine
JPS60161028A (en) Method and device for forming screw thread
JPS6315091B2 (en)
JPH0343488Y2 (en)
JPS6315092B2 (en)
US20020067966A1 (en) Method of forming milled tooth of variable tooth worm
JPS6312724B2 (en)
JPH0871852A (en) Helical involute cylindrical gear like member processing method
JP3331759B2 (en) Cutting method
JP2019177457A (en) Tool for processing recess and method for processing recess on sliding surface
US11998973B2 (en) Method for manufacturing gear
CN113385706B (en) Method for machining regular polygon inner hole
JP7430824B2 (en) Gear skiving method
JPS61188014A (en) Machining method of high lead multi-strip spiral groove
US20230294160A1 (en) Method for manufacturing gear
US2476211A (en) Roll grooving apparatus
US1998665A (en) Cutter