JPS6085824A - Cutter for spiral grooving - Google Patents

Cutter for spiral grooving

Info

Publication number
JPS6085824A
JPS6085824A JP19091383A JP19091383A JPS6085824A JP S6085824 A JPS6085824 A JP S6085824A JP 19091383 A JP19091383 A JP 19091383A JP 19091383 A JP19091383 A JP 19091383A JP S6085824 A JPS6085824 A JP S6085824A
Authority
JP
Japan
Prior art keywords
cutter
cutting
groove
spiral groove
workpiece
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19091383A
Other languages
Japanese (ja)
Other versions
JPS6315091B2 (en
Inventor
Takamichi Fukuya
福家 隆通
Masao Okita
正夫 大北
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd filed Critical Alps Electric Co Ltd
Priority to JP19091383A priority Critical patent/JPS6085824A/en
Publication of JPS6085824A publication Critical patent/JPS6085824A/en
Publication of JPS6315091B2 publication Critical patent/JPS6315091B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C5/00Milling-cutters
    • B23C5/003Milling-cutters with vibration suppressing means

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Milling Processes (AREA)
  • Drilling Tools (AREA)

Abstract

PURPOSE:To make a specially formed spiral groove cuttable in a simple and accurate manner, by installing a lot of both large and small diametral cutting edges on a cutter's peripheral part alternately at regular intervals in the circumferential direction, and dislocating them in order by each 1/n pitch in the axial direction. CONSTITUTION:A cutter 10 for cutting, for example, a spiral groove to be installed on a peripheral part of intermittent feed parts is constituted of a cylindrical body 11 consisting of carbon steel or the like and a lot of cutting edges 13 consisting of cemented carbide metals, etc., by way of example. In addition, each of these cutting edges 13 is one installing (n) pieces in the circumferential direction in many rows continuously, while in each cutting edge 13, large and small diametral ones are alternately continued in line, and adjacent cutting edges 13 are dislocated in order by each 2pi/n radian in the circumferential direction, besides by each 1/n pitch in the axial direction of the cylinder body 11. According to this cutter, such a specially formed spiral groove as being unequal in a lead angle can be machined in a simple and highly accurate manner.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、例えば間欠送り用部品の外周部に設けられる
螺旋状の溝を切削加工するのに好適なカッターに関する
っ 〔発明の背景〕 従来より、軸の外周部に螺旋状溝を設けたねじ部材を用
い、このねじ部材を所定角度回転することにより螺旋状
溝に係合した移動部材を所定距離だゆ往復移動させる間
欠送り機構が知られている。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a cutter suitable for cutting, for example, a spiral groove provided on the outer periphery of an intermittent feed component. An intermittent feed mechanism is known in which a screw member having a spiral groove provided on the outer periphery of the shaft is used, and by rotating this screw member by a predetermined angle, a movable member engaged with the spiral groove is reciprocated by a predetermined distance. ing.

第1図はかかる間欠送り機構の概略構成図であって、1
はステッピングモータ、2は軸受、3は回転連結部材、
4はねじ部材、5はガイドバー、6は移動部材、7は板
ばね、8は尖端部、9は螺旋状溝である。
FIG. 1 is a schematic configuration diagram of such an intermittent feeding mechanism, with 1
is a stepping motor, 2 is a bearing, 3 is a rotating connection member,
4 is a screw member, 5 is a guide bar, 6 is a moving member, 7 is a leaf spring, 8 is a tip, and 9 is a spiral groove.

間欠送り用部品であるねじ部材4の外周には螺旋状溝9
が形成され、このねじ部材4の一端は回転連結部材3を
介してステッピングモータ1に連結されるとともに、他
端は軸受2に支承されている。ガイドバー5はねじ部材
4と平行に設置され、このガイドバー5には移動部材6
が摺動自在に嵌入され、またこの移動部材6の下端に板
ばね7を介して設ゆられた尖端部8は、前記ねじ部材4
の螺旋状溝9に摺動自在に嵌入されている。
A spiral groove 9 is formed on the outer periphery of the screw member 4, which is an intermittent feeding component.
One end of this screw member 4 is connected to the stepping motor 1 via the rotational connection member 3, and the other end is supported by the bearing 2. A guide bar 5 is installed parallel to the screw member 4, and a moving member 6 is attached to the guide bar 5.
is slidably fitted into the screw member 4 , and a pointed end 8 is provided at the lower end of the moving member 6 via a leaf spring 7 .
It is slidably fitted into the spiral groove 9 of.

この送り機構で移動部材6を所定のピッチで間欠送りし
たい場合、ステッピングモータ1への通電す断続的に行
ってねじ部材4な間欠的に正送回転させ、それにより移
動部材6をガイドバー5に沿って所定の範囲内で往復移
動させることができる。
When it is desired to intermittently feed the movable member 6 at a predetermined pitch using this feeding mechanism, the stepping motor 1 is intermittently energized to intermittently rotate the screw member 4 forward, thereby moving the movable member 6 to the guide bar 5. can be moved back and forth within a predetermined range.

ところで、この樵の送り機構に用いられている従来の間
欠送り用部品であるねじ部材4は、第2図にその展開状
態を示す如(、螺旋状溝9の進み角θが全周にわたって
同じになるよう設計されているため、ねじ切旋盤等を使
用することにより、比較的簡単に、かつ高い精度で加工
することができる。しかしながら、例えばねじ部材40
回転角の00.45°、90°、135°、 180’
、 225°、270°、315゜の8個所で移動部材
6の移動を間欠的に停止したい場合に、ねじ部材4の回
転角のばらつきあるいは回転制御ずれにより、それに比
例して移動部材60位置もずれてしまい、適正位1貧で
の停止ができないことがあり信頼性に問題があった。ま
た前述のようにステッピングモータ1の回転制御ずれに
よる送り量誤差が発生しがちであるから、これを少なく
するためには精度の高い、すなわち高価なステッピング
モータを使用するか、あるいは螺旋状#−9゛の進み角
θに工夫を施した特殊なねじ部局を使用することが考え
られるが、高価なステッピングモータを使用することは
コスト上マイナスであり、また特殊形状の螺旋状溝を加
工するにはNC旋盤や特殊なねじ切旋盤等が必要になり
、これまた高価な間欠送り用部品になってしまうという
問題があった。
By the way, the screw member 4, which is a conventional intermittent feed component used in the feed mechanism of this woodcutter, is as shown in its unfolded state in FIG. Therefore, by using a thread cutting lathe etc., it can be processed relatively easily and with high precision.
Rotation angle of 00.45°, 90°, 135°, 180'
, 225°, 270°, and 315°, if the movement of the moving member 6 is to be stopped intermittently at 8 points, the position of the moving member 60 may change proportionally due to variations in the rotation angle of the screw member 4 or discrepancies in rotation control. There was a problem with reliability because the system would shift and it would not be possible to stop at the proper position. Furthermore, as mentioned above, feed amount errors tend to occur due to deviations in the rotation control of the stepping motor 1, so in order to reduce this error, it is necessary to use a highly accurate, that is, expensive, stepping motor, or to use a spiral #- It is conceivable to use a special screw part with a 9° advance angle θ, but using an expensive stepping motor would be a cost disadvantage, and it would be difficult to machine a specially shaped spiral groove. This requires an NC lathe, a special thread cutting lathe, etc., and there is also the problem that it becomes an expensive part for intermittent feeding.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、上述した従来技術の欠点を除き、進み
角が不均等な特殊形状の螺旋状溝を簡単かつ高精度に加
工できる切削用カッターを提供するにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a cutting cutter that can easily and accurately process a special-shaped spiral groove with uneven advance angles, while eliminating the drawbacks of the prior art described above.

〔発明の概要〕[Summary of the invention]

この目的を達成するために、本発明は、円筒状のカッタ
ーの外周部K、大径の切刃と小径の切刃を周方向に交互
に等間隔でn個、かつ軸方向にiピッチずつ順次ずらし
て多数設けた点を特徴とし、このカッターに被加工物と
同一方向の回転切削運動を与えて、被加工物の外周部に
進み角が不均等な螺旋状溝を形成するものである。
In order to achieve this object, the present invention provides an outer circumference K of a cylindrical cutter with n large-diameter cutting blades and small-diameter cutting blades arranged alternately at equal intervals in the circumferential direction and at i pitches in the axial direction. The cutter is characterized by a large number of grooves arranged in a staggered manner, and the cutter is given a rotary cutting motion in the same direction as the workpiece to form a spiral groove with uneven advance angles on the outer periphery of the workpiece. .

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例を第3図乃至第12L9に基づい
て詳細に説明する。
Hereinafter, embodiments of the present invention will be described in detail based on FIGS. 3 to 12L9.

第3図は本発明による切削用カッターの一実施例を示す
側面図、第4図は該カッターの正面図である。カッター
10は、例えば炭素鋼等からなる筒体11と超硬金属等
からなる多数の切刃13とかもなり、この切刃13は前
記筒体エーの外周部の所定位置に溶着等の手段により正
確に固着されている。前記筒体11の中心位置にはキー
1ift 12a付の取付孔12が設けてあり、また前
記切刃13の形状は第5図に示すように断面山形であり
、その頂部は僅かに直線状となって(・る。
FIG. 3 is a side view showing an embodiment of a cutting cutter according to the present invention, and FIG. 4 is a front view of the cutter. The cutter 10 also includes a cylindrical body 11 made of carbon steel or the like, and a number of cutting blades 13 made of cemented carbide or the like. Fixed correctly. A mounting hole 12 with a key 1ift 12a is provided at the center of the cylindrical body 11, and the shape of the cutting edge 13 is chevron-shaped in cross section as shown in FIG. Become(・ru)

iiJ記各切刃13は、周方向にn個あるものを多数列
連続して設けたもので、各切刃13の外径は、大径のも
のと小径のものとが交互に連続しており、隣り合う各切
刃13は、時本110周方向にQw−ラジアンずつ、か
つ、溝体11の軸方向に↓ピッチずつずれている。、第
6図は、前記カッター10を軸方向に展開した状態を示
す説明図であるが、この図から明らかなようK、本実施
例では、局方向に22.5度(’;l−!!−ラジアン
)の等間−隔でずれた大6 小計16個の切刃13を、軸方向に順次1官ピツチずつ
ずらし、この16個の切刃13を1列としてa −1の
12列設けである。従って、1列目の第1番目の大径の
切刃alと同第2番目の小径の切1 ・ 刃a1とは、周方向に225度、軸方向に丁τヒツチず
れ、同様に1列目の第16番目の小径の切刃allと2
列目の第1番目の大径の切刃b1も、周方向に1 。
iiJ Each of the cutting blades 13 is provided in a number of continuous rows in the circumferential direction, and the outer diameter of each cutting blade 13 is such that large diameter ones and small diameter ones are arranged in succession alternately. The adjacent cutting edges 13 are shifted by Qw-radians in the circumferential direction of the main shaft 110 and by ↓ pitch in the axial direction of the groove body 11. , FIG. 6 is an explanatory view showing the state in which the cutter 10 is unfolded in the axial direction. As is clear from this figure, K is 22.5 degrees (';l-!) in the central direction in this embodiment. A total of 16 large and small cutting blades 13 shifted at equal intervals of !-radians) are sequentially shifted by one pitch in the axial direction, and these 16 cutting blades 13 are set as one row to form 12 rows of a-1. It is a provision. Therefore, the first large-diameter cutting blade al in the first row and the second small-diameter cutting blade a1 are offset by 225 degrees in the circumferential direction and by just τ hits in the axial direction, and similarly in one row. 16th small diameter cutting blade all and 2
The first large-diameter cutting blade b1 in the row also has a diameter of 1 in the circumferential direction.

22.5度、軸方向に丁τヒツチずれ、122列目第1
6番目の小径の切刃t16 ’で、以下同様にずれてい
る。
22.5 degrees, just τ hit in the axial direction, 122nd row, 1st
The sixth small-diameter cutting edge t16' is deviated in the same manner.

第7図乃至第9図は、上述したカッター10を用〜・た
切削状態の側面図であり、14は被加工物を示す。被加
工*14は、uS記カッター10のjの直径を有する丸
棒で、この被加工物14とカッター10は、1:1の回
転比で共に反時計回り方向回転される。
7 to 9 are side views of cutting states using the cutter 10 described above, and 14 indicates a workpiece. The workpiece *14 is a round bar having a diameter of j of the cutter 10, and the workpiece 14 and the cutter 10 are both rotated counterclockwise at a rotation ratio of 1:1.

いま、第8図に示すように、カッター10と被加工物1
4を1:1の等しい回転比で矢印方向へ回転し、カッp
−x oを被加工物14の中心方向へ所定量適ると、切
刃13の刃先と被加工物14の接点軌跡は近似的に直線
になり、被加工物14は大径の切刃a1によって斜線で
示す部分が切削される。これにより、被加工物14の外
周部には、切刃13と断面形状が同じV字状の溝部A1
が形成されるが、この溝部A1は被加工物14の軸線と
直交する垂線に対して平行である。カッター10と被加
工物14は、直径がJAするのでそれぞれの周部は異な
る周速度で共に矢印方向に回転しており、そのため次に
小径の切刃a1が被加工物14と接点軌跡を開始し、被
加工物14には、前記の切刃a。
Now, as shown in FIG. 8, the cutter 10 and the workpiece 1
4 in the direction of the arrow at an equal rotation ratio of 1:1, and
-xo is applied by a predetermined amount toward the center of the workpiece 14, the contact locus between the cutting edge of the cutting blade 13 and the workpiece 14 becomes approximately a straight line, and the workpiece 14 has a large diameter cutting blade a1. The shaded area is cut by. As a result, a V-shaped groove A1 having the same cross-sectional shape as the cutting blade 13 is formed on the outer periphery of the workpiece 14.
is formed, and this groove A1 is parallel to a perpendicular line perpendicular to the axis of the workpiece 14. Since the diameter of the cutter 10 and the workpiece 14 is JA, the circumferences of each rotate in the direction of the arrow at different circumferential speeds.Therefore, the small-diameter cutting blade a1 next starts a contact trajectory with the workpiece 14. The workpiece 14 has the cutting edge a described above.

によって形成された溝部A、から軸方向に16ピツチず
れた位置に新たなV字状の溝部A2が形成される。さら
に、カッター10と被加工物14が回転すると、第9図
に示すように、今度は大径の切刃a、が被加工物14と
接点軌跡を開始し、被加工物14には前述した切刃a1
と同じ深さのV字状の溝部A、が形成される。従って、
この切刃a、による溝部A、は、切刃a2による溝部A
、と軸方向に丁τヒツチずれ、切刃a1による溝部A1
と軸方向に売ピッチずれている。、、マた、小径の切刃
a2による溝部A2の深さは、大径の切刃a1及び切刃
a3による溝部A1゜A、の深さに比べて浅いので、図
示の如く、切刃a1と切刃a3とによる両溝部A1. 
A、の接続部分を切刃a2による溝部A、が面取りした
状態になる。以下、カッター10を1回転することによ
り、被加工物14の外周部には、大径の切刃による比較
的長目の直線状底部を有する溝部と小径の切刃による面
取り用の溝部とが、周方向に交互に合計16個、かつ、
軸方向に順次−ピッチずつずれた状態で、6 カッJ−10の刃列(本実施例ではa−tの121列)
と同じ長さのねじ部をもって形成される。なお、1度の
接点軌跡で所望の深さの溝部を切削するのは困難である
から、この場合はカッター10の送り量を少なくして各
切刃1301回の切削量を少な(し、被加工物14とカ
ッター10を連続回転すれば良い。
A new V-shaped groove A2 is formed at a position shifted 16 pitches in the axial direction from the groove A2 formed by the groove A2. Further, when the cutter 10 and the workpiece 14 rotate, as shown in FIG. Cutting blade a1
A V-shaped groove A having the same depth is formed. Therefore,
The groove A formed by this cutting edge a is the groove A formed by the cutting edge a2.
, there is a deviation in the axial direction, and the groove A1 due to the cutting edge a1
There is a selling pitch deviation in the axial direction. However, the depth of the groove A2 formed by the small-diameter cutting blade a2 is shallower than the depth of the groove A1°A formed by the large-diameter cutting blades a1 and cutting blades a3. and the cutting edge a3.
The connecting portion of A is chamfered by the groove A formed by the cutting edge a2. Thereafter, by rotating the cutter 10 once, a groove with a relatively long linear bottom formed by a large-diameter cutting blade and a chamfering groove formed by a small-diameter cutting blade are formed on the outer circumference of the workpiece 14. , a total of 16 pieces alternately in the circumferential direction, and
6 cut J-10 blade rows (121 rows of a-t in this example) in a state that is sequentially shifted by a pitch in the axial direction.
It is formed with a threaded portion of the same length. Note that it is difficult to cut a groove of the desired depth with one contact trajectory, so in this case, the feed amount of the cutter 10 is reduced to reduce the cutting amount of each cutting edge 1301 times (and The workpiece 14 and cutter 10 may be rotated continuously.

第1O図は、上述したカッター10によって加工された
間欠送り用部品の正面図、第11図は第10図に示す間
欠送り用部品の右側面図、第12図は第10図に示す間
欠送り用部品の進み角な示す説明図であり、15は軸、
16は溝部、17は面取り部、18は螺旋状溝である。
Figure 1O is a front view of the part for intermittent feed processed by the cutter 10 described above, Figure 11 is a right side view of the part for intermittent feed shown in Figure 10, and Figure 12 is the intermittent feed part shown in Figure 10. It is an explanatory diagram showing the lead angle of the parts, 15 is a shaft,
16 is a groove portion, 17 is a chamfered portion, and 18 is a spiral groove.

軸15の外周部には、所定の範囲にわたり、直線状の溝
へ部を有する溝部16と面取り部17とが交互に多数形
成されている。この溝部16は、軸15の軸線Xと直交
する垂線Yic対して平行、すなわち進み角01が零で
あり1、周方向に等間隔で8個、かつ軸方向に1ピツチ
ずつずれている。また、面取り部17も、周方向に等間
隔で8個、軸1 。
A large number of groove portions 16 having linear groove portions and chamfered portions 17 are alternately formed on the outer peripheral portion of the shaft 15 over a predetermined range. The groove portions 16 are parallel to the perpendicular line Yic orthogonal to the axis X of the shaft 15, that is, the advance angle 01 is zero, and eight groove portions are formed at equal intervals in the circumferential direction and are shifted by one pitch in the axial direction. Further, eight chamfered portions 17 are provided at equal intervals in the circumferential direction, and are arranged on the shaft 1 .

方向にiピッチずつずれているが、この面取り部17の
溝深さは前記溝部16に比べて浅いので、第11図に示
すように、各面取り部17が隣接する溝部16の接続部
分を面取りしたようになって(・る。そして、これら溝
hll16と面取り部17とで1つの螺旋状@18が形
成され、面取り部17は、後述する移動部材の送り部と
して作用する。
However, since the groove depth of this chamfer 17 is shallower than that of the groove 16, as shown in FIG. The groove hll16 and the chamfered portion 17 form one spiral @18, and the chamfered portion 17 acts as a feeding portion for a moving member to be described later.

かかる構成の間欠送り用部品の螺旋状溝18には、前述
した第1図に示す移動部材6の尖端部8が摺動自在に嵌
合される。そして、このような間欠送り用部品を備えた
送り機構にあっては、軸15の回転にともない、尖端部
8がそれぞれ前記面取り部17内を摺動するときには、
面取り部17の進み角θ2に対応して移動部材6が所定
方向に移動し、尖端部8が溝部16内に来たときには、
前記ステッピングモータ1への通電が遮断されて移動部
材6の移動が停止する。このように、面取り部17で送
られ溝部16で移動停止することにより移動部材6の間
欠送りがなされるが、この移動部材6の送り1曲作は面
取り部17によって円滑である。前述のように、溝部1
6では進み角θ1が零であるため、間欠送り用部品の回
転角が多少ずれても、#動部材6の停止位置は適正であ
る。このよつtxことから、ステッピングモータの精度
もさほど高く要求されず、安価なステッピングモータで
も使用可能である。
The pointed end 8 of the moving member 6 shown in FIG. 1 described above is slidably fitted into the spiral groove 18 of the intermittent feed component having such a structure. In a feeding mechanism equipped with such an intermittent feeding component, when the pointed end portions 8 slide within the chamfered portions 17 as the shaft 15 rotates,
When the movable member 6 moves in a predetermined direction in accordance with the advance angle θ2 of the chamfered portion 17 and the tip portion 8 comes into the groove portion 16,
The power supply to the stepping motor 1 is cut off, and the movement of the moving member 6 is stopped. In this manner, the movable member 6 is fed intermittently by being fed at the chamfered portion 17 and stopped at the groove portion 16, but each movement of the movable member 6 is smoothed by the chamfered portion 17. As mentioned above, groove 1
6, the advance angle θ1 is zero, so even if the rotation angle of the intermittent feeding component deviates somewhat, the stopping position of the # moving member 6 is appropriate. Because of this tx, the accuracy of the stepping motor is not required to be very high, and even inexpensive stepping motors can be used.

なお、上記実施例では周方向に22.5度の等間隔でず
れた大小計16IIIIAの切刃13を、軸方向に順次
」τピッチずつずらしたものを12列設けたも1り のについて説明したが、本発明による切刃13の個数や
間隔はこれに限定されるものではなく、またカッター1
0と被加工物14の直径比や切削時における回転比も上
記実施例に限定されるものではない。
In addition, in the above embodiment, 12 rows of cutting blades 13 having a total size of 16IIIA, which are shifted at equal intervals of 22.5 degrees in the circumferential direction, are sequentially shifted in the axial direction by "τ pitch" will be explained. However, the number and spacing of the cutting blades 13 according to the present invention are not limited to this, and the cutter 1
0 and the diameter ratio of the workpiece 14 and the rotation ratio during cutting are not limited to the above embodiments.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発゛明によれば、進み角が不均
等な螺旋状酵を、NC旋盤や特殊なねじ切旋盤で加工し
たものに比べて、加工時間を運くかつ簡単に加工するこ
とができ、しかもカッターの各切刃のIR度によって螺
旋状溝の精度が決まるので積属の商い螺旋状149を提
供できる。そして、かかる螺旋状婢を有する部材を間欠
送り磯44等に用いると、高精度の高1曲なステッピン
グモータを使用しなくても移動部材の停止位置を高める
ことができるばかりでなく、移動部材を円滑に送ること
ができる。
As explained above, according to the present invention, a spiral fermentation with uneven advance angles can be processed more easily and in a shorter processing time than when processed using an NC lathe or a special thread cutting lathe. Moreover, since the accuracy of the spiral groove is determined by the IR degree of each cutting edge of the cutter, it is possible to provide a spiral groove 149 in the stack. If a member having such a spiral shape is used for the intermittent feeding rock 44, etc., it is possible not only to increase the stopping position of the moving member without using a high-precision, high-turn stepping motor, but also to increase the stopping position of the moving member. can be sent smoothly.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は送り機構の概略図、第2図は従来の間欠送り用
部品の進み角を示す説明図、第3図乃至第12図は本発
明の実施例を示すもので、第3図は本発明によるカッタ
ーの側面図、第4図は第3図に示したカッターの正面図
、第5図は切刃の拡大断面図、第6図は切刃の展開状態
を示す説明図、第7図、第8図、第9図は本発明のカッ
ターによる被加工物の切削状態を示す側面図、第10図
は第3図に示したカッターによって加工された間欠送り
用部品の正面図、第11図は第10図に示した間欠送り
用部品の右側面図、第12図は第10図に示した間欠送
り用部品の進み角を示す説明図である。 10・・・・・・カッター、11・・曲面体、13・・
・・・切刃、14・・・・・・被加工物、16・・・・
・・溝部、17・・・・・・面取り部、18・・・・・
・螺旋状溝。 第1図 ρ 第2図 角度 第6図 第7図 13 第8図 第10図 8
Fig. 1 is a schematic diagram of the feeding mechanism, Fig. 2 is an explanatory diagram showing the advance angle of a conventional intermittent feeding component, Figs. 3 to 12 show embodiments of the present invention, and Fig. 4 is a front view of the cutter shown in FIG. 3; FIG. 5 is an enlarged sectional view of the cutting blade; FIG. 6 is an explanatory diagram showing the expanded state of the cutting blade; 8 and 9 are side views showing the cutting state of a workpiece by the cutter of the present invention, and FIG. 10 is a front view of the intermittent feed part machined by the cutter shown in FIG. 11 is a right side view of the intermittent feed component shown in FIG. 10, and FIG. 12 is an explanatory diagram showing the advance angle of the intermittent feed component shown in FIG. 10. 10... Cutter, 11... Curved body, 13...
... Cutting blade, 14 ... Workpiece, 16 ...
... Groove section, 17... Chamfer section, 18...
・Spiral groove. Figure 1 ρ Figure 2 Angle Figure 6 Figure 7 Figure 13 Figure 8 Figure 10 Figure 8

Claims (1)

【特許請求の範囲】[Claims] 被加工物とこの被加工物を切削するカッターとを同一方
向に回転することにより、被加工物の外周部に螺旋状の
溝を形成するものにおいて、円筒状の前記カッターの外
周部に、大径の切刃と小径の切刃を周方向に交互に等間
隔でn個、かつ軸方向に1ピツチずつ順次ずらして多数
設けたことを特徴とする螺旋状溝の切削用カッター。
In a device that forms a spiral groove on the outer circumference of a workpiece by rotating the workpiece and a cutter that cuts the workpiece in the same direction, a large groove is formed on the outer circumference of the cylindrical cutter. A cutter for cutting a spiral groove, characterized in that a large number of large-diameter cutting blades and small-diameter cutting blades are provided alternately at equal intervals in the circumferential direction, and are sequentially shifted by 1 pitch in the axial direction.
JP19091383A 1983-10-14 1983-10-14 Cutter for spiral grooving Granted JPS6085824A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19091383A JPS6085824A (en) 1983-10-14 1983-10-14 Cutter for spiral grooving

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19091383A JPS6085824A (en) 1983-10-14 1983-10-14 Cutter for spiral grooving

Publications (2)

Publication Number Publication Date
JPS6085824A true JPS6085824A (en) 1985-05-15
JPS6315091B2 JPS6315091B2 (en) 1988-04-02

Family

ID=16265792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19091383A Granted JPS6085824A (en) 1983-10-14 1983-10-14 Cutter for spiral grooving

Country Status (1)

Country Link
JP (1) JPS6085824A (en)

Also Published As

Publication number Publication date
JPS6315091B2 (en) 1988-04-02

Similar Documents

Publication Publication Date Title
EP0145167B1 (en) Improvements in or relating to thread cutting
KR101709656B1 (en) Elbow formed by cutting and method for manufacturing same
US4726720A (en) Method of milling teeth surfaces from the free end of a workpiece
US8113750B2 (en) Face hob hypoid gear tooth cutting by common blades
US20200391313A1 (en) Chamfering tool, chamfering system, gear-cutting machine and method for chamfering toothings
CN110262397B (en) Method for modeling spiral trochoid motion trajectory and instantaneous cutting force in turn-milling machining space
US3212405A (en) Method for cutting internal spherical surfaces
JP5860113B2 (en) Elbow manufacturing method
JPH03117516A (en) Threading device
US4174914A (en) Spherical hob for generating gears
US9919371B2 (en) Gear machining apparatus
JPS6085824A (en) Cutter for spiral grooving
JPH0343488Y2 (en)
US4911043A (en) Apparatus and method for milling a trochoidal rotor
JPS6315092B2 (en)
JPH0763893B2 (en) Cutting method of screw shaft for ball screw
JP6531353B2 (en) Gear processing device
JPS6062413A (en) Method of manufacturing element for intermittent feed
JP2012213835A (en) Cutting tool, processing device and processing method using cutting tool
US11998973B2 (en) Method for manufacturing gear
JP3898388B2 (en) Worm rack machining method and rotating tool for worm rack machining
JPS6113216Y2 (en)
US2476211A (en) Roll grooving apparatus
JPS63152762A (en) Intermittent feeding member and manufacture thereof
CN117102559A (en) End face groove machining device and machining method