JPS6314957B2 - - Google Patents

Info

Publication number
JPS6314957B2
JPS6314957B2 JP54003214A JP321479A JPS6314957B2 JP S6314957 B2 JPS6314957 B2 JP S6314957B2 JP 54003214 A JP54003214 A JP 54003214A JP 321479 A JP321479 A JP 321479A JP S6314957 B2 JPS6314957 B2 JP S6314957B2
Authority
JP
Japan
Prior art keywords
methionine
atp
cells
adenosine
triphosphate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54003214A
Other languages
Japanese (ja)
Other versions
JPS5596099A (en
Inventor
Ichiro Senhata
Joji Kato
Kosaku Murata
Keiko Tani
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanabe Seiyaku Co Ltd
Original Assignee
Tanabe Seiyaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanabe Seiyaku Co Ltd filed Critical Tanabe Seiyaku Co Ltd
Priority to JP321479A priority Critical patent/JPS5596099A/en
Publication of JPS5596099A publication Critical patent/JPS5596099A/en
Publication of JPS6314957B2 publication Critical patent/JPS6314957B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明はS−アデノシル−L−メチオニンの新
規製法に関する。 (従来技術) S−アデノシル−L−メチオニン(以下、S−
AMと略称する)は広く生体内に存在し、種々の
トランスフエラーゼによるメチル化反応のメチル
基供与体としての高い利用価値の他、種々の代謝
不調疾患に対する医療用としての利用が大いに期
待されている。しかしながら、このように生化学
的に重要な意味を持ち、医療用、研究用等に広く
その用途が期待されているにもかかわらず、現在
のところ、S−AMの工業的製造法としては、わ
ずかに酵母や糸状菌からの煩雑な抽出法しか知ら
れていない。 上記に対し本発明者らは種々研究の結果、アデ
ノシン−5′−三リン酸(以下、ATPと略称する)
とL−メチオニンから効率よくS−AMを製造す
ることのできる新規製法を確立するに到つた。 (発明の構成及び効果) すなわち、本発明によれば、当該S−AMはサ
ツカロミセス属に属しATPとL−メチオニンか
らS−AMを生成せしめる微生物の菌体もしくは
その処理物と、エシエリヒア属に属しATP前駆
体からATPを生成せしめる微生物の菌体もしく
はその処理物の存在下に、ATPもしくはその前
駆体とL−メチオニンを反応せしめることにより
製することができる。 上記本発明の反応は次の如き態様により実施す
ることができる。 (但し、式中、L−MetはL−メチオニン、Piは
無機リン酸、EAはATPとL−メチオニンとから
S−AMを生成せしめるサツカロミセス属微生物
の菌体もしくはその処理物、EBはエシエリヒア
属微生物の菌体もしくはその処理物をそれぞれ表
す。) 以下、本発明を詳細に説明する。 本発明において、ATPとL−メチオニンとか
らS−AMを生成せしめるサツカロミセス属微生
物としては、S−AMの生合成に関与する酵素
(例えば、メチオニン・アデノシルトランスフエ
ラーゼ等)を含有する微生物があげられ、かかる
微生物としては、例えばサツカロミセス・セレビ
ジエIFO2044)等があげられる。また菌体処理物
としては乾燥菌体、有機溶媒処理菌体、界面活性
剤処理菌体、菌体からの無細胞抽出液、該抽出液
から精製されたメチオニン・アデノシルトランス
フエラーゼなどがあげられる。 また、ATP前駆体からATPを生成せしめるエ
シエリヒア属微生物としては、例えばアデノシン
やアデノシン−5′−二リン酸(以下、ADPと略
称する)のようなATP前駆体からATPを生成せ
しめる反応を触媒する酵素、とりわけアデノシン
とリン酸供与体(例えばアセチルリン酸)から
ATPを生成する反応を触媒する解糖系酵素、
ADPとリン酸供与体からATPを生成する反応を
触媒するアセテートキナーゼもしくはピルビン酸
キナーゼなどを含有する微生物があげられる。か
かる微生物としては、例えば、エシエリヒア・コ
リB株ATCC23226などがあげられる。また、菌
体処理物としては上記と同様、乾燥菌体、有機溶
媒処理菌体、界面活性剤処理菌体、菌体からの無
細胞抽出液、該抽出液から精製された酵素などが
あげられる。 反応は、上記ATPとL−メチオニンとからS
−AMを生成せしめるサツカロミセス属微生物ま
たはその菌体処理物、ATP前駆体からATPを生
成せしめるエシエリヒア属微生物もしくはその菌
体処理物、ATPもしくはその前駆体、リン酸供
与体、L−メチオニン及び塩化マグネシウムを適
量含有する緩衝液中で実施できる。 反応に用いられる緩衝液としては、例えばリン
酸緩衝液、トリス塩酸緩衝液などがあげられ、そ
の濃度は約25〜200mM、とりわけ50〜100mMが
好ましい。反応液中のATP濃度は約5〜60mM、
とりわけ10〜20mM、ATP前駆体濃度はADPで
あれば約5〜20mM、とりわけ約10〜15mM、ア
デノシンであれば約10〜60mM、とりわけ約20〜
40mMであるのが好ましい。また、リン酸供与体
濃度はATP濃度の約1〜2倍、好ましくは1.5倍
程度用いるのが適当である。L−メチオニン濃度
は約5〜60mM、とりわけ10〜40mMであるのが
好ましい。更に、塩化マグネシウム濃度は約5〜
20mM、とりわけ10mMであるのが好ましい。 反応はPH約6〜9、とりわけ7〜8、温度約20
から50℃、とりわけ30〜40℃の条件下で好適に進
行する。 かくして、本発明によれば原料として供給した
ATPがATP分解酵素により分解され、ADPが生
成してくるが、この反応にATP前駆体よりATP
を生成せしめるエシエリヒア属微生物もしくはそ
の菌体処理物を存在させることにより、ADPを
ATPに再生し、S−AMの生成反応を効率よく
実施することができる。 また、ATPにかえてその前駆体を用いた場合
でも上記エシエリヒア属微生物もしくはその菌体
処理物を存在させることによりすみやかにATP
前駆体からATPが生成し、効率よくS−AMを
生成せしめることができる。 更に、本発明によれば、ATPとL−メチオニ
ンとからS−AMを生成せしめるサツカロミセス
属微生物またはその菌体処理物とATP前駆体か
らATPを生成せしめるエシエリヒア属微生物も
しくはその菌体処理物はそれぞれ単独もしくは両
者を同時に高分子重合体のゲル格子内に封入し固
定化しても上記酵素反応に使用することができ
る。これら微生物またはその菌体処理物の固定化
は固定化微生物や固定化酵素の調製に採用されて
いる、例えばポリアクリルアミドゲル包括法、カ
ラギーナンゲル包括法、寒天ゲル包括法、ポリビ
ニルアルコールゲル包括法、コラーゲンゲル包活
法、アルギン酸ゲル包括法等の方法によつて実施
することができ、かくして該菌体もしくは菌体処
理物の固定化物を得ることができる。例えばポリ
アクリルアミドゲル包括性によつてATPとL−
メチオニンとからS−AMを生成せしめるサツカ
ロミセス属微生物またはその菌体処理物を固定化
する場合には、これら菌体もしくは菌体処理物の
水懸濁液にアクリルアミドモノマー、架橋剤(例
えばN,N−メチレンビスアクリルアミド)、重
合促進剤〔例えばβ−(ジメチルアミノ)プロピ
オニトリル〕、重合開始剤(例えば過硫酸ナトリ
ウム)を加えてゲル化させることにより目的の固
定化物を得ることができる。また、カラギーナン
ゲル包括法の場合は、微生物菌体またはその菌体
処理物をカラギーナン水溶液に懸濁し、この懸濁
液にゲル化剤(例えば塩化カリウム)を接触させ
てゲル化させることにより目的の固定化物を得る
ことができる。これらの固定化物は界面活性剤或
いは有機溶媒で処理すれば、原料あるいは産物の
ゲル透過性を改善することができるのでS−AM
の生成に有利である。 また、上記の微生物またはその菌体処理物の固
定化物は、酵素反応に際し繰り返し使用し得るだ
けでなく該固定化物を用いる酵素反応はバツチ法
のみならず、カラム法によつても実施することが
でき、特にカラム法による場合、S−AMを連続
的に製造することができる。 実施例 1 (1) 風乾酵母の調製: グルコース5%、カザミノ酸1.5%、リン酸
第一カリウム0.1%、リン酸第二カリウム0.1
%、硫酸マグネシウム・7水塩0.03%および酵
母エキス1.5%を含む培地(PH5.0)にサツカロ
ミセス・セレビジエIFO2044を培養し、培養物
より上記酵母菌体を集める。該菌体を生理食塩
水で1回洗浄し、通風下20時間室温で乾燥させ
た後、デシケーター中で減圧乾燥する。 (2) 風乾大腸菌の調製 グルコール0.5%、ペプトン1.0%、酵母エキ
ス1.3%、肉エキス0.5%および食塩0.5%を含む
培地(PH7.0)にエシエリヒア・コリ・B株
ATCC23226を培養し、培養物より上記大腸菌
菌体を集める。この菌体を生理食塩水で一回洗
浄した後、通風下20時間室温で乾燥し、更にデ
シケーター中で減圧乾燥する。 (3) S−AMの生成および結果: (1)及び(2)で得られた風乾酵母及び風乾大腸菌
を下記第1表に示す量(いずれも湿重量)用
い、これにATP20mM、アセチルリン酸30m
M、L−メチオニン20mM、塩化マグネシウム
50mM、トリス塩酸緩衝液(PH7.5)100mMを
加えて全量2.0mlとし、37℃で震盪下に180分間
反応させる。反応液に過塩素酸を最終濃度0.5
%となるように加えて反応を停止する。反応停
止液を遠心分離して菌体残査を除去し、上澄液
中のS−AMを定量した。 S−AMの定量は所定量の上澄液をダウエツ
クス50W(Na+)カラムに導通して吸着させた
後、4M硫酸で溶出し、溶出液の260nmにおけ
る紫外吸収を測定することにより行つた(以下
同)。 S−AM生成量は下記第1表の通りであつ
た。
(Industrial Application Field) The present invention relates to a novel method for producing S-adenosyl-L-methionine. (Prior art) S-adenosyl-L-methionine (hereinafter referred to as S-
AM (abbreviated as AM) exists widely in living organisms, and is highly expected to be used as a methyl group donor for methylation reactions by various transferases, as well as for medical use in treating various metabolic disorders. ing. However, although it has such important biochemical meaning and is expected to be widely used for medical and research purposes, there are currently no industrial methods for producing S-AM. Only complicated extraction methods from yeast and filamentous fungi are known. Regarding the above, the present inventors have conducted various studies and found that adenosine-5'-triphosphate (hereinafter abbreviated as ATP)
We have now established a new method for efficiently producing S-AM from L-methionine and L-methionine. (Structure and Effects of the Invention) That is, according to the present invention, the S-AM is composed of a bacterial cell of a microorganism that belongs to the genus Satucharomyces or a processed product thereof that generates S-AM from ATP and L-methionine, and a product that belongs to the genus Escherichia. It can be produced by reacting ATP or its precursor with L-methionine in the presence of a microorganism that produces ATP from the ATP precursor or a processed product thereof. The above reaction of the present invention can be carried out in the following manner. (However, in the formula, L-Met is L-methionine, Pi is inorganic phosphoric acid, E A is the cells of a microorganism of the genus Satucharomyces that generates S-AM from ATP and L-methionine, or a processed product thereof, and E B is Each represents a bacterial cell of a microorganism belonging to the genus Escherichia or a processed product thereof.) The present invention will be described in detail below. In the present invention, microorganisms of the genus Satucharomyces that produce S-AM from ATP and L-methionine include microorganisms that contain enzymes involved in the biosynthesis of S-AM (for example, methionine adenosyltransferase, etc.). Examples of such microorganisms include Satucharomyces cerevisiae IFO2044). Examples of processed bacterial cells include dried bacterial cells, organic solvent-treated bacterial cells, surfactant-treated bacterial cells, cell-free extracts from bacterial cells, and methionine adenosyltransferase purified from the extracts. It will be done. In addition, microorganisms of the genus Escherichia that generate ATP from ATP precursors catalyze reactions that generate ATP from ATP precursors such as adenosine and adenosine-5'-diphosphate (hereinafter abbreviated as ADP). from enzymes, especially adenosine and phosphate donors (e.g. acetyl phosphate)
glycolytic enzymes that catalyze reactions that produce ATP;
Examples include microorganisms that contain acetate kinase or pyruvate kinase, which catalyze the reaction that generates ATP from ADP and a phosphate donor. Examples of such microorganisms include Escherichia coli B strain ATCC23226. In addition, as mentioned above, examples of processed bacterial cells include dried bacterial cells, organic solvent-treated bacterial cells, surfactant-treated bacterial cells, cell-free extracts from bacterial cells, and enzymes purified from the extracts. . The reaction is from the above ATP and L-methionine to S
- A microorganism of the genus Satucharomyces or a processed product thereof that produces AM, a microorganism of the genus Escherichia or a processed product thereof that produces ATP from an ATP precursor, ATP or its precursor, a phosphate donor, L-methionine, and magnesium chloride It can be carried out in a buffer solution containing an appropriate amount of. Examples of the buffer used in the reaction include phosphate buffer, Tris-HCl buffer, etc., and the concentration thereof is preferably about 25 to 200 mM, particularly 50 to 100 mM. The ATP concentration in the reaction solution is approximately 5-60mM,
Especially 10-20mM, ATP precursor concentration is about 5-20mM, especially about 10-15mM for ADP, about 10-60mM, especially about 20-20mM for adenosine.
Preferably it is 40mM. Further, it is appropriate to use a phosphate donor concentration of about 1 to 2 times, preferably about 1.5 times, the ATP concentration. Preferably, the L-methionine concentration is about 5-60mM, especially 10-40mM. Furthermore, the concentration of magnesium chloride is about 5~
Preferably it is 20mM, especially 10mM. The reaction takes place at a pH of about 6 to 9, especially 7 to 8, and a temperature of about 20.
to 50°C, particularly preferably 30 to 40°C. Thus, according to the invention, the
ATP is broken down by ATP degrading enzyme and ADP is generated, but in this reaction, ATP precursor is
ADP can be reduced by the presence of microorganisms of the genus Escherichia or their bacterial cell products that produce
It can be regenerated into ATP and the S-AM production reaction can be carried out efficiently. In addition, even when its precursor is used instead of ATP, the presence of the above-mentioned Escherichia microorganisms or their bacterial cell products can quickly convert ATP.
ATP is generated from the precursor, and S-AM can be efficiently generated. Furthermore, according to the present invention, a microorganism of the genus Satucharomyces or a processed product thereof that produces S-AM from ATP and L-methionine, and a microorganism of the genus Escherichia or a processed product thereof that produces ATP from an ATP precursor are each They can also be used in the above enzymatic reaction even when they are encapsulated or immobilized in a gel lattice of a high molecular weight polymer, either singly or both at the same time. The immobilization of these microorganisms or their bacterial cell products has been adopted for the preparation of immobilized microorganisms and immobilized enzymes, such as polyacrylamide gel entrapment method, carrageenan gel entrapment method, agar gel entrapment method, polyvinyl alcohol gel entrapment method, This can be carried out by a method such as a collagen gel envelopment method or an alginate gel entrapment method, and thus an immobilized product of the bacterial cells or the treated bacterial cells can be obtained. For example, ATP and L-
When immobilizing a microorganism of the genus Satucharomyces that produces S-AM from methionine or a processed product of the microorganism, an acrylamide monomer, a crosslinking agent (e.g. N,N -methylenebisacrylamide), a polymerization accelerator (for example, β-(dimethylamino)propionitrile), and a polymerization initiator (for example, sodium persulfate) to form a gel, thereby obtaining the desired immobilized product. In addition, in the case of the carrageenan gel entrapment method, the microbial cells or the processed material of the cells are suspended in an aqueous carrageenan solution, and this suspension is brought into contact with a gelling agent (for example, potassium chloride) to gel it. An immobilized product can be obtained. These immobilized substances can be treated with surfactants or organic solvents to improve the gel permeability of raw materials or products, so S-AM
It is advantageous for the production of In addition, the above-mentioned immobilized microorganism or its processed product can not only be used repeatedly in enzyme reactions, but also the enzyme reaction using the immobilized product can be carried out not only by the batch method but also by the column method. In particular, when using a column method, S-AM can be produced continuously. Example 1 (1) Preparation of air-dried yeast: 5% glucose, 1.5% casamino acids, 0.1% potassium phosphate, 0.1 potassium phosphate
%, 0.03% magnesium sulfate heptahydrate, and 1.5% yeast extract (PH 5.0) to culture Satucharomyces cerevisiae IFO2044, and collect the yeast cells from the culture. The cells are washed once with physiological saline, dried under ventilation at room temperature for 20 hours, and then dried under reduced pressure in a desiccator. (2) Preparation of air-dried E. coli Escherichia coli B strain in a medium (PH7.0) containing 0.5% glycol, 1.0% peptone, 1.3% yeast extract, 0.5% meat extract, and 0.5% salt.
ATCC23226 is cultured, and the E. coli cells are collected from the culture. After washing the bacterial cells once with physiological saline, they are dried at room temperature under ventilation for 20 hours, and further dried under reduced pressure in a desiccator. (3) S-AM production and results: The air-dried yeast and air-dried Escherichia coli obtained in (1) and (2) were used in the amounts shown in Table 1 below (wet weight), and 20mM of ATP and acetyl phosphate were added. 30m
M, L-methionine 20mM, magnesium chloride
Add 50mM Tris-HCl buffer (PH7.5) to make a total volume of 2.0ml, and react at 37°C for 180 minutes with shaking. Add perchloric acid to the reaction solution at a final concentration of 0.5
% and stop the reaction. The reaction stop solution was centrifuged to remove bacterial cell residue, and S-AM in the supernatant was quantified. S-AM was quantified by passing a predetermined amount of the supernatant through a Dowex 50W (Na + ) column to adsorb it, eluting it with 4M sulfuric acid, and measuring the ultraviolet absorption of the eluate at 260 nm ( Same hereafter). The amount of S-AM produced was as shown in Table 1 below.

【表】 実施例 2 実施例1において、風乾酵母100mg/ml及び風
乾大腸菌10mg/ml(いずれも湿重量として)を用
いる反応を下記第2表に示す如く種々PHを変え、
更にカリウムイオン又はアンモニウムイオンの存
在もしくは非存在下に行つた。そのときのS−
AMの生成量は第2表の通りであつた。
[Table] Example 2 In Example 1, the reaction using 100 mg/ml of air-dried yeast and 10 mg/ml of air-dried Escherichia coli (both as wet weight) was carried out by varying the pH as shown in Table 2 below.
Furthermore, the experiments were carried out in the presence or absence of potassium ions or ammonium ions. S- at that time
The amount of AM produced was as shown in Table 2.

【表】 実施例 3 実施例1において、風乾酵母100mg/ml及び風
乾大腸菌10mg/ml(いずれも湿重量として)を用
いる反応を実施するに際し、反応開始後1.5時間
毎に実施例1と同量のアセチルリン酸を追加し
た。そのときの生成したS−AM量は1.12mg/ml
であつた。 実施例 4 実施例1で得た酵母菌体及び大腸菌菌体を別個
にポリアクリルアミドゲル内に包括固定化する。
固定化は両菌体とも次のようにして行つた。湿菌
20gを30%塩化カリウム水溶液30mlにけん濁し、
これにアクリルアミドモノマー5g及びN,
N′−メチレン−ビス−アクリルアミド0.25gを水
15mlに溶解せる溶液を加える。これに5%β−
(ジメチルアミノ)プロピオニトリル6mlを加え、
更に過硫酸カリウム0.4gを水6mlに溶解せる溶
液を加えてゲル化させる。得られるゲル50g(湿
重量)をL−メチオニンを含むトリス塩酸緩衝液
(PH7.5)にけん濁し、トルエンを10%W/Vとな
るように加えて室温下30〜120分間撹拌処理する。
得られた固定化酵母及び固定化大腸菌を下記第3
表に示す量比で用い、実施例1と同一条件下(但
し反応液量を4mlとした。)に反応させる。その
ときの生成したS−AM量は第3表の如くであつ
た。
[Table] Example 3 In Example 1, when carrying out the reaction using 100 mg/ml of air-dried yeast and 10 mg/ml of air-dried E. coli (both as wet weight), the same amount as in Example 1 was added every 1.5 hours after the start of the reaction. of acetyl phosphate was added. The amount of S-AM generated at that time was 1.12mg/ml
It was hot. Example 4 The yeast cells and Escherichia coli cells obtained in Example 1 are separately entrapping immobilized in a polyacrylamide gel.
Immobilization of both bacterial cells was carried out as follows. wet bacteria
Suspend 20g in 30ml of 30% potassium chloride aqueous solution,
To this, 5 g of acrylamide monomer and N,
0.25g of N'-methylene-bis-acrylamide in water
Add the solution to 15ml. Add to this 5% β-
Add 6 ml of (dimethylamino)propionitrile,
Furthermore, a solution of 0.4 g of potassium persulfate dissolved in 6 ml of water is added to form a gel. 50 g (wet weight) of the resulting gel is suspended in Tris-HCl buffer (PH 7.5) containing L-methionine, toluene is added to the suspension at a concentration of 10% W/V, and the suspension is stirred at room temperature for 30 to 120 minutes.
The obtained immobilized yeast and immobilized E. coli were
Using the amounts shown in the table, the reaction was carried out under the same conditions as in Example 1 (however, the reaction liquid volume was 4 ml). The amount of S-AM produced at that time was as shown in Table 3.

【表】 実施例 5 実施例1で得た酵母菌体及び大腸菌菌体を下記
第4表に示す量比で混合した後、混合菌体20gを
実施例4と同様にしてポリアクリルアミドゲルに
固定化し、トルエン処理する。この固定化菌体1
gを用い、実施例1と同一条件下に反応させる。
そのときの生成したS−AM量は第4表の如くで
あつた。
[Table] Example 5 After mixing the yeast cells and Escherichia coli cells obtained in Example 1 in the ratio shown in Table 4 below, 20 g of the mixed cells were fixed on polyacrylamide gel in the same manner as in Example 4. and treated with toluene. This immobilized bacterial cell 1
g under the same conditions as in Example 1.
The amount of S-AM produced at that time was as shown in Table 4.

【表】 実施例 6 実施例5で調製した第4表中()の固定化菌
体を用い、実施例5と同一条件下に反応を繰り返
し行つた。そのときの生成したS−AM量は第5
表の如くであり、該固定化菌体はS−AMの製造
に連続して使用できることが認められた。
[Table] Example 6 Using the immobilized bacterial cells prepared in Example 5 and shown in parentheses in Table 4, the reaction was repeated under the same conditions as in Example 5. The amount of S-AM generated at that time was the fifth
As shown in the table, it was confirmed that the immobilized bacterial cells could be used continuously for the production of S-AM.

【表】【table】

Claims (1)

【特許請求の範囲】 1 サツカロミセス属に属しアデノシン−5′−三
リン酸とL−メチオニンからS−アデノシル−L
−メチオニンを生成せしめる微生物の菌体もしく
はその処理物と、エシエリヒア属に属しアデノシ
ン−5′−三リン酸前駆体からアデノシン−5′−三
リン酸を生成せしめる微生物の菌体もしくはその
処理物の存在下に、アデノシン−5′−三リン酸も
しくはその前駆体とL−メチオニンを反応せしめ
ることを特徴とするS−アデノシル−L−メチオ
ニンの製法。 2 サツカロミセス属に属しアデノシン−5′−三
リン酸とL−メチオニンからS−アデノシル−L
−メチオニンを生成せしめる微生物の菌体もしく
はその処理物と、エシエリヒア属に属しアデノシ
ン−5′−三リン酸前駆体からアデノシン−5′−三
リン酸を生成せしめる微生物の菌体もしくはその
処理物を、それぞれ単独で、または両者を混合し
て、高分子重合体のゲル格子内に封入せしめて固
定化し、該固定化物の存在下に酵素反応を行う特
許請求の範囲第1項記載の製法。
[Scope of Claims] 1 S-adenosyl-L from adenosine-5'-triphosphate and L-methionine belonging to the genus Satucharomyces
- Cells of a microorganism that produces methionine or a processed product thereof, and cells of a microorganism belonging to the genus Escherichia that generate adenosine-5'-triphosphate from an adenosine-5'-triphosphate precursor or a processed product thereof. 1. A method for producing S-adenosyl-L-methionine, which comprises reacting adenosine-5'-triphosphate or its precursor with L-methionine in the presence of L-methionine. 2 From adenosine-5'-triphosphate and L-methionine belonging to the genus Satucharomyces, S-adenosyl-L
- Cells of a microorganism that produces methionine or a processed product thereof, and cells of a microorganism belonging to the genus Escherichia that generates adenosine-5'-triphosphate from an adenosine-5'-triphosphate precursor, or a processed product thereof. , either alone or in combination, are encapsulated and immobilized in a gel lattice of a polymer, and an enzymatic reaction is carried out in the presence of the immobilized product.
JP321479A 1979-01-12 1979-01-12 Production of s-adenosyl-l-methionine using enzyme Granted JPS5596099A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP321479A JPS5596099A (en) 1979-01-12 1979-01-12 Production of s-adenosyl-l-methionine using enzyme

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP321479A JPS5596099A (en) 1979-01-12 1979-01-12 Production of s-adenosyl-l-methionine using enzyme

Publications (2)

Publication Number Publication Date
JPS5596099A JPS5596099A (en) 1980-07-21
JPS6314957B2 true JPS6314957B2 (en) 1988-04-02

Family

ID=11551185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP321479A Granted JPS5596099A (en) 1979-01-12 1979-01-12 Production of s-adenosyl-l-methionine using enzyme

Country Status (1)

Country Link
JP (1) JPS5596099A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6078594A (en) * 1983-10-05 1985-05-04 Yamasa Shoyu Co Ltd Preparation of s-adenosyl-l-methionine
US20110052623A1 (en) * 2007-12-20 2011-03-03 Kaneka Corporation Dried microbial cells or microorganism extract containing stabilized (ss)-s-adenosyl-l-methionine and method for production of the dried microorganism cell or microorganism extract

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51125717A (en) * 1974-07-12 1976-11-02 Bioresearch Sas Preparation of ssadenosylmethionine sulfonate
JPS51144789A (en) * 1975-06-05 1976-12-13 Kanebo Ltd Process for preparing glutathione
JPS535752A (en) * 1976-07-06 1978-01-19 Tokai Rika Co Ltd Dc load control unit
JPS548794A (en) * 1977-06-17 1979-01-23 Yamasa Shoyu Co Ltd Preparation of s-adenosyl-l-methionine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51125717A (en) * 1974-07-12 1976-11-02 Bioresearch Sas Preparation of ssadenosylmethionine sulfonate
JPS51144789A (en) * 1975-06-05 1976-12-13 Kanebo Ltd Process for preparing glutathione
JPS535752A (en) * 1976-07-06 1978-01-19 Tokai Rika Co Ltd Dc load control unit
JPS548794A (en) * 1977-06-17 1979-01-23 Yamasa Shoyu Co Ltd Preparation of s-adenosyl-l-methionine

Also Published As

Publication number Publication date
JPS5596099A (en) 1980-07-21

Similar Documents

Publication Publication Date Title
EP0054800A1 (en) Process for the production of immobilized microorganisms
West Exopolysaccharide production by entrapped cells of the fungus Aureobasidium pullulans ATCC 201253
JPH02231091A (en) Production of fructose-1,6-diphosphate
JPS58162293A (en) Preparation of immobilized microorganism
JPS6314957B2 (en)
WO1990010080A1 (en) Production of nucleoside
PT98863B (en) PROCESS FOR THE CONTINUOUS TRANSFORMATION OF CEFALOSPORIN DERIVATIVES IN GLUTARIL-7-AMINOFEPALOSPORANIC ACID DERIVATIVES
JP3080771B2 (en) Method for producing dinucleoside polyphosphate or derivative thereof
KR920005726B1 (en) Process for producing ribonucleosides
WO2017174037A1 (en) Method for producing n-acetyl-d-glucosamine and/or d-glucosamine salt by microbial fermentation
JP3078067B2 (en) Thermostable adenosine-5'-3 phosphate sulfurylase and method for producing the same
JPS6141555B2 (en)
JP2817746B2 (en) Manufacturing method of laminaribiose
JPS6031480B2 (en) Manufacturing method of glutathione
JPH0157959B2 (en)
JPH0260318B2 (en)
JPS599158B2 (en) Production method of choline cytidine diphosphate
JPH0634744B2 (en) Method for producing γ-L-glutamyl-L-α-amino-n-butyrylglycine
JPH0322160B2 (en)
JPS6336755B2 (en)
JPS6043957B2 (en) Method for producing gluconic acid using immobilized microorganisms
JPS6336756B2 (en)
JPS59179094A (en) Production of triazol-deoxyribonucleoside
JPH0231686A (en) Production of trifluorothymidine
JPS6029479B2 (en) Method for producing nucleoside-5'-triphosphate