JPS6315023B2 - - Google Patents
Info
- Publication number
- JPS6315023B2 JPS6315023B2 JP54113429A JP11342979A JPS6315023B2 JP S6315023 B2 JPS6315023 B2 JP S6315023B2 JP 54113429 A JP54113429 A JP 54113429A JP 11342979 A JP11342979 A JP 11342979A JP S6315023 B2 JPS6315023 B2 JP S6315023B2
- Authority
- JP
- Japan
- Prior art keywords
- catalyst
- water
- washing
- denitrification
- shaped
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000003054 catalyst Substances 0.000 claims description 51
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 50
- 238000005406 washing Methods 0.000 claims description 47
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 26
- 238000000034 method Methods 0.000 claims description 12
- 229910021529 ammonia Inorganic materials 0.000 claims description 11
- 239000003513 alkali Substances 0.000 claims description 9
- 239000003638 chemical reducing agent Substances 0.000 claims description 8
- 238000010531 catalytic reduction reaction Methods 0.000 claims description 5
- 230000001172 regenerating effect Effects 0.000 claims description 4
- 238000004065 wastewater treatment Methods 0.000 description 12
- 239000007789 gas Substances 0.000 description 11
- 239000007788 liquid Substances 0.000 description 11
- 238000006243 chemical reaction Methods 0.000 description 7
- 230000000694 effects Effects 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- 230000003197 catalytic effect Effects 0.000 description 5
- 239000012717 electrostatic precipitator Substances 0.000 description 5
- 238000011069 regeneration method Methods 0.000 description 5
- 230000007774 longterm Effects 0.000 description 4
- 230000008929 regeneration Effects 0.000 description 4
- 238000004069 wastewater sedimentation Methods 0.000 description 4
- 239000000428 dust Substances 0.000 description 3
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 3
- 239000008188 pellet Substances 0.000 description 3
- 238000004062 sedimentation Methods 0.000 description 3
- 238000005507 spraying Methods 0.000 description 3
- 239000002351 wastewater Substances 0.000 description 3
- 241000264877 Hippospongia communis Species 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000006477 desulfuration reaction Methods 0.000 description 2
- 230000023556 desulfurization Effects 0.000 description 2
- 239000000706 filtrate Substances 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 230000000873 masking effect Effects 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 229910000069 nitrogen hydride Inorganic materials 0.000 description 2
- 235000019645 odor Nutrition 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 238000004064 recycling Methods 0.000 description 2
- 239000004071 soot Substances 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000003546 flue gas Substances 0.000 description 1
- 239000013505 freshwater Substances 0.000 description 1
- 229910052602 gypsum Inorganic materials 0.000 description 1
- 239000010440 gypsum Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 231100000614 poison Toxicity 0.000 description 1
- 230000007096 poisonous effect Effects 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000003134 recirculating effect Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- MCPTUMJSKDUTAQ-UHFFFAOYSA-N vanadium;hydrate Chemical compound O.[V] MCPTUMJSKDUTAQ-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
Description
〔産業上の利用分野〕
本発明は、排ガス中の窒素酸化物(以下、
NOxと記す)を、ハニカム状、プレート状、パ
イプ状、ペレツト状などの触媒を充填した固定床
触媒方式により、還元剤としてアンモニア(以
下、NH3と記す)を用いた接触還元法で除去す
るにあたり、長期運転により劣化した触媒を充填
したままの状態で効率よくかつ経済的に再生し、
触媒の長期使用を可能にする脱硝触媒の再生処理
方法に関するものである。
〔従来の技術〕
アンモニア接触還元方式の乾式排煙脱硝装置の
触媒としては、チタニア、アルミナ、シリカなど
の担体に活性金属を担持せしめ、ハニカム状、プ
レート状、パイプ状、ペレツト状などに成型した
高価な触媒が用いられるため、建設費における触
媒コストの占める割合はきわめて大きい。また触
媒の活性低下に起因する触媒交換の頻度如何によ
つては、運転費の大幅な増大ならびに運転の不安
定化をきたし、また劣化触媒の廃却処理などの不
都合がある。
これらの点に対処するためには、触媒の長期安
定利用化を図ることが必要不可欠であり、そのた
めには脱硝プロセスに触媒再生技術を組み込んだ
脱硝システムの確立が望まれる。
従来から、触媒の長期使用に伴い劣化した触媒
の活性回復を目的とした再生方法として、水洗処
理が有効であることは既に知られている。とくに
NH4HSO4、(NH4)2SO4などの塩類による触媒
のマスキング、ばいじんまたはばいじん成分との
N、S化合物などによる触媒のマスキングに起因
した触媒の劣化には、この水洗方法が有効であ
る。
〔発明が解決しようとする問題点〕
ところが従来の水洗処理方法としては、触媒を
一旦脱硝反応塔から取り出して水洗処理し、乾燥
した後、再充填する方法であるため、ペレツト状
触媒を用いた固定床反応器、移動床反応器におい
ては問題とならないが、ハニカム状、プレート
状、パイプ状などの触媒を用いた固定床反応器に
おいては、触媒の取り出し、充填が非常に厄介で
あり、多大な労力と時間を必要とする。したがつ
て触媒を充填したままの状態での水洗が可能にな
れば、得るところが非常に大きい。ただこの場
合、多量の水洗水の使用および排水処理、活性回
復率の問題があり、採用し得ない原因となつてい
る。
そこで本発明者らは上記の諸点に注目して鋭意
研究を重ねた結果、触媒を充填状態のままで水洗
し、たとえば水をスプレーすることにより、一種
の濡れ壁状態にし、水洗処理することにより触媒
を再生することができ、また排水処理工程を設け
てろ過水を循環再使用することにより、水洗水の
使用量を極度に抑えることが可能であり、さらに
水洗処理排水は酸性であり、水洗処理排水にアル
カリを添加することによる酸性から塩基性への移
行に伴い、発生するNH3については、脱硝反応
の還元剤として使用できるため臭気の問題が起こ
らないなどの事実を知見した。
本発明は上記の知見に基づきなされたもので、
少ない水洗水の使用量で容易に触媒を再生するこ
とができ、しかもNH3を系外に出すことなく有
効に使用することができる脱硝触媒の再生処理方
法の提供を目的とするものである。
〔問題点を解決するための手段および作用〕
本発明の脱硝触媒の再生処理方法は、ハニカム
状、プレート状、パイプ状、ペレツト状などの触
媒を充填した固定床方式のアンモニア接触還元脱
硝装置において劣化した触媒を再生するにあた
り、触媒を充填したままの状態で触媒の水洗を行
い、ついで水洗処理液に水洗処理中または水洗終
了後にアルカリを添加して脱アンモニアを行わせ
た後、このアンモニアを脱硝装置入口の排ガス気
流中に吹き込んで還元剤として再使用し、一方、
アンモニアを除去した水洗処理液を触媒水洗用の
水として循環使用することを特徴としている。
以下、本発明の構成を図面に基づいて説明す
る。1はボイラなどの排ガス発生源(排ガス発生
設備)で、この排ガス発生源1の排ガスダクトに
アンモニア接触還元方式のハニカム状、プレート
状、パイプ状、ペレツト状などの脱硝触媒を固定
床式に充填してなる触媒反応器2を有する脱硝装
置3、空気予熱器4、電気集じん機などの集じん
装置5、脱硫装置6、煙突7が直列に接続されて
いる。8は排ガス発生源に設けられた節炭器、1
0は脱硝装置3の上流側に接続されたNH3供給
管、11はNH3タンクである。このように構成
された装置において、脱硝装置の触媒反応器2の
上側に、水噴出管12を設け、脱硝装置3の下部
に水洗処理液管13を接続し、この水洗処理液管
13の先端に水洗水タンク14を設ける。この水
洗水タンク14には循環ポンプ15を備えた水洗
水循環パイプ16が接続され、この水洗水循環パ
イプ16の先端は前記水噴出管12に接続され
る。また水洗水タンク14には排水処理タンク1
7が接続され、この排水処理タンク17の上部に
はアルカリ添加管18、脱NH3管20が接続さ
れ、この脱NH3管20は前記NH3タンク11あ
るいはNH3供給管10に接続される。排水処理
タンク17の下部は排水沈殿ろ過器21に接続さ
れ、この排水沈殿ろ過器21のろ過水出口はろ過
水循環パイプ22を介して水洗水循環パイプ16
に接続されている。23は新水供給管である。
上記のように構成された装置において、触媒が
劣化して脱硝率が低下してくると、NH3供給管
10からのNH3の注入を停止するとともに触媒
反応器2への通ガスを停止する。ついで触媒反応
器2の上部から水噴出管12により触媒に直接水
をスプレーすることにより触媒を水洗し、毒成分
(SO4 2-NH4 +、ばいじんなど)を除去し、触媒を
再生する。水洗後の水洗処理液は水洗水タンク1
4に一旦貯留され、水洗処理液の一部は循環ポン
プ15を経て触媒の水洗に循環再使用され、水洗
処理液の残部は排水処理タンク17に送り込まれ
る。排水処理タンク17において、水洗処理液に
アルカリを添加してPH調整を行つて中和し、さら
に水洗処理液中に溶出した触媒成分(担持体およ
び担持金属)についてはアルカリの添加により水
和物を生成せしめ、排水沈殿ろ過器21での沈殿
ろ過により水洗処理液から分離する。ろ過水はろ
過水循環パイプ22を経て触媒の水洗水として再
使用する。水洗処理液へのアルカリの添加に際し
ては、NH3が発生し、このNH3を脱NH3管20
を介してNH3タンク11に捕集、導入した後、
脱硝反応の還元剤として再使用する。触媒の再生
が完了すると、通ガスおよびNH3注入を開始し
て定常運転に入る。ただし、水洗処理液から発生
したNH3をNH3タンク11に捕集することが困
難な場合については、水洗処理液を水洗処理が完
了するまで排水処理タンク17に貯えておき、再
生が完了し定常運転に入つた時点で水洗処理を行
い、発生したNH3を直接排ガス気流中に戻し、
還元剤として使用することも可能である。また排
水処理設備が過大になることを避けるために水洗
処理液を直接排ガス気流中に吹き込むことも可能
である。たとえば(1)吹き込む位置を脱硝装置入口
として、水洗処理液中に含まれるアンモニアを還
元剤として再利用する。(2)吹き込む位置を電気集
じん機入口として、水洗処理液中に含まれる
NH4 +、SO4 2-、ダストなどを電気集じん機で捕
集する。などの方法により排水処理タンク17、
排水沈殿ろ過器21などが不要となり、しかも脱
硝設備からの排出水をなくすことができる。
〔実施例〕
つぎに本発明の実施例について説明する。
実施例
V2O5−TiO2ペレツト触媒を、SO2:5000ppm、
NH3:500ppm、H2O:10%、CO2:10%、O2:
5%、N2:バランスからなる合成ガスにより、
反応温度約200℃の低温下で約30時間、強制的に
劣化させたサンプル40c.c.を円筒状反応管に充填
し、反応管上部から2の水を1時間再循環スプ
レーして水洗処理を行つた。その後触媒活性の回
復率を測定したところ、ほぼ初期値まで回復して
いた。結果は次表の如くであつた。さらに水洗に
より得られた排液に2規定のCa(OH)2を添加し
たところ、PH5近辺から沈殿が起こり、さらに
Ca(OH)2を添加したところPH9近辺でNH3が発
生した。またここで得られた沈殿物をろ過、乾燥
し、X線回折を行つたところ、大部分石こう、一
部バナジウム水和物からなつており、またろ過水
についてV、SO4 2-、NH4 +を測定したところ、
これらは見出されなかつた。
[Industrial Application Field] The present invention is directed to the treatment of nitrogen oxides (hereinafter referred to as
NOx) is removed by a catalytic reduction method using ammonia (hereinafter referred to as NH3 ) as a reducing agent using a fixed bed catalyst method filled with catalysts in the form of honeycombs, plates, pipes, pellets, etc. In order to efficiently and economically regenerate catalysts that have deteriorated due to long-term operation while still being filled,
The present invention relates to a method for regenerating a denitrification catalyst that enables long-term use of the catalyst. [Prior art] Catalysts for ammonia catalytic reduction dry flue gas denitrification equipment are made by supporting active metals on a carrier such as titania, alumina, or silica, and molding the catalyst into a honeycomb shape, plate shape, pipe shape, pellet shape, etc. Since expensive catalysts are used, catalyst costs account for an extremely large portion of construction costs. Furthermore, depending on the frequency of catalyst replacement due to a decrease in the activity of the catalyst, there may be a significant increase in operating costs and instability of operation, and there may be other inconveniences such as disposal of the deteriorated catalyst. In order to address these issues, it is essential to achieve long-term stable utilization of catalysts, and to this end, it is desirable to establish a denitrification system that incorporates catalyst regeneration technology into the denitrification process. It has been known that water washing is effective as a regeneration method for restoring the activity of a catalyst that has deteriorated due to long-term use. especially
This water washing method is effective for deterioration of the catalyst caused by masking of the catalyst by salts such as NH 4 HSO 4 and (NH 4 ) 2 SO 4 , and by masking of the catalyst by N and S compounds that interact with soot and dust components. be. [Problems to be Solved by the Invention] However, the conventional water washing treatment method involves removing the catalyst from the denitrification reaction tower, washing it with water, drying it, and then refilling it. This is not a problem in fixed bed reactors or moving bed reactors, but in fixed bed reactors that use honeycomb-shaped, plate-shaped, or pipe-shaped catalysts, removing and filling the catalyst is very troublesome and requires a lot of effort. It requires a lot of effort and time. Therefore, if it were possible to wash the catalyst with water while it is still packed, there would be a great deal to be gained. However, in this case, there are problems with the use of a large amount of washing water, wastewater treatment, and activity recovery rate, which are reasons why it cannot be adopted. The inventors of the present invention focused on the above-mentioned points and conducted extensive research, and found that by washing the catalyst in its filled state with water, for example, by spraying it with water, it becomes a kind of wet wall state, and then washing it with water. The catalyst can be regenerated, and by setting up a wastewater treatment process and recycling and reusing filtered water, it is possible to extremely reduce the amount of washing water used. It was discovered that NH 3 generated as a result of the transition from acidic to basic by adding alkali to treated wastewater does not cause odor problems because it can be used as a reducing agent in the denitrification reaction. The present invention was made based on the above findings,
The object of the present invention is to provide a method for regenerating a denitrification catalyst, in which the catalyst can be easily regenerated using a small amount of washing water, and in addition, NH 3 can be used effectively without being discharged from the system. [Means and effects for solving the problems] The denitrification catalyst regeneration treatment method of the present invention is performed in a fixed bed type ammonia catalytic reduction denitrification equipment filled with a honeycomb-shaped, plate-shaped, pipe-shaped, pellet-shaped, etc. catalyst. To regenerate a deteriorated catalyst, the catalyst is washed with water while the catalyst is still packed, and then an alkali is added to the washing solution during or after the washing to remove ammonia, and then this ammonia is removed. It is blown into the exhaust gas stream at the inlet of the denitrification equipment and reused as a reducing agent.
The feature is that the washing solution from which ammonia has been removed is recycled and used as water for washing the catalyst. Hereinafter, the configuration of the present invention will be explained based on the drawings. 1 is an exhaust gas generation source (exhaust gas generation equipment) such as a boiler, and the exhaust gas duct of this exhaust gas generation source 1 is filled with an ammonia catalytic reduction method honeycomb-shaped, plate-shaped, pipe-shaped, pellet-shaped, etc. denitrification catalyst in a fixed bed type. A denitration device 3 having a catalytic reactor 2, an air preheater 4, a dust collector 5 such as an electrostatic precipitator, a desulfurization device 6, and a chimney 7 are connected in series. 8 is a economizer installed at the exhaust gas generation source; 1
0 is an NH 3 supply pipe connected to the upstream side of the denitrification device 3, and 11 is an NH 3 tank. In the apparatus configured as described above, a water jet pipe 12 is provided above the catalytic reactor 2 of the denitrification apparatus, a water washing liquid pipe 13 is connected to the lower part of the denitrification apparatus 3, and the tip of this washing liquid pipe 13 is connected to the lower part of the denitrification apparatus 3. A washing water tank 14 is provided in the. A washing water circulation pipe 16 equipped with a circulation pump 15 is connected to this washing water tank 14 , and the tip of this washing water circulation pipe 16 is connected to the water jetting pipe 12 . In addition, the washing water tank 14 has a wastewater treatment tank 1.
7 is connected, and an alkali addition pipe 18 and an NH 3 removal pipe 20 are connected to the upper part of this wastewater treatment tank 17, and this NH 3 removal pipe 20 is connected to the NH 3 tank 11 or the NH 3 supply pipe 10. . The lower part of the wastewater treatment tank 17 is connected to a wastewater sedimentation filter 21 , and the filtrate outlet of this wastewater sedimentation filter 21 is connected to the washing water circulation pipe 16 via a filtrate water circulation pipe 22 .
It is connected to the. 23 is a new water supply pipe. In the apparatus configured as described above, when the catalyst deteriorates and the denitrification rate decreases, the injection of NH 3 from the NH 3 supply pipe 10 is stopped, and the gas flow to the catalytic reactor 2 is stopped. . Next, the catalyst is washed with water by spraying water directly onto the catalyst from the upper part of the catalytic reactor 2 through the water jet pipe 12 to remove poisonous components (SO 4 2- NH 4 + , soot, etc.) and regenerate the catalyst. The washing treatment liquid after washing is in the washing water tank 1.
4, a part of the washing liquid is circulated and reused for washing the catalyst via the circulation pump 15, and the remainder of the washing liquid is sent to the wastewater treatment tank 17. In the wastewater treatment tank 17, an alkali is added to the washing solution to adjust the pH and neutralize it, and the catalyst components (support material and supported metal) eluted into the washing solution are hydrated by adding alkali. is generated and separated from the washing liquid by sedimentation filtration in the wastewater sedimentation filter 21. The filtered water passes through the filtered water circulation pipe 22 and is reused as water for washing the catalyst. When adding alkali to the water washing solution, NH 3 is generated, and this NH 3 is removed from the NH 3 pipe 20.
After collecting and introducing into NH 3 tank 11 via
It is reused as a reducing agent in the denitrification reaction. When catalyst regeneration is completed, gas flow and NH 3 injection are started to enter steady operation. However, if it is difficult to collect the NH 3 generated from the washing treatment liquid in the NH 3 tank 11, the washing treatment liquid may be stored in the wastewater treatment tank 17 until the washing treatment is completed. Once steady operation begins, water washing is carried out and the generated NH 3 is directly returned to the exhaust gas stream.
It is also possible to use it as a reducing agent. Furthermore, in order to avoid oversizing the wastewater treatment equipment, it is also possible to blow the washing treatment liquid directly into the exhaust gas stream. For example, (1) the blowing position is used as the denitrification equipment inlet, and the ammonia contained in the washing liquid is reused as a reducing agent. (2) The inlet of the electrostatic precipitator is used as the inlet of the electrostatic precipitator.
NH 4 + , SO 4 2- , dust, etc. are collected using an electrostatic precipitator. Wastewater treatment tank 17,
The wastewater sedimentation filter 21 and the like become unnecessary, and moreover, the waste water from the denitrification equipment can be eliminated. [Example] Next, an example of the present invention will be described. Example V 2 O 5 -TiO 2 pellet catalyst, SO 2 : 5000 ppm,
NH3 : 500ppm, H2O : 10%, CO2 : 10%, O2 :
With syngas consisting of the balance: 5%, N 2 ,
A cylindrical reaction tube was filled with 40 c.c. of the sample that had been forcibly degraded for about 30 hours at a low reaction temperature of about 200℃, and water was washed by spraying water from Step 2 for 1 hour by recirculating it from the top of the reaction tube. I went there. When the recovery rate of the catalyst activity was then measured, it was found that it had recovered to almost the initial value. The results were as shown in the table below. Furthermore, when 2N Ca(OH) 2 was added to the wastewater obtained by washing with water, precipitation occurred from around PH5, and further
When Ca(OH) 2 was added, NH 3 was generated at a pH of around 9. Furthermore, when the precipitate obtained here was filtered, dried, and subjected to X-ray diffraction, it was found that the precipitate was mostly composed of gypsum and partially composed of vanadium hydrate . When I measured + ,
These were not found.
以上説明したように、本発明によれば劣化した
触媒を反応器に充填した状態できわめて容易に再
生処理することができ、水洗処理液にアルカリを
添加して発生させたNH3は、脱硝反応の還元剤
として再利用することができるので、NH3使用
量を低減せしめることができ、かつ臭気の発生を
抑えることができ、さらに水洗に必要な水(新
水)の使用量は、循環に必要な最小限の水の使用
量となり(新水の補給として、沈殿ろ過器でのロ
ス分のみで可能)、このため、過大な排水処理設
備が不要になり、全体としてきわめて経済的に脱
硝触媒の再生処理を行うことができるという効果
がある。
As explained above, according to the present invention, it is possible to extremely easily regenerate a deteriorated catalyst while it is packed in a reactor, and the NH 3 generated by adding alkali to the water washing solution can be removed by the denitrification reaction. Since it can be reused as a reducing agent, the amount of NH 3 used can be reduced, and the generation of odors can be suppressed. Furthermore, the amount of water (new water) required for washing can be reduced by recycling. The amount of water used is the minimum required (replenishment of fresh water can be done using only the amount lost in the sedimentation filter), which eliminates the need for excessive wastewater treatment equipment, making the denitrification catalyst extremely economical overall. This has the advantage that it is possible to carry out regeneration processing.
図面は本発明の方法を実施する装置の一例を示
す系統的説明図である。
1……排ガス発生源、2……触媒反応器、3…
…脱硝装置、4……空気予熱器、5……電気集じ
ん装置、6……脱硫装置、7……煙突、8……節
炭器、10……NH3供給管、11……NH3タン
ク、12……水噴出管、13……水洗処理液管、
14……水洗水タンク、15……循環ポンプ、1
6……水洗水循環パイプ、17……排水処理タン
ク、18……アルカリ添加管、20……脱NH3
管、21……排水沈殿ろ過器、22……ろ過水循
環パイプ、23……新水供給管。
The drawing is a systematic explanatory diagram showing an example of an apparatus for carrying out the method of the present invention. 1...Exhaust gas generation source, 2...Catalytic reactor, 3...
...Denitration equipment, 4... Air preheater, 5... Electrostatic precipitator, 6... Desulfurization device, 7... Chimney, 8... Carbon economizer, 10... NH 3 supply pipe, 11... NH 3 Tank, 12...Water spout pipe, 13...Washing treatment liquid pipe,
14...Washing water tank, 15...Circulation pump, 1
6...Washing water circulation pipe, 17...Wastewater treatment tank, 18...Alkali addition pipe, 20... DeNH3
Pipe, 21...Drainage sedimentation filter, 22...Filtered water circulation pipe, 23...New water supply pipe.
Claims (1)
ト状などの触媒を充填した固定床方式のアンモニ
ア接触還元脱硝装置において劣化した触媒を再生
するにあたり、触媒を充填したままの状態で触媒
の水洗を行い、ついで水洗処理液に水洗処理中ま
たは水洗終了後にアルカリを添加して脱アンモニ
アを行わせた後、このアンモニアを脱硝装置入口
の排ガス気流中に吹き込んで還元剤として再使用
し、一方、アンモニアを除去した水洗処理液を触
媒水洗用の水として循環使用することを特徴とす
る脱硝触媒の再生処理方法。1. When regenerating a deteriorated catalyst in a fixed bed type ammonia catalytic reduction denitrification equipment filled with a honeycomb-shaped, plate-shaped, pipe-shaped, pellet-shaped, etc. catalyst, the catalyst is washed with water while the catalyst is still packed. Next, alkali is added to the water washing solution during or after the washing process to perform deammonia, and then this ammonia is blown into the exhaust gas stream at the denitrification equipment inlet to be reused as a reducing agent, while the ammonia is removed. A method for regenerating a denitrification catalyst, characterized in that the washed water is recycled as water for washing the catalyst.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11342979A JPS5637053A (en) | 1979-09-03 | 1979-09-03 | Regenerating treatment of denitrificating catalyst |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11342979A JPS5637053A (en) | 1979-09-03 | 1979-09-03 | Regenerating treatment of denitrificating catalyst |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5637053A JPS5637053A (en) | 1981-04-10 |
JPS6315023B2 true JPS6315023B2 (en) | 1988-04-02 |
Family
ID=14611998
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11342979A Granted JPS5637053A (en) | 1979-09-03 | 1979-09-03 | Regenerating treatment of denitrificating catalyst |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5637053A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02266504A (en) * | 1989-04-06 | 1990-10-31 | Daihen Corp | Stationary induction electric apparatus and manufacture thereof |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5949849A (en) * | 1982-09-13 | 1984-03-22 | Ngk Insulators Ltd | Regenerating method of poisoned denitration catalyst by rinsing |
JPS5962350A (en) * | 1982-10-04 | 1984-04-09 | Mitsubishi Heavy Ind Ltd | Regenerating method of catalyst |
DE19628212B4 (en) * | 1996-07-12 | 2008-06-05 | Enbw Energy Solutions Gmbh | Process for purifying and / or regenerating completely or partially deactivated catalysts for denitrification of flue gases |
CN105906161A (en) * | 2016-06-15 | 2016-08-31 | 江苏海容热能环境工程有限公司 | Novel process for thermal power plant denitration catalyst regeneration wastewater zero discharging treatment |
JP7103729B2 (en) * | 2017-09-21 | 2022-07-20 | 一般財団法人電力中央研究所 | Impurity remover regeneration system |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS50104774A (en) * | 1974-01-25 | 1975-08-19 | ||
JPS5211167A (en) * | 1975-07-17 | 1977-01-27 | Sumitomo Chem Co Ltd | Treatment process for exhaust combustion gases |
JPS5254694A (en) * | 1975-10-31 | 1977-05-04 | Mitsubishi Kakoki Kk | Regeneration of catalysts for desulfurizing active carbons |
-
1979
- 1979-09-03 JP JP11342979A patent/JPS5637053A/en active Granted
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS50104774A (en) * | 1974-01-25 | 1975-08-19 | ||
JPS5211167A (en) * | 1975-07-17 | 1977-01-27 | Sumitomo Chem Co Ltd | Treatment process for exhaust combustion gases |
JPS5254694A (en) * | 1975-10-31 | 1977-05-04 | Mitsubishi Kakoki Kk | Regeneration of catalysts for desulfurizing active carbons |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02266504A (en) * | 1989-04-06 | 1990-10-31 | Daihen Corp | Stationary induction electric apparatus and manufacture thereof |
Also Published As
Publication number | Publication date |
---|---|
JPS5637053A (en) | 1981-04-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6397967B2 (en) | Method and apparatus for denitration and desulfurization of FCC tail gas and dedusting from FCC tail gas by ammonia-based method | |
JP3589529B2 (en) | Method and apparatus for treating flue gas | |
JP5051977B2 (en) | Device for removing trace harmful substances in exhaust gas and operation method thereof | |
US6631727B2 (en) | Method of cleaning and/or regenerating wholly or partially de-activated catalysts of stack-gas nitrogen scrubbing | |
WO2006073083A1 (en) | Cement kiln firing waste gas treating apparatus and treating method | |
CN108176224A (en) | A kind of regeneration fume from catalytic cracking ammonia process of desulfurization denitration dust collecting method and device | |
JPS6315023B2 (en) | ||
CN107875838A (en) | With the production technology and processing system of compound claus oven processing activated coke method coke oven flue gas desulphurization denitration acid vapour | |
CN108654363A (en) | Couple waste heat of coke-oven flue gas and amounts of sulphur contaminants acid-making process | |
JPH10156192A (en) | Activity regenerating method of catalyst for eliminating nitrogenoxides and device therefor | |
JP3915173B2 (en) | Denitration catalyst activity regeneration method and apparatus | |
CN207324474U (en) | Flue gas dry desulfurizing denitrification apparatus | |
JPH04219124A (en) | Treatment of waste gas | |
JP3885287B2 (en) | Denitration catalyst activity regeneration method and apparatus | |
JP3358904B2 (en) | Exhaust gas treatment method | |
JPH05317646A (en) | Waste gas treating method | |
JPH08257363A (en) | Exhaust gas treatment method | |
CN218270259U (en) | Needle coke flue gas dust removal SOx/NOx control and waste heat utilization integration processing system | |
CN218012077U (en) | SCR denitration catalyst in-situ regeneration reactor | |
JP2001113131A (en) | Method for regenerating denitration catalyst | |
CN107890755A (en) | With the production technology and processing system of system for preparing sulfuric acid processing activated coke method coke oven flue gas desulphurization denitration acid vapour | |
JP2002292238A (en) | Waste gas treatment system | |
CN112426861A (en) | Efficient desulfurization and denitrification system and method | |
JPH11165043A (en) | Treatment of waste gas of waste incinerator | |
JP2680603B2 (en) | Method and apparatus for dry desulfurization and denitration of exhaust gas |