JPS63149077A - Manufacture of pipe composed of titanium or titanium alloy - Google Patents

Manufacture of pipe composed of titanium or titanium alloy

Info

Publication number
JPS63149077A
JPS63149077A JP29704986A JP29704986A JPS63149077A JP S63149077 A JPS63149077 A JP S63149077A JP 29704986 A JP29704986 A JP 29704986A JP 29704986 A JP29704986 A JP 29704986A JP S63149077 A JPS63149077 A JP S63149077A
Authority
JP
Japan
Prior art keywords
electrode
electrodes
welding
welding current
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29704986A
Other languages
Japanese (ja)
Other versions
JPH0635064B2 (en
Inventor
Atsuyuki Miyamoto
宮本 淳之
Kazuo Yonezawa
米澤 和男
Eiichirou Sawahisa
沢久 栄一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP29704986A priority Critical patent/JPH0635064B2/en
Publication of JPS63149077A publication Critical patent/JPS63149077A/en
Publication of JPH0635064B2 publication Critical patent/JPH0635064B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the welding bead of high quality by making the distance between the electrode tips at the final side among plural electrodes arranged at the upper part of a butt part, the total welding current given to the plural electrodes and the welding current given to the final electrode within the range satisfying the specified inequality respectively. CONSTITUTION:The strip plate consisting of titanium or titanium alloy is made a tubular body and the pipe is made with TIG welding by the plural nonconsumable electrodes arranging the butt part in the longitudinal of the tubular body. In this case, the distance L between the tips of two electrodes at the final side among plural electrodes is made within the range satisfying inequalities I, II and the total welding current It give to the plural electrodes is made within the range satisfying the inequality III. And the welding current If given to the final electrode among the plural electrodes is made within the range satisfying the inequality IV. Whereas, L: distance mm between tips of electrode, V: pipe making speed mm/min, T: pipe thickness mm, It: total welding current A, If: welding current A of final electrode, Im: mean welding current per each electrode.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は造管速度を向上させる複数電極によるTIG溶
接管製造方法に関し、詳細には電極先端間距離と電極に
与える弓接電流とを適正範囲に設定して造管速度を高め
得るチタンまたはチタン合金(以下まとめてTiと言う
。)からなる管の製造方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a TIG welded pipe manufacturing method using multiple electrodes that improves the pipe manufacturing speed, and in particular, the distance between the electrode tips and the arc tangent current applied to the electrodes are adjusted appropriately. The present invention relates to a method for manufacturing a pipe made of titanium or a titanium alloy (hereinafter collectively referred to as Ti), which can increase the pipe manufacturing speed by setting within a certain range.

〔従来の技術) 溶接Ti管の製造に当っては、例えば第8図に示す管成
形装置にて帯板を連続的に板幅方向に湾曲させて管状体
とし、該管成形装置に配設されたTIG溶接機にて成形
された管状体の突合せ部を連続的に溶接造管する。
[Prior art] In manufacturing welded Ti pipes, for example, a strip plate is continuously curved in the width direction of the plate using a tube forming apparatus shown in FIG. The abutting portions of the formed tubular bodies are continuously welded using a TIG welding machine.

第8図において、(II)はアンコイラ−であって、該
アンコイラ−(II)はTi帯板■の供給源である。
In FIG. 8, (II) is an uncoiler, and the uncoiler (II) is a supply source for the Ti strip (2).

(2)は成形ロールであって、該成形ロール(2)はそ
そぞれ対をなして基台(6)上に配列され、かつ水平に
回転する対と垂直に回転する対とが交互に配列されであ
る。ま念これら成形ロー/v(2)は、アンコイラ−(
II)よシ供給された帯板(IV)をU字状に成形する
ブレークダウンロー/v(8)、0字状に成形するフィ
ンバスロール(4)、0字状に成形された帯板の両側端
を被尋接用突合せ部として保持するスクイズロー/l/
 (5)、およびスクイズロー/L/ (51の上方に
配設されたTIG溶接機(7)にて溶接され友管を所定
外径寸法に仕上げるサイジングロー1v(6)よ)なる
(2) is a forming roll, and the forming rolls (2) are arranged in pairs on a base (6), and the pair rotating horizontally and the pair rotating vertically alternately. It is arranged. Please note that these forming rows/v (2) are uncoiler (
II) Breakdown row/v (8) to form the supplied strip (IV) into a U-shape, fin bath roll (4) to form it into a 0-shape, and Squeeze row holding both ends as butt parts for interrogation /l/
(5), and squeeze row /L/ (sizing row 1v (6) which is welded by the TIG welding machine (7) installed above 51 and finishes the friend pipe to a predetermined outer diameter dimension).

前記アンコイラ−(II)よシ成形ロー/L’ (2)
に供給さr; セミ帯板(IV)は上記管成形装置にて管状体に成形さ
れると共に前記スクイズロー/l/ (5)の上方に配
設されたTIG溶接機にて溶接されて溶接Ti管となる
Said uncoiler (II) and molding row/L' (2)
The semi-strip plate (IV) is formed into a tubular body using the above-mentioned tube forming device, and is welded using a TIG welding machine installed above the squeeze throw/l/ (5). It becomes a Ti tube.

なお、上記TIG溶接機は従来単電極のものが使用され
ていた。
Note that the TIG welding machine described above has conventionally used a single-electrode type.

一方、鋼管あるいはステンレス鋼管の製造に当りて、複
数本の電極にてTIG溶接する方法が知られておシ、そ
の具体的手法についても種々の提案があって、例えば第
9図に示す特公昭56−28629号公報に開示された
溶接装置および第10図に示す特公昭53−34771
号に開示され次溶接鋼管裂造方法等の提案がある。
On the other hand, when manufacturing steel pipes or stainless steel pipes, a method of TIG welding using multiple electrodes is known, and various proposals have been made regarding the specific method. Welding device disclosed in Japanese Patent Publication No. 56-28629 and Japanese Patent Publication No. 53-34771 shown in FIG.
The following is a proposal for a welded steel pipe cracking method, etc., as disclosed in No.

上記前者の従来技術(特公昭56−28629号の提案
)になる溶接装置を示す第9図において、(4υは管状
体であって、該管状体GlDは薄肉鋼帯板を成形リング
Oηにて板幅方向に湾曲成形された被溶接体で、図中の
矢印方向に移動する。
In FIG. 9, which shows a welding device according to the former prior art (proposed in Japanese Patent Publication No. 56-28629), (4υ is a tubular body, and the tubular body G1D is a thin steel strip formed by forming a ring Oη. The object to be welded is curved in the width direction of the plate and moves in the direction of the arrow in the figure.

(42は溶接ヘッドであって、該溶接ヘッド(47Jは
ホルダーMQに支持され前記管状体CDと直角に垂直な
らびに水平方向に移動調整可能とされている。
(42 is a welding head, and the welding head (47J) is supported by a holder MQ and is movable and adjustable in the vertical and horizontal directions at right angles to the tubular body CD.

K3 、 (441,49は非消耗1!極であって、こ
れら3本の電極【3C4(ハ)は同一直線上に配列され
て前記溶接ヘッド(42に保持されている。
K3, (441, 49 are non-consumable 1! electrodes, and these three electrodes [3C4 (c)) are arranged on the same straight line and held by the welding head (42).

また、中央に配された第2電極94は前記管状対@0に
対し直角となるよう前記溶接ヘッド03に保持され、そ
の前後に配された第1電極(ハ)と第3電極(ハ)は該
第2電極Iに対し斜めに、かつそれぞれ支持部(411
を支点として旋回可能に前記溶接ヘッド(43に保持さ
れてあって、スプリング圀と止めねじ(社)を介し”〔
それぞれ前記第2電極(2)に対する傾き角を微調整可
能とされている。
Further, the second electrode 94 placed in the center is held by the welding head 03 so as to be perpendicular to the tubular pair @0, and the first electrode (c) and third electrode (c) placed in front and behind the second electrode 94 are held at right angles to the tubular pair @0. are oblique to the second electrode I, and each support portion (411
It is held by the welding head (43) so as to be pivotable about the fulcrum, and is connected to the
The inclination angle with respect to the second electrode (2) can be finely adjusted.

この前者の従来技術になる溶接装置は上記構成にて、前
記第1および第3電極によシ形成される溶融部が溶接作
業中に前記第2電極によシ形成された溶融部と繋がるよ
う調整可能としてあって、これら3本の電極によ#)溶
接電流を分割供給すると共に3本の電極にて一連の浴融
プールを形成することで薄肉鋼管の溶接造管を可能とす
るものである。
The former prior art welding device has the above-mentioned configuration so that the fused portion formed by the first and third electrodes is connected to the fused portion formed by the second electrode during the welding operation. It is adjustable and allows welding of thin-walled steel pipes by dividing and supplying the welding current with these three electrodes and forming a series of bath melt pools with the three electrodes. be.

また、上記後者の従来技術(特公昭53−34771号
の提案)になる済接鋼管與造方法を示す第10図におい
て、(II)は管状体であって、該管状体t5′I)は
鋼帯板をそれぞれ対をなす成形ロールにて板幅方向に湾
曲された被溶接体である。
In addition, in FIG. 10, which shows the method for welding steel pipes according to the latter conventional technique (proposed in Japanese Patent Publication No. 53-34771), (II) is a tubular body, and the tubular body t5'I) is The object to be welded is a steel strip plate that is curved in the width direction by a pair of forming rolls.

(52)は一対のフィンバスロールであって、ここでは
ブレークダウンロール、フィンバスロール等のそれぞれ
対をなす一連の成形ロール群の最終の一対を例示してい
る。
(52) is a pair of fin bath rolls, and here the final pair of a series of forming roll groups such as breakdown rolls and fin bath rolls, respectively, is illustrated.

(50#(”)eφ5)はそれぞれ対をなすスクイズロ
ー〜であって、ここでは中央に配された一対のスクイズ
ロール(54)にて前記管状体φ0に最大のスクイズを
与えるものとされている。
(50#('')eφ5) are pairs of squeeze rows, and here, the pair of squeeze rolls (54) placed in the center are used to give the maximum squeeze to the tubular body φ0. There is.

(56)、(5力、0g) 、 (59)は非消耗電極
であって、これら電極(i6) (57) (54(5
9)はそれぞれ前記被溶接体なる管状体(51)の突合
せ部の上方に配列されている。
(56), (5 force, 0g), (59) are non-consumable electrodes, and these electrodes (i6) (57) (54 (5
9) are arranged above the abutting portion of the tubular body (51), which is the welded body.

また、これら電極(56) (57) (sa)φ9)
のうち、先行の3木については前記管状体に最大のスク
イズを与えるスクイズローIv(54)の前方に配し、
かつ該3本の電極中の最終電極(5日)によシ形成され
た溶融部が前記最大スクイズを与えるスクイズロール(
54)の中心点よシも前方に位置する補記されている。
In addition, these electrodes (56) (57) (sa)φ9)
Among them, the preceding three trees are arranged in front of the squeeze row Iv (54) that gives the maximum squeeze to the tubular body,
and a squeeze roll (where the molten part formed by the last electrode (5th day) among the three electrodes gives the maximum squeeze)
The center point of 54) is also noted as being located in the front.

なお、前記スクイズロー/I/(54)の後方に配置さ
れた電極(59)は溶接ビード表面の形状補正または溶
接境界部の加熱の九めのものであって、溶接ビードの完
全溶込みには関与しないものとされている。
The electrode (59) placed behind the squeeze throw/I/(54) is used to correct the shape of the weld bead surface or to heat the weld boundary, and is used to completely penetrate the weld bead. is not considered to be involved.

この後者の従来技術になる浴接領管製造方法は、3対以
上のスクイズローμを配設し、かつ複数電極を最大スク
イズを与えるスクイズローpの前方に配列することで、
被溶接体なる管状体の突合せ部に発生する管外周方向へ
の反力を抑え、該反力による微小亀裂やアンダーカット
の発生を防止し、もってステンレス鋼等の高合金につい
ても2m/m1KI以上の高速にて溶接造管し得るもの
である。
This latter method of manufacturing a bath contact tube, which is a prior art technique, involves arranging three or more pairs of squeeze rows μ and arranging a plurality of electrodes in front of the squeeze row p that gives the maximum squeeze.
It suppresses the reaction force generated in the butt part of the tubular body to be welded in the direction of the outer circumferential direction of the tube, and prevents the occurrence of microcracks and undercuts due to the reaction force, thereby achieving a welding speed of 2m/m1KI or more even for high alloys such as stainless steel. It is possible to weld pipes at high speeds.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明者等はかねてよシ溶接によるTi管を高品質にか
つ高速に生産する技術開発に関し鋭意研増を重ねておシ
、前述の鋼管あるいはステンレス鋼管に関する提案等に
開示された技術、すなわち複数電極によるTIG溶接法
に着目し、これをTi管の製造に応用してその造管速度
を向上せしめんとした。
The inventors of the present invention have been diligently researching the technology to produce Ti pipes of high quality and at high speed by welding. We focused on the TIG welding method using electrodes and tried to apply it to the production of Ti pipes to improve the pipe manufacturing speed.

これは、前述の単電1TIG溶接機による従来のTi管
溶接方法では、高速で走行する管状体の突合せ部につい
て十分な溶込みを得るために大きな溶接電流を単一の電
極に与えなければならず、この単電極に供給する大きな
電流を管状体の走行速度等と微妙に調和させることが困
難であシ、このため溶接電流が過大となってアークの貫
通が起るとか過少になって溶接ビードのアンダーカット
が発生する等の管製品の品質に致命的な欠陥が発生する
欠点があって、この単電極による溶接ではTi管の造管
速度をある限度(例えば1mm以下の肉厚のTi管では
3.5 m/min 、 L5 mm程度の肉厚のTi
管では1m/minの造管速度が限界とされてい念。)
以上に高めることが実質的に制約されていた。
This is because, in the conventional Ti tube welding method using the single-electrode 1TIG welding machine mentioned above, a large welding current must be applied to a single electrode in order to obtain sufficient penetration at the butt part of the tubular body traveling at high speed. First, it is difficult to delicately harmonize the large current supplied to this single electrode with the traveling speed of the tubular body, etc., and as a result, the welding current may become too high, causing arc penetration, or may become too low, resulting in poor welding. This single-electrode welding has the disadvantage of causing fatal defects in the quality of the pipe products, such as the occurrence of bead undercuts. For pipes, the speed is 3.5 m/min, and the Ti wall thickness is about 5 mm.
Please note that the pipe production speed of 1 m/min is considered to be the limit. )
There was a practical restriction on increasing the value above that level.

しかしこれらの問題は複数電極に溶接電流を分割供給す
ることで、よシ高速レベルにおいても回避し得ると期待
されたからである。
However, it was expected that these problems could be avoided even at high speeds by dividing the welding current to multiple electrodes.

しかし、前述の鋼管あるいはステンレスq管に関する提
案になる複数電極によるTIG溶接方法をTi管に対し
試行してみると、念しかに前記単電極TIG浴接機にて
造管速度を高め次とき発生する欠陥は解消されたが、こ
れとは別に耐湯の盛土夛による溶接中断(先行電極の後
方醇融部溶湯が盛シ上シ、その後行電極と短絡して溶接
の続行が不能となる現象)や浴接ビードが不安定となる
等の問題が発生することが明らかになつ念。
However, when we tried the multi-electrode TIG welding method proposed for steel pipes or stainless steel Q-tubes on Ti pipes, we discovered that the pipe forming speed was increased using the single-electrode TIG bath welding machine, and the following problems occurred. However, in addition to this, welding interruption due to embankment of the molten metal resistance (a phenomenon in which the molten metal in the rear molten part of the leading electrode overflows the embankment, shorting with the succeeding electrode and making it impossible to continue welding) ) or the bath welding bead becoming unstable.

一方、浴接にて造管されたTi管は通常溶接状態のまま
使用されることより溶接部のビード形状。
On the other hand, Ti pipes made by bath welding are usually used in the welded state, so the welds have a bead shape.

すなわち管製品の溶接ビード品質について特に厳しい要
求がなされる。その溶接ビード品質を判定する因子のう
ち特に重要な因子としては、浴接ビードの断面模式図で
ある第4図に示す■TC:ビード中央部肉厚、■Wi:
内面ピード幅、■WO:外面ビード幅等と、その他に@
外面ビード平坦度がある。
In other words, particularly strict requirements are placed on the quality of the weld bead of pipe products. Among the factors that determine the quality of the weld bead, the particularly important factors shown in Fig. 4, which is a schematic cross-sectional view of the weld bead, are ■TC: bead center wall thickness, ■Wi:
Inner bead width, ■WO: Outer bead width, etc.@
External bead flatness.

そしてまた、上記溶接Ti管のビード品質に影響を与え
る重要な製造条件因子としては、造管速度、管肉厚、浴
接電流、電極傾き角等があるが、複数電極を用いる場合
には前記製造条件因子に加えて各電極の先端間距離およ
び各電極に対する浴接電流の配分等が重要な因子である
ことが明らかとなつ之。
In addition, important manufacturing condition factors that affect the bead quality of the welded Ti pipe mentioned above include pipe forming speed, pipe wall thickness, bath contact current, electrode inclination angle, etc. When using multiple electrodes, It has become clear that in addition to manufacturing condition factors, the distance between the tips of each electrode and the distribution of bath contact current to each electrode are important factors.

本発明は上記の問題点に鑑み、造管速度および管肉厚と
の関連において、複数電極の適正電極配置と各電極に与
える適正浴接電流条件を把握し、もって溶接ビード品質
を確保してなお造管速度を向上し得るチタンまたはチタ
ン合金からなる管の製造技術の提供を目的とするもので
ある。
In view of the above problems, the present invention aims to ensure weld bead quality by grasping the appropriate electrode arrangement of multiple electrodes and the appropriate bath contact current conditions to be applied to each electrode in relation to pipe manufacturing speed and pipe wall thickness. The purpose of the present invention is to provide a technology for manufacturing tubes made of titanium or titanium alloys that can improve the speed of tube manufacturing.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点を解決するための本発明にかかるチタンまた
はチタン合金からなる管の製造方法は、チタンまたはチ
タン合金からなる帯板を板幅方向に湾曲して管状体とな
し、該管状体の長手方向突合せ部をその上に配列した複
数本の非消耗電極にてTIG溶接して管を製造する方法
において、前記突合せ部の上方に配列した複数電極のう
ち最終側2本の電極先端間距離(IV)を下記(I) 
、 (II)式を満足する範囲内としてあって、前記複
数電極に与える総浴接電流(I t)を下記(II)式
を満足する範囲内にすると共に、前記複数電極のうち最
終電極に与える溶接電流(If)を下記Q’V)式を満
足する範囲内にすることを特徴とするものである。
A method for manufacturing a tube made of titanium or a titanium alloy according to the present invention to solve the above problems is to curve a strip plate made of titanium or a titanium alloy in the width direction of the plate to form a tubular body, and to In a method of manufacturing a tube by TIG welding a directional abutting part using a plurality of non-consumable electrodes arranged above the abutting part, the distance between the tips of the last two electrodes among the plurality of electrodes arranged above the abutting part ( IV) below (I)
, within a range that satisfies formula (II), and the total bath contact current (I t) given to the plurality of electrodes is within a range that satisfies formula (II) below, and the final electrode among the plurality of electrodes is It is characterized in that the applied welding current (If) is within a range that satisfies the following equation (Q'V).

0.0035VTL5≦L≦(L0070VTL5+2
O−−−−−(II)10≦L≦ 70       
 ・・・・・・(II)0.09VT  +30≦It
≦0.09VTL5+130  ・−・−(In)Q、
5 Im  ≦If≦ r m          ”
 @)ただし、L : 電極先端間距離(mn1)■ 
: 造管速度(rnm/m1 n)T : 管肉厚(In nl) It:  総尋接電流(A) If:  最終電極の溶接電流(A) 工m=  各電極当シの平均溶接電流(A)〔作 用〕 本発明者等は前記問題点を解明するに当り溶接条件、特
に複数電極の先端間距離、各電極に与える溶接電流等を
造管速度および管肉厚との関連において研究を行つ友。
0.0035VTL5≦L≦(L0070VTL5+2
O------(II) 10≦L≦70
・・・・・・(II) 0.09VT +30≦It
≦0.09VTL5+130 ・−・−(In)Q,
5 Im ≦If≦ r m”
@) However, L: Distance between electrode tips (mn1) ■
: Pipe manufacturing speed (rnm/m1 n) T: Pipe wall thickness (Innl) It: Total contact current (A) If: Welding current of final electrode (A) m= Average welding current of each electrode ( A) [Function] In order to solve the above problem, the present inventors studied welding conditions, especially the distance between the tips of multiple electrodes, the welding current applied to each electrode, etc. in relation to pipe forming speed and pipe wall thickness. A friend who goes to

以下その研究経緯に沿って本発明を説明する。The present invention will be explained below along with the research history.

なお、試験溶接に使用した管成形装置は概要第3図に示
すものである。
The tube forming apparatus used for the test welding is shown in FIG. 3.

第3図において%(II)はアンコイラ−であって、該
アンコイツー(II)はTi帯板(IV)を管成形装置
に供給するものである。
In FIG. 3, % (II) is an uncoiler, and the uncoiler (II) supplies the Ti strip (IV) to the tube forming apparatus.

(2)は成形ロールであって、該成形ロー/l/ (2
)は、ブレークダウンロー/L’(8)、フィンバスロ
ー〜(4)。
(2) is a forming roll, the forming roll /l/(2
) is Breakdown Low/L' (8), Finba Low ~ (4).

スクイズロー/L’(Isおよびサイジングロー/L’
(6)等の配列よりなるもので、これらは前述の第8図
に示した管成形装置とスクイズロールαυの配置数以外
は基本的に同一の構成である。
Squeeze row/L' (Is and sizing row/L'
(6), etc., and these have basically the same configuration as shown in FIG. 8 above, except for the arrangement of the tube forming apparatus and the number of squeeze rolls αυ.

なお、スクイズロー/l/(2)は種々の試験造管速度
に対して管状体のスプリングバックの影響を最少とする
ため5対配置した。
In addition, five pairs of squeeze rows /l/(2) were arranged in order to minimize the influence of springback of the tubular body at various test tube manufacturing speeds.

(ロ)は電極ホルダーであって、該電極ホルダー(ロ)
は複数本の電極を管状体の突合せ部の上方に配列するよ
う保持し、また各電極の先端間距離および傾き角を調整
可能に保持し、かつ一体的に垂直および水平方向に移動
可能なものとした。
(b) is an electrode holder, the electrode holder (b)
holds a plurality of electrodes arranged above the butt part of the tubular body, the distance between the tips of each electrode and the inclination angle can be adjusted, and the electrodes can be moved in the vertical and horizontal directions as a unit. And so.

(印は速度検出器であって、該速度検出器(印は検出ロ
ー1v(8)の回転を計測することで管状体の移動速度
を検出するものとした。
(The mark is a speed detector, which detects the moving speed of the tubular body by measuring the rotation of the detection row 1v (8).

■は板厚測定器であって、該測定器(T)は成形ローA
/(2)の前方に配された非接触式超音波探触子(9)
にてTi帯板(IV)の厚さを測定するものとした。
■ is a plate thickness measuring device, and this measuring device (T) is a forming row A
/ Non-contact ultrasound probe (9) placed in front of (2)
The thickness of the Ti strip (IV) was measured at .

(I)は電流コントローラであって、該電流コントロー
ラ(I)は各電極(γ)の溶接電源(IV)を制御し、
各電極(7)に与える溶接電流をそれぞれ調節・設定す
るものとした。
(I) is a current controller, the current controller (I) controls a welding power source (IV) for each electrode (γ),
The welding current given to each electrode (7) was adjusted and set respectively.

上記第3図に示す構成にてTi帯板(IV)を管状体に
成形すると共に、その突合せ部の上方に配列した複数電
極(7)を用いて該突合せ部を種々の条件下にて試験溶
接を行り之。
A Ti strip (IV) was formed into a tubular body with the configuration shown in Fig. 3 above, and the abutting part was tested under various conditions using multiple electrodes (7) arranged above the abutting part. Performed welding.

なお、試験溶接では管内外面の溶接ビードに対して酸素
が混入するのを防止する目的で、溶接点近傍をArガス
にてシーμドし念。
During test welding, the area near the welding point was seeded with Ar gas to prevent oxygen from entering the weld bead on the inner and outer surfaces of the tube.

試験溶接は、まず前述の@訃よび合金優に関する従来技
術をTi管の浴接に適用したときに発生した問題点、す
なわち溶湯の盛上シによる溶接の中断を解消し得る電極
配置条件の把握を目的として行り之。
In the test welding, we first determined the electrode arrangement conditions that would solve the problem that arose when applying the conventional technology related to the above-mentioned ferrite and alloy to bath welding of Ti pipes, namely, interruptions in welding due to molten metal build-up. I went there for the purpose.

なお、以降に記載の電極番号(例えば第1電極、第2電
極等)は溶接開始側、すなわちTi帯板を供給する前述
のアンコイラ−(II)側を前方とし、かつ溶接終了側
、すなわち前記サイジングロー/l/(6)側を後方と
して、この前方よシの番号とする。
In addition, the electrode numbers (for example, the first electrode, the second electrode, etc.) described hereinafter refer to the welding start side, that is, the above-mentioned uncoiler (II) side that supplies the Ti strip, and the welding end side, that is, the above-mentioned uncoiler (II) side that supplies the Ti strip. With the sizing row/l/(6) side as the rear, use this front side number.

また電極の傾き角とは電極先端を前方に、上端を後方に
傾け、電極先端において管状体に対して垂直に引いた線
と電極とのなす角度を言う。
Further, the inclination angle of the electrode refers to the angle between the electrode and a line drawn perpendicularly to the tubular body at the electrode tip when the electrode tip is tilted forward and the upper end is tilted backward.

まず2電極を用い九試験溶接にて電極先端間距離等を種
々変更して溶湯盛上シの有無を調べたところ第1表と第
2表とに示す結果が得られた。
First, the presence or absence of molten metal build-up was investigated by conducting nine test weldings using two electrodes, varying the distance between the electrode tips, etc., and the results shown in Tables 1 and 2 were obtained.

なおこれら試験に供された材料はJIS規格のH463
1第2種に基く工業用純チタンである。
The materials used in these tests conform to JIS standard H463.
It is an industrially pure titanium based on Type 2.

(以下余白) 第    1    表 V : 造管速度 × : 各湯盛土多発生 ○ : 浴湯盛上シなし θl: 第1電極の傾き角 工1:  第1電極の浴接電流 ■雪: 第2電極の溶接電流 Ixl  第1電極先端と第2電極先端との距離ただし
、第2電極の傾き角 θ冨−30゜管肉厚T−α7mm 管径−za4mmとした。
(Leaving space below) 1st Table V: Pipe manufacturing speed ×: Frequent occurrence of embankment for each bath ○: No bath embankment θl: Inclination angle work of the first electrode 1: Bath contact current of the first electrode ■Snow: Second Welding current Ixl of the electrode Distance between the first electrode tip and the second electrode tip However, the inclination angle of the second electrode θ depth - 30° Tube wall thickness T - α 7 mm Tube diameter - za 4 mm.

第    2    表 × : 溶湯盛上力発生 ○ : 溶湯盛上シなし 工1:  第1電極の溶接電流 ■2:  第2電極の溶接電流 L1!:  第1電極先端と第2電極先端との距離ただ
し、第1.第2電極の傾き角θ1.s=g300管肉厚
TmQ、7mm 管径−25,4mm 造管速度V wa l Q m/minとした。
Table 2 ×: Molten metal heaping force generated ○: Molten metal heaping process 1: Welding current of the first electrode ■2: Welding current L1 of the second electrode! : Distance between the first electrode tip and the second electrode tip. Tilt angle θ1 of the second electrode. s=g300 Pipe wall thickness TmQ, 7 mm Pipe diameter -25.4 mm Pipe forming speed V wal Q m/min.

次に管状体の突合せ部の上方に3本の電極を配列する以
外は前記と同様の条件をとり、第2電極先端と第3電極
先端との距離Lax  等を種々変更して試験導接を行
い溶湯盛上シの有無を調べたところ、第3表と第4表と
に示す結果が得られた。
Next, test conduction was performed under the same conditions as above except that three electrodes were arranged above the abutting part of the tubular body, and by variously changing the distance Lax between the second electrode tip and the third electrode tip. When the presence or absence of molten metal heaping was investigated, the results shown in Tables 3 and 4 were obtained.

なお、これら試験に供された材料はJIS規格のH46
31第2種に基く工業用純チタンである。
The materials used in these tests meet the JIS standard H46.
It is industrially pure titanium based on Type 2 No. 31.

(以下余白) 第3表 ■ :造管速度 × : 浴湯盛上力発生 ○ : n湯盛上シなし 工1: 第1電極の溶接電流 ■t: 第2電極の溶接電流 工3: 第3電極の溶接電流 L!3: 第2電極先端と第2電極先端との距離ただし
、管肉厚Ts*Q、7m+n、管径= 25.4 mm
第1電極先端と第2電極先端間の距離sm3Qmm。
(Leaving space below) Table 3 ■ : Pipe manufacturing speed × : Bath water heaping force generation ○ : n Hot water heaping up welding 1: Welding current of the first electrode ■t: Welding current of the second electrode 3: The welding current of the second electrode Welding current L for 3 electrodes! 3: Distance between the second electrode tip and the second electrode tip However, tube wall thickness Ts*Q, 7m+n, tube diameter = 25.4 mm
The distance between the first electrode tip and the second electrode tip is sm3Qmm.

第1.2.3電極の傾き角は全て30°とした。The inclination angles of the first, second and third electrodes were all 30°.

第    4    表 V :造管速度 × :溶湯盛上シ発生 ○ :溶湯盛シなし ■1:第1電砕の溶接電流 ■::第211極の溶接電流 工3:第31!極の浴接電流 L!3:第2電極先端と第2電極先端との距離ただし、
管肉厚””L6mm、管径−25,4rnm。
Table 4: Pipe making speed × : Molten metal heaping occurs ○ : Molten metal heaping does not occur ■1: Welding current of 1st electrolysis ■ :: Welding current of 211th pole 3: 31st! Pole bath contact current L! 3: Distance between the tips of the second electrode and the tip of the second electrode However,
Pipe wall thickness: L6mm, pipe diameter: -25.4rnm.

第1電極先端と第2電極先端間の距離−3Qmm。The distance between the first electrode tip and the second electrode tip is -3Qmm.

第1 、2 、31J極の傾き角は全て30°とした。The inclination angles of the 1st, 2nd, and 31J poles were all 30°.

上記試験溶接の過程を観察したところ、溶湯の盛上多現
象は2本の電極を使用したときは両電極間で、また3本
の電極を使用したときは第2電唖と第3電極との間でそ
れぞれ発生することが確認された。またこれら溶湯の盛
上ジ現象は上記2電極間の溶融部浴湯が一連の溶湯プー
ルとして繋がつ次時に後方側の溶湯が前方に逆流して発
生することが判明した。
When we observed the above test welding process, we found that the molten metal build-up phenomenon occurred between the two electrodes when two electrodes were used, and between the second and third electrodes when three electrodes were used. It has been confirmed that both occur. It has also been found that the molten metal heaping phenomenon occurs when the molten metal bath between the two electrodes is connected as a series of molten metal pools, and the molten metal on the rear side flows backwards.

そして、第1〜4表の結果からこのような浴湯盛上多現
象は造管速度が速い程またTi管の肉厚が大きい程、ま
たさらに電極先端間距離が短かい程発生し易いことが判
明した。
From the results in Tables 1 to 4, it can be seen that the faster the tube manufacturing speed is, the thicker the wall of the Ti tube is, and the shorter the distance between the electrode tips, the more likely this phenomenon occurs. There was found.

そこで第1〜第4表の結果を電極先端間距離(IV)、
造管速度(IV)およびTi管肉厚(′r)の関数とし
て整理したところ第2図に示す結果を得た。
Therefore, the results in Tables 1 to 4 are used as the distance between electrode tips (IV),
The results shown in FIG. 2 were obtained when the results were summarized as a function of the pipe forming speed (IV) and the Ti pipe wall thickness ('r).

すなわち第2図に示すように溶湯盛上多現象はしくα0
035VTL5の領域(図中のA領域)で発生しておシ
、これよりe湯の盛上夛を防止するためにはL≧α00
35VT   とする必要があることが分った。
In other words, as shown in Figure 2, the molten metal build-up phenomenon is α0
035VTL5 area (A area in the figure)
It turned out that it was necessary to set it to 35VT.

ただし、L>70(図中のB領域)になると電極先端間
が離れ過ぎて入熱効率が悪化するだけでな(Ar ガス
によるシールド性にも問題が出てくる。またL>0.0
070VTL5+20  <図中f)C領域)に々ると
入熱効率が悪化し複数電極を用いるメリットが無くなる
。さらにL<10(図中のD領域)になると電極先端間
が近接し過ぎてアークの干渉が激しくなりg接が不安定
となる。
However, if L > 70 (region B in the figure), the electrode tips will be too far apart, which will not only deteriorate the heat input efficiency (there will also be problems with the shielding performance due to Ar gas. Also, if L > 0.0
070VTL5+20 <region f)C in the figure) As the temperature increases, the heat input efficiency deteriorates and the advantage of using multiple electrodes disappears. Further, when L<10 (region D in the figure), the electrode tips are too close together, resulting in severe arc interference and unstable g-contact.

従って、溶湯の盛上シを防止し、かつ満足し得る溶接性
を得るためには最終2本の電極先端間距離を、下記(+
) 、 (0式を満足するよう設定する必要があるとの
結論に至った。
Therefore, in order to prevent the molten metal from building up and to obtain satisfactory weldability, the distance between the final two electrode tips should be set as follows (+
), (I came to the conclusion that it is necessary to set it so that the formula 0 is satisfied.

Q、0035VTL5≦L ≦0.0070VTL5+
2O−−−−−−(I)10≦L≦70       
・・−・・(II)前述の従来の複数電極を用いた銅管
溶接方法では各電極による溶融部を繋ぎ一連の溶湯プー
ルを形成させるよう各電極先端間距離を比較的短く設定
されていた。しかし、Ti管の浴接では浴湯の盛上シと
いう特異な現象が発生するため、むしろ浴湯プールの一
体化を避け、従来とは異る設定条件が必要であると分っ
た。
Q, 0035VTL5≦L≦0.0070VTL5+
2O------(I) 10≦L≦70
(II) In the conventional copper pipe welding method using multiple electrodes described above, the distance between the tips of each electrode was set relatively short so that the molten part of each electrode was connected to form a series of molten metal pools. . However, because a unique phenomenon of bulging of the bath water occurs when connecting the Ti pipe to the bath, it was found that it was necessary to avoid integrating the bath pool and to set conditions different from conventional ones.

述上のように1発明者等はまず溶湯の盛上シによる溶接
中断を防止して高速造管を可能とする複数電極の適正配
置条件を把握した。
As mentioned above, the inventors first understood the conditions for proper arrangement of multiple electrodes to prevent welding interruptions due to molten metal build-up and to enable high-speed pipe manufacturing.

そして、述上の電極配置条件において、造管速度を高め
てなお高品質の各接ビードを得られる適正溶接電流条件
の把握を目的として、複数電極に与える溶接電流等を種
々変更して試験溶接を行った。なお、この試験溶接に使
用した管成形装置は前述の第3図に示すものであって、
またシールドガスは前述と同様にArガスを用いた。
Under the above-mentioned electrode arrangement conditions, we conducted test welding by varying the welding current applied to multiple electrodes in order to determine the appropriate welding current conditions that would increase the tube manufacturing speed and still obtain high-quality weld beads. I did it. The tube forming device used for this test welding is the one shown in Figure 3 above.
Further, as the shielding gas, Ar gas was used as described above.

これら試験溶接にて形成され之浴接ビードについて、そ
のビード品質を調べたところ第5表に示す結果が得られ
た。
The bead quality of the bath-welded beads formed by these test welds was examined, and the results shown in Table 5 were obtained.

なお、溶接ビード品質については、溶接ビード断面にて
測定した■ビード中央部肉厚(To)とO内面ビード幅
(Wi) 、および浴接ビードの円周方向外表面にて測
定したθ外面ビード平坦度のそれぞれについて合否判定
した。
Regarding the weld bead quality, the bead center wall thickness (To) and O inner bead width (Wi) measured at the weld bead cross section, and θ outer bead measured at the circumferential outer surface of the weld bead. Pass/fail judgment was made for each level of flatness.

これについて説明すると、第4図は浴接ビード断面模式
図であって、では管肉厚(mm) 、TOはビード中央
部肉厚(mm) 、Wiは内面ビード幅(mfn)、W
o  は外面ビード幅(mm)を示し、前記溶接ビード
断面の測定は該第4図のそれぞれの部位に対応する寸法
を測定する。そして、第5図は溶接どの平坦度は外面ビ
ードの両側点を結んだ直線に対する凹部寸法(δ1)と
凸部寸法(δ2)との加算測定値、すなわちδ1+δ鵞
(μl11)の値をもって評価する。
To explain this, Fig. 4 is a schematic cross-sectional view of a bath welding bead, where is the tube wall thickness (mm), TO is the bead center wall thickness (mm), Wi is the inner bead width (mfn), and W
o indicates the outer bead width (mm), and the cross section of the weld bead is measured by measuring dimensions corresponding to the respective portions in FIG. 4. Figure 5 shows that the flatness of a weld is evaluated by the sum of the concave dimension (δ1) and convex dimension (δ2) with respect to the straight line connecting the points on both sides of the outer bead, that is, the value of δ1 + δ (μl11). .

そして、前記■ビード中央部肉厚(Tc)に関してはT
≦Tc≦T +9 / 100 (mm)をもって、(
鴫内面ビード@ (Wi)に関しては1,5りi≦2.
5 (mm) をもって、tたθ外面ビード平坦度(I
V)に関してはF≦60(μnt)をもってそれぞれ合
格範囲とした。
Regarding the thickness of the bead center portion (Tc) mentioned above, T
≦Tc≦T +9/100 (mm), (
Regarding the inner bead @ (Wi), 1.5rii≦2.
5 (mm), the outer bead flatness (I
Regarding V), F≦60 (μnt) was defined as an acceptable range.

なお、これらの判定基準値は溶接Ti管の溶接ビード品
質評価のため施行されるフレア試験にて溶接ビード部に
亀裂が発生したシ、肉厚変動によシ超音波深傷試験にて
ノイズが発生したシしない形状条件をもって設定した。
These criteria values are based on cracks occurring in the weld bead during the flare test conducted to evaluate the quality of the weld bead of welded Ti pipes, noise caused by wall thickness variation, and noise during the ultrasonic deep damage test. It was set with shape conditions that would not cause the problem to occur.

(以下余白) 上記第5表に示す結果よシ、良好な結果を得たものを電
極に与えた総溶接電流(It)#造管速度閃およびTi
管肉厚(II)の関数として整理したところ第1図の示
す結果を得た。
(Leaving space below) According to the results shown in Table 5 above, the one that gave good results was the total welding current (It) #pipemaking speed flash and Ti
When organized as a function of tube wall thickness (II), the results shown in FIG. 1 were obtained.

すなわち第1図に丸、三角および四角印でプロットした
ように良好な溶接ビードを得る総溶接電K(It)は、
It−αOgv’r  +aの関係にあり、それらの分
布は30≦a≦130の範囲であつ九。
In other words, as plotted with circles, triangles, and squares in Figure 1, the total welding electric power K (It) to obtain a good weld bead is:
The relationship is It-αOgv'r +a, and their distribution is in the range of 30≦a≦130.

ソシテ、zt−+109 VT L5+ 1 a o 
ヲ超エル領域(図中のY領域)になると内面ビード幅(
Wi)が25 mtn以上に過大、すなわち総浴接電流
が(I t)が過大となり、tた、It−0,09VT
  + 30 未満の領域(図中のX領域)になると内
面ビード幅G’Vi)がl、 5 mm以下の過少、す
なわち総浴接電流(I t)が過少となる。
Soshite, zt-+109 VT L5+ 1 ao
When it comes to the super L region (Y region in the figure), the inner bead width (
Wi) is excessive to 25 mtn or more, that is, the total bath contact current (It) is excessive, and t is It-0,09VT.
In the region below +30 (X region in the figure), the inner bead width G'Vi) becomes too small by l,5 mm or less, that is, the total bath contact current (It) becomes too small.

従って、前述判定基準を満足する良好な浴接ビードを得
るためには、複数電極に与える総浴接電流(I t)を
下記(If)式を満足する範囲内とする必要があるとの
結論に至った。
Therefore, in order to obtain a good bath contact bead that satisfies the above-mentioned criteria, it is concluded that the total bath contact current (I t) given to multiple electrodes needs to be within a range that satisfies the following formula (If). reached.

0.09VTL5+30≦It<0.09VTL5+1
30−−−−−(II)一方、外面ビード平坦度(IV
)について詳細に検討すると、第5表に示す試験厘5,
6,9,10゜11.18,21,27.および32の
条件にて外面ビード平坦度(IV)が不合格となってお
り、これらは最終電極に対する浴接電流(If)の配分
と関連が認められ、 If≦Q、5ImなるときとIf
≧Imなるときには他の判定因子が良好であっても不合
格となっている。
0.09VTL5+30≦It<0.09VTL5+1
30---(II) On the other hand, the outer bead flatness (IV
), the test results shown in Table 5 are as follows:
6,9,10°11.18,21,27. The outer bead flatness (IV) failed under the following conditions:
When ≧Im, even if the other judging factors are good, the test has failed.

これらは、If≦α5Imのとき外面ビードが凸状を呈
することよシ最終電極の浴接電流(If)が小さ過ぎて
、最終電極での浴込みが不充分となシ最終のビード形状
を形成する働きが失われたもので、−17jIf≧Im
のときアンダーカットやビード表面に肌あれが発生して
いることより最終電極の溶接電流が過大であったと判断
されるが、いずれにしても外面ビーf平坦度は最終的に
最終電極の浴接電流(工0.の配分に依存することが明
らかとなった。
These are caused by the fact that the outer bead takes on a convex shape when If≦α5Im, and also by the fact that the bathing current (If) of the final electrode is too small and the bathing at the final electrode is insufficient, and the final bead shape is formed. -17jIf≧Im
At this time, it is determined that the welding current of the final electrode was excessive due to the occurrence of undercuts and roughness on the bead surface, but in any case, the outer bead flatness is ultimately determined by the bath contact of the final electrode. It became clear that it depends on the distribution of current (work 0.).

従って、前記判定基準を満足する外面ビード平坦度を得
るためには最終電極に与える陪接電流(If)  は、
下記(IV)式を満足する必要があるとの結論に至った
Therefore, in order to obtain an outer bead flatness that satisfies the above criteria, the parallel current (If) given to the final electrode is:
It was concluded that it is necessary to satisfy the following formula (IV).

0.5  I  rn≦ If ≦I  m     
               ・・曲 QV)途上の
ように、造管速度(至)および管肉厚(℃との関連にお
いて、電極先端間距離(L)を前記(I) 、 (II
)式を満足する範囲とし、また電極に与える総計電流(
I t)を前記個)式を満足する範囲で、かつ最終電極
に与える浴接電流(I f)を前記(II)を満足する
範囲とすることで、複数電極を用いてTi管の造管速度
を高めると共に、高い品質の溶接ビードを得ることが可
能となる。
0.5 Irn≦If≦Im
... Song QV) In relation to the pipe forming speed (to) and the pipe wall thickness (°C), the distance between the electrode tips (L) is calculated from the above (I) and (II).
), and the total current applied to the electrodes (
By setting I t) within a range that satisfies the above formula and setting the bath contact current (I f) given to the final electrode within a range that satisfies the above (II), it is possible to form Ti pipes using multiple electrodes. It becomes possible to increase the speed and obtain a high quality weld bead.

〔実 施 例〕〔Example〕

第6図は、Ti管を2電極を用いて導接造管した実施例
を示すものである。
FIG. 6 shows an example in which a Ti tube is connected and formed using two electrodes.

第6図において、OおよびX印でプロットしたものは前
述の第5表に示した溶接結果の内試験憲1〜15の結果
を第1電極の浴接電流(II1)と第21ル極の浴接電
流(工2)との関係にて示すものである。
In Figure 6, what is plotted with O and It is shown in relation to the bath contact current (Step 2).

n接電流(II1、I z)以外の条件としては、管成
形装置は前述の第6図に示すものとし、造管速度(至)
昭6m/min、管肉厚(II)=α49mm、管径−
25.4mm 、  電極先端間距離(IV)−4Qm
mおよび2電極の傾き角−20°とそれぞれ一定とした
。そして被溶接材は純チタン(JIS:H4631第2
種)である。
The conditions other than the n-contact current (II1, Iz) are as follows:
Showa 6m/min, pipe wall thickness (II) = α49mm, pipe diameter -
25.4mm, distance between electrode tips (IV) -4Qm
m and the inclination angle of the two electrodes were kept constant at −20°. The material to be welded is pure titanium (JIS: H4631 2nd
species).

また、第6図に0印でプロットし念ものは、重量%で0
.8%Niとα3%MOを含むチタン合金(ASTM:
 B538Grada 12)を前記純チタンと同条管 件にて溶接撃て得られ念下記第6表によるものである。
In addition, the 0 mark plotted in Figure 6 indicates that the weight percentage is 0.
.. Titanium alloy containing 8% Ni and α3% MO (ASTM:
B538Grada 12) was welded under the same conditions as the pure titanium described above, and the results are as shown in Table 6 below.

第    6    表 Wi−J:内面ビード幅の合否、Tc−J:  ビード
中央部肉厚の合否、F−T:外面ビード平坦度合否。
Table 6 Wi-J: Inner bead width pass/fail, Tc-J: Bead center thickness pass/fail, F-T: Outer bead flatness pass/fail.

O: 合格、×:不合格。O: Pass, ×: Fail.

I工:  第1心極の溶液室bff、 aエ2:  第
2を極の溶接電流 (他の条件は第5表と同じ) なお、第6図に示す線分は上記の造管速度(V)および
管肉厚■との関連において、Is −−Iz−1−21
5はQ、09VT  +30 と、l1m−1x+31
5は0.09VT”’+130 と、 ItsIxはI
tnwm工fと、Isrw31xはα5Im−If  
とそれぞれ同義である。
I engineering: Solution chamber bff of the first core pole, ae2: Welding current of the second core pole (other conditions are the same as in Table 5). The line segments shown in Figure 6 indicate the above pipe forming speed ( V) and tube wall thickness ■, Is --Iz-1-21
5 is Q, 09VT +30 and l1m-1x+31
5 is 0.09VT"'+130, ItsIx is I
tnwm engineering f and Isrw31x are α5Im-If
are synonymous with each other.

第6図のプロットに示す各浴接造管の結果およびその過
程の観察より、図中の・〜孟の各領域について説明する
と、d−a−eの領域は本発明の(II)式を満足する
範囲で、f −a −gの領域は本発明の(至)式を満
足する範囲であシ、従ってa領域が(!I) 、 m式
共に満足する本発明の適正浴接電流範囲である。また図
中のプロットで示すように、この浴接電流範囲内にて溶
接造管され素管の溶接ビードはその判定において全て合
格しておシ、該範囲がTi管の溶接について適正なもの
であることが理解されよう。
Based on the results of each bath welded pipe manufacturing shown in the plot of FIG. Within the range that satisfies the equation (!I) of the present invention, the region of f - a - g is a range that satisfies the formula (! It is. In addition, as shown in the plot in the figure, all weld beads of raw pipes manufactured within this bath contact current range passed the judgment, and this range is appropriate for welding Ti pipes. One thing will be understood.

なおa領域以外においては、主として次のような問題点
が認められた。
In areas other than area a, the following problems were mainly observed.

b−f−bの領域では、総溶接電流の不足に起因すると
判断される内面ビード幅が過少となる傾向が認められた
In the b-f-b region, there was a tendency for the inner bead width to be too small, which was determined to be due to a lack of total welding current.

・−g−・の領域では、総溶接電流の過剰に起因すると
判断される内面ビード幅が過大となる傾向が認められ念
In the region of ・-g-・, there is a tendency for the inner bead width to become excessive, which is considered to be caused by an excess of total welding current.

dの領域では外面ビードが凸状となる傾向があシ外面ビ
ード平坦度不良となジ易く、またeの領域ではアンダー
ットが発生し外面ビードの平坦度不良となり易いことが
認められ、これらは第2電極の溶接電流が過少ま念は過
大であるために発生するものと判明し念。
In the region d, the outer bead tends to have a convex shape, which tends to cause poor flatness of the outer bead, and in the region e, underdots tend to occur, resulting in poor flatness of the outer bead. It turned out that the problem was caused by the welding current of the two electrodes being too low or too high.

そしてまた、チタン合金については第6図のプロットで
示すようにa領域内の溶接電流では全て満足し得る結果
が得られた、ただし純チタンに比較し内面ビード幅がや
や小さくなる傾向が認められるので実施に当っては総浴
接電流を前記範囲内での高目側にて選定することが望ま
しい。
As for the titanium alloy, as shown in the plot in Figure 6, satisfactory results were obtained for all welding currents in the a region, although it was observed that the inner bead width tended to be slightly smaller than that of pure titanium. Therefore, in practice, it is desirable to select the total bath contact current on the higher side within the above range.

第7図は本発明にかかるTi管の溶接方法において、複
数電極の傾き角について調査した実施例の電極配置を示
す概要図である。
FIG. 7 is a schematic diagram showing the electrode arrangement of an example in which the inclination angles of a plurality of electrodes were investigated in the Ti tube welding method according to the present invention.

第7図において、αθは5対のスクイズローpであって
、該スクイズロー/I/aSは前述の第3図に示した管
成形装置のものと同じである。まIllは管状体であっ
て、該管状体α刀は図中の矢印方向に進行し、前記スク
イズローfi/(至)の前方に配列され九ブレークダウ
ンローμおよびフィンパスロー〃によりTi帯板を板幅
方向に湾曲して成形されたものである。
In FIG. 7, αθ is five pairs of squeeze rows p, and the squeeze rows/I/aS are the same as those of the tube forming apparatus shown in FIG. 3 above. Ill is a tubular body, and the tubular body α advances in the direction of the arrow in the figure, is arranged in front of the squeeze row fi/(to), and by nine breakdown rows μ and fin pass rows, Ti band plate It is molded by curving it in the board width direction.

(ア)は2本の電極であって、該電極(ア)は前記管状
体αυの突合せ部の上方に配列され、第2電極先端が前
記スクイズロー/L’(至)のうち中央に配置されたも
のの中心線上となるよう配されている。
(A) is two electrodes, the electrode (A) is arranged above the abutting part of the tubular body αυ, and the tip of the second electrode is arranged in the center of the squeeze row/L' (to). It is arranged so that it is on the center line of the object.

θ1は第1電極の傾き角で、むけ第2電極の傾き角であ
シ、またLIzは第11!極先端と第2電極先端間の距
離を示す。
θ1 is the inclination angle of the first electrode, whereas LIz is the inclination angle of the second electrode, and LIz is the 11th! The distance between the pole tip and the second electrode tip is shown.

上記の配置関係にて、前記電極先端間距離Ll!を2Q
 mmまたは3 Q +nmに固定し、第1電極の傾き
角θ1 を変更して浴接を行い、その影響を調査して見
た。
With the above arrangement, the distance between the electrode tips Ll! 2Q
The influence of bath contact was investigated by fixing it at mm or 3 Q + nm and changing the tilt angle θ1 of the first electrode.

なお、他の条件は、材料は純チタン(JIS:H463
1第2種〕 、管肉厚(T) = Q、 7 mm 、
  管径x2j%4mm、  第1電極の溶接電流(I
s) = 30OA、第2電極の溶接電流(Iり−2o
oA、造管速度(V) = 10 m /minとした
The other conditions are that the material is pure titanium (JIS: H463
1 Type 2], Pipe wall thickness (T) = Q, 7 mm,
Pipe diameter x 2j% 4mm, first electrode welding current (I
s) = 30OA, welding current of the second electrode (Iri-2o
oA, pipe forming speed (V) = 10 m/min.

これらの調査によシ第7表に示す結果が得られた。These investigations yielded the results shown in Table 7.

(以下余白) 第      7      表 ○ : 健全なビード Δ : ハンピングビード発生 × ; 浴湯盛上り発生 θ1 : 第1電極の傾き角 θ2 : 第2電極の傾き角 第7表に示すように、第一電極の傾き角θ1がマイナス
側、すなわち電極先端が管状体の反供給側を向き、電極
の上部が前記供給側に倒れ次ような&[なるとハンピン
グビード(ビード部外表面に断続的な斑点模様が形成さ
れる現象)が発生した。
(Leaving space below) Table 7 ○: Healthy bead Δ: Humping bead occurrence ×; Bath water heaving occurrence θ1: Inclination angle of the first electrode θ2: Inclination angle of the second electrode As shown in Table 7, When the inclination angle θ1 of one electrode is on the negative side, that is, the tip of the electrode faces the opposite supply side of the tubular body, and the upper part of the electrode falls toward the supply side, a humping bead (intermittent spots on the outer surface of the bead) appears. A phenomenon in which a spotted pattern is formed) occurred.

なお、第7表中にx印で示す溶湯盛上りの発生が認めら
れるが、これは導接条件を検討するとき、電極先端間距
離Lss  がα0035VT  以下であるためであ
ることが分る。
Incidentally, in Table 7, the occurrence of molten metal bulges indicated by x marks is observed, but when examining the conduction conditions, it can be seen that this is because the distance Lss between the electrode tips is equal to or less than α0035VT.

ま九ハンピングビートの発生状況は3本の電極を使用し
たときも同様傾向が認められたので、第1電極の傾き角
は0°以上とすべきである。
Since a similar tendency was observed in the occurrence of humping beats when three electrodes were used, the inclination angle of the first electrode should be 0° or more.

そして、複数電極をその先端間距離をl Q mmから
7Ommとして、かつへ字状に配することは互の上部が
接触することになシ実質的に配置し得ないこと、および
前述の試験溶接の経験よりiて、複数電極の配置は各電
極を平行、すなわち同−傾き角で15°〜30°とする
ことが望ましい。
Furthermore, the distance between the tips of multiple electrodes is 1 Q mm to 70 mm, and arranging them in a square shape means that the upper parts of each electrode are in contact with each other, and it is virtually impossible to arrange the electrodes, and the above-mentioned test welding Based on our experience, it is desirable that the plurality of electrodes be arranged in parallel, that is, at the same angle of inclination of 15° to 30°.

またこれら傾き角は造管速度の増加に伴いその傾き角を
大きくする方向で選定することが望ましいが、しかしこ
れが45°を超えるときは実用上アークが不安定となる
等の新たな問題が派生する。
It is also desirable to select these angles of inclination so that they become larger as the pipe manufacturing speed increases, but if this angle exceeds 45°, new problems such as instability of the arc arise in practical use. do.

従って電極の傾き角はC以上4r以下の範囲で望ましく
は15°以上30°以下の範囲にて、しかも造管速度と
調和させて設定すべきである。
Therefore, the inclination angle of the electrode should be set in a range of C or more and 4r or less, preferably in a range of 15° or more and 30° or less, and should be set in harmony with the pipe forming speed.

〔発明の効果〕〔Effect of the invention〕

運上のように本発明によれば、これら条件を満広 足する複数電極にてチタンまたはチタン合金シシ成形さ
れた管状体の突合せ部を浴接することで高い品質の浴接
ビードを得てなお大巾に造管速度を向上することが可能
であって1例えば、単電碓g!る溶接造管では3.5 
m/mjl+  (肉厚1mm以下)、1゜5 rn/
rniu  (肉厚L5程度)が限度とされていたもの
が前者で8rn/miロ、後者で5m/minとそれぞ
れ2倍速以上赫その造管速度が向上し得る等、大きな効
果を得ることができる。
Fortunately, according to the present invention, by bath-welding the abutting portions of tubular bodies formed from titanium or titanium alloy sheets using multiple electrodes that satisfy these conditions, a high-quality bath-welded bead can be obtained and still be large. It is possible to greatly improve the pipe manufacturing speed. 3.5 for welded pipe making
m/mjl+ (wall thickness 1mm or less), 1°5 rn/
It is possible to obtain great effects, such as increasing the pipe-making speed by more than twice as fast as 8rn/mil for the former and 5 m/min for the latter, which was considered to be the limit of rniu (wall thickness L5). .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の総溶接電流rtとvTL5の関係を示
すグラフ。 第2図は本発明の電極先端間距離りとVTL5の関係を
示すグラフ。 第3図は本発明の実施に使用する管成形装置の概要図。 第4図は溶接ビード断面模式図。 第6図は実施例の第1電極の溶接1!流IIと第2電極
の溶接電流工2と合否結果との関係を示すグラフ。 第7図は実施例の2電極配置を示す概要図。 第8図は従来の管成形装置を示す概要図。 第9図は従来の溶接装置を示す正面図。 第1O図は従来の溶接装置を示す斜視図。 F・−・帯板、1・・・アンコイツー、2・・・成形ロ
ーラ、3・・・プレイクダウンローヲ、4・・・フィン
バスローフ、 15−・・スクイズロール、6・・・サ
イジングロール、7・・・電極、8・・・検出ローA/
、9・・・探触子。 H・・・ホルダー、■・・・電流コントローラ、S・・
・速度検出器、T・・・板厚測定器。 VT ”5(IIM257min) 第2図 5.000   10,000   15,000””
5(”” /min )
FIG. 1 is a graph showing the relationship between the total welding current rt and vTL5 of the present invention. FIG. 2 is a graph showing the relationship between the distance between electrode tips and VTL5 of the present invention. FIG. 3 is a schematic diagram of a tube forming apparatus used in carrying out the present invention. Figure 4 is a schematic cross-sectional view of a weld bead. Figure 6 shows welding 1 of the first electrode in the example! A graph showing the relationship between flow II, welding current 2 of the second electrode, and pass/fail results. FIG. 7 is a schematic diagram showing the two-electrode arrangement of the embodiment. FIG. 8 is a schematic diagram showing a conventional tube forming apparatus. FIG. 9 is a front view showing a conventional welding device. FIG. 1O is a perspective view showing a conventional welding device. F--Strip plate, 1--Anchoy two, 2--Forming roller, 3--Plain down row, 4--Finn bath loaf, 15--Squeeze roll, 6--Sizing roll, 7... Electrode, 8... Detection low A/
, 9... probe. H...Holder, ■...Current controller, S...
・Speed detector, T...Plate thickness measuring device. VT “5 (IIM257min) Fig. 2 5.000 10,000 15,000”
5(””/min)

Claims (1)

【特許請求の範囲】 チタンまたはチタン合金からなる帯板を板幅方向に湾曲
して管状体となし、該管状体の長手方向突合せ部をその
上に配列した複数本の非消耗電極にてTIG溶接して管
を製造する方法において、前記突合せ部の上方に配列し
た複数電極のうち最終側2本の電極先端間距離(L)を
下記( I )、(II)式を満足する範囲内としてあつて
、前記複数電極に与える総溶接電流(It)を下記(I
II)式を満足する範囲内にすると共に、前記複数電極の
うち最終電極に与える溶接電流(If)を下記(IV)式
を満足する範囲内にすることを特徴とするチタンまたは
チタン合金からなる管の製造方法。 0.0035VT^1^.^5≦L≦0.0070VT
^1^.^5+20・・・・・・( I ) 10≦L≦70・・・・・・(II) 0.09VT^1^.^5+30≦It≦0.09VT
^1^.^5+130・・・・・・(III) 0.5Im≦If≦Im・・・・・・(IV) ただし、L:電極先端間距離(mm) V:造管速度(mm/min) T:管肉厚(mm) It:総溶接電流(A) If:最終電極の溶接電流(A) Im:各電極当りの平均溶接電流(A)
[Claims] A strip plate made of titanium or a titanium alloy is curved in the width direction of the plate to form a tubular body, and the longitudinal abutting portion of the tubular body is TIGed by a plurality of non-consumable electrodes arranged on the longitudinal abutting portion of the tubular body. In the method of manufacturing a pipe by welding, the distance (L) between the tips of the two final electrodes among the plurality of electrodes arranged above the abutting part is set within a range that satisfies the following formulas (I) and (II). The total welding current (It) given to the plurality of electrodes is given below (I
Made of titanium or a titanium alloy, the welding current (If) given to the final electrode among the plurality of electrodes is within a range that satisfies the following formula (IV). Method of manufacturing tubes. 0.0035VT^1^. ^5≦L≦0.0070VT
^1^. ^5+20・・・・・・(I) 10≦L≦70・・・・・・(II) 0.09VT^1^. ^5+30≦It≦0.09VT
^1^. ^5+130・・・・・・(III) 0.5Im≦If≦Im・・・・・・(IV) However, L: Distance between electrode tips (mm) V: Pipe forming speed (mm/min) T: Pipe wall thickness (mm) It: Total welding current (A) If: Welding current of final electrode (A) Im: Average welding current per each electrode (A)
JP29704986A 1986-12-12 1986-12-12 Method for manufacturing tube made of titanium or titanium alloy Expired - Fee Related JPH0635064B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29704986A JPH0635064B2 (en) 1986-12-12 1986-12-12 Method for manufacturing tube made of titanium or titanium alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29704986A JPH0635064B2 (en) 1986-12-12 1986-12-12 Method for manufacturing tube made of titanium or titanium alloy

Publications (2)

Publication Number Publication Date
JPS63149077A true JPS63149077A (en) 1988-06-21
JPH0635064B2 JPH0635064B2 (en) 1994-05-11

Family

ID=17841551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29704986A Expired - Fee Related JPH0635064B2 (en) 1986-12-12 1986-12-12 Method for manufacturing tube made of titanium or titanium alloy

Country Status (1)

Country Link
JP (1) JPH0635064B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001012375A1 (en) * 1999-08-12 2001-02-22 Nippon Steel Corporation HIGH-STRENGTH α + β TYPE TITANIUM ALLOY TUBE AND PRODUCTION METHOD THEREFOR
JP2011079434A (en) * 2009-10-07 2011-04-21 Tokyu Car Corp Method and system for manufacturing axle
CN114029596A (en) * 2021-12-10 2022-02-11 中国化学工程第六建设有限公司 Titanium pipeline welding method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001012375A1 (en) * 1999-08-12 2001-02-22 Nippon Steel Corporation HIGH-STRENGTH α + β TYPE TITANIUM ALLOY TUBE AND PRODUCTION METHOD THEREFOR
US6884305B1 (en) 1999-08-12 2005-04-26 Nippon Steel Corporation High-strength α+β type titanium alloy tube and production method therefor
JP2011079434A (en) * 2009-10-07 2011-04-21 Tokyu Car Corp Method and system for manufacturing axle
CN114029596A (en) * 2021-12-10 2022-02-11 中国化学工程第六建设有限公司 Titanium pipeline welding method

Also Published As

Publication number Publication date
JPH0635064B2 (en) 1994-05-11

Similar Documents

Publication Publication Date Title
US8207468B2 (en) Welding apparatus of stainless steel pipe and welding method of the same
CN101952074B (en) Submerged arc welding method with multiple electrodes for steel material
Cai et al. Molten pool behaviors and weld forming characteristics of all-position tandem narrow gap GMAW
CN103028631B (en) Manufacture process of thin-wall spiral composite steel pipe
US6054667A (en) Method of manufacturing metal tubes
CN111730177B (en) Low-dilution-rate double-filler-wire TIG surfacing process and application thereof
JPS6315070B2 (en)
KR20120112743A (en) Tig arc welding electrode and tig arc welding method
JPS63149077A (en) Manufacture of pipe composed of titanium or titanium alloy
CN105195866B (en) A kind of full-automatic root bead method of the pipe end of composite bimetal pipe
CN207464414U (en) A kind of three wire bond rifles
JP3352960B2 (en) Manufacturing method of titanium or titanium alloy welded pipe
RU2706993C1 (en) Multielectrode submerged arc welding
CN115703163A (en) Multi-electrode single-side submerged arc welding method
JP6438479B2 (en) Filler material for TIG welding
JP6607677B2 (en) Four-electrode single-sided single-layer submerged arc welding method
JP7323781B2 (en) Multi-electrode submerged arc welding method
JP6119691B2 (en) Forged steel pipe excellent in widening workability, its manufacturing method and manufacturing equipment
CN111670084B (en) Single-side submerged arc welding method and single-side submerged arc welding device
SU1660885A1 (en) Method for arc hard facing
JP5565021B2 (en) Welding wire feed guide, submerged arc welding machine, and UOE steel pipe manufacturing method
RU2697754C1 (en) Method of defect-free hybrid laser-arc welding of thick-wall butt joints
SU1523278A1 (en) Method of electric arc welding
KR20150125843A (en) Filler metal shape for welding
JP3616716B2 (en) High-speed non-abrasive welding method for can body

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees