JPS63148979A - Electrodialytic fermentation - Google Patents

Electrodialytic fermentation

Info

Publication number
JPS63148979A
JPS63148979A JP29660086A JP29660086A JPS63148979A JP S63148979 A JPS63148979 A JP S63148979A JP 29660086 A JP29660086 A JP 29660086A JP 29660086 A JP29660086 A JP 29660086A JP S63148979 A JPS63148979 A JP S63148979A
Authority
JP
Japan
Prior art keywords
fermentation
acid
electrodialysis
salt
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29660086A
Other languages
Japanese (ja)
Other versions
JPH0710228B2 (en
Inventor
Masayoshi Iwahara
正宜 岩原
Yoshiyuki Nomura
野村 善幸
Kazuo Yomo
四方 和夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP29660086A priority Critical patent/JPH0710228B2/en
Publication of JPS63148979A publication Critical patent/JPS63148979A/en
Publication of JPH0710228B2 publication Critical patent/JPH0710228B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To prevent deterioration of a microorganism and improve efficiency of fermentation, by the presence of polyphosphoric acid or a salt thereof in a fermentation liquor in continuing fermentation while separating a fermentation product by electrodialysis. CONSTITUTION:The anode 2 and cathode 3 are provided in an electrodialytic cell 1 and two pairs each of cation exchange membranes 4 and anion exchange membranes 4 are placed between both the electrodes 2 and 3 to divide the interior of the electrodialytic cell 1 into an anode compartment 6, concentration chamber 7, dilution chamber 8, concentration chamber 7 and cathode compartment 9. A fermentation liquor is circulated through the dilution chamber 8, cathode compartment 9 and fermenter 11 and a fermentation liquor is circulated through the concentration chamber 7 and recovery tank 12. In the process, polyphosphoric acid or a salt thereof is added to the fermentation liquor. Triphosphoric acid, particularly tetra- or higher phosphoric acid is preferred as the polyphosphoric acid. The amount of the polyphosphoric acid or salt thereof is preferably 0.02-0.2g to 1l fermentation liquor.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、発酵液に通電しながら発酵を行ない、得られ
た生成物をイオン交換膜を用いた電気透析によって発酵
液から分離する通電透析発酵法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to electrification dialysis, in which fermentation is carried out while electricity is applied to the fermentation liquid, and the resulting product is separated from the fermentation liquid by electrodialysis using an ion exchange membrane. Regarding fermentation methods.

〔従来技術及び発明が解決しようとする問題点〕微生物
工業に於いて、発酵による目的物質の生産性を向上させ
る方法として、発酵液に過電する通電発酵方法が知られ
ている(特公昭47−15745号公報)。この方法は
、発#液中に標準電極、陰極及び陽極のいずれか2つを
浸漬して、両電極間に電圧なかける方法であり、目的物
質の生成量が増加するという利点を有している。その後
、この通電発酵方法の利点をそのまま生かし、しかも、
発酵によって生成する目的物質の発酵液からの分離を行
なうために、陽極と陰極との間に陽イオン交換膜及び陰
イオン交換膜を配置し、陰極室に発酵液を供給して発酵
により生成した目的物質を電気透析により分離する方法
が試みられている。〔アプライド・アンド・エンバイロ
ンメンタル・ミク四バイオロジー(Applied a
nd Enrirona+@nta1miarolio
log7 52巻2号314〜319頁 1986年 
)〕。この方法は、ただ単に発酵液に通電する方法に比
べると、発酵液からの目的物質の分離が極めて迅速に、
且つ容3に行なえるという利点を有している。しかしな
がら、実際に上記の方法な実施してみろと、起動直後は
前記した通電発酵方法による優れた効果が得られるので
あるが、時間の経過に伴って目的物質の生成量の増加に
頭打ちが見られるようになり、目的物質の生成量が前記
した通電発酵方法はど増加しないという問題点が現われ
た。
[Prior Art and Problems to be Solved by the Invention] In the microbial industry, as a method for improving the productivity of target substances through fermentation, an energizing fermentation method is known in which the fermentation liquid is over-electrified (Japanese Patent Publication No. 47 -15745). This method involves immersing any two of the standard electrode, cathode, and anode in the emitting solution and applying a voltage between the two electrodes, which has the advantage of increasing the amount of the target substance produced. There is. After that, we took full advantage of the advantages of this electrification fermentation method, and
In order to separate the target substance produced by fermentation from the fermentation solution, a cation exchange membrane and an anion exchange membrane are placed between the anode and the cathode, and the fermentation solution is supplied to the cathode chamber to separate the target substance produced by fermentation. Attempts have been made to separate target substances by electrodialysis. [Applied and Environmental Microbiology
nd Enrirona+@nta1miarolio
log7 Vol. 52, No. 2, pp. 314-319 1986
)]. Compared to the method of simply applying electricity to the fermentation liquid, this method allows the target substance to be separated from the fermentation liquid extremely quickly.
It also has the advantage of being easy to perform. However, when we actually try to implement the above method, we find that the excellent effects of the energized fermentation method described above can be obtained immediately after startup, but as time passes, the increase in the amount of target substance produced reaches a plateau. However, a problem has arisen in that the amount of the target substance produced cannot be increased using the above-mentioned electric fermentation method.

〔問題点を解決するための手段〕[Means for solving problems]

そこで、本発明者らは、発酵液に通電しながら上述のイ
オン交換膜を用いて発酵による生成物を分離する方法(
以下、単に通電透析発酵法と呼ぶ)に於ける問題点を解
決し、目的物質の生成量の増加を計るために鋭意研究を
1ねてきた。その結果、上記の通電透析発酵法の問題点
が、発酵液中に存在する微生物の増殖の低下に基因する
ものであることを見い出した。そして、さらに微生物の
増殖の低下を防止する方法について研究を続けた結果、
微生物の培養のために発酵液中に加えられるリン酸イオ
ン源としてポリリン酸又はその壌を用いることによって
優れた効果が得られることを見い出し、本発明を完成す
るに至った。
Therefore, the present inventors developed a method (
We have been conducting extensive research in order to solve the problems in the electrification dialysis fermentation method (hereinafter referred to simply as the electrification dialysis fermentation method) and to increase the amount of the target substance produced. As a result, it was found that the problems of the above-mentioned electrical dialysis fermentation method were caused by a decrease in the growth of microorganisms present in the fermentation liquid. As a result of further research on ways to prevent the decline in microbial growth,
The present inventors have discovered that excellent effects can be obtained by using polyphosphoric acid or its soil as a phosphate ion source added to fermentation broth for culturing microorganisms, and have completed the present invention.

即ち、本発明は、陽極と陰極との間に陽イオン交換膜及
び陰イオン交換膜な配置してなる電気透析槽中で、発酵
により得られた生成物を電気透析によって発酵液から分
離する通電透析発酵法に於いて、該発酵液にポリリン酸
又はその塩を存在させることを特徴とする通電透析発酵
法である。
That is, the present invention provides an electrodialysis tank in which a cation exchange membrane and an anion exchange membrane are disposed between an anode and a cathode, in which a product obtained by fermentation is separated from a fermentation solution by electrodialysis. This dialysis fermentation method is characterized by the presence of polyphosphoric acid or a salt thereof in the fermentation liquid.

本発明で用いられるポリリン酸としては、公知のものが
何ら制限されず用い得る。本発明で用いられるポリリン
酸を具体的に例示すれば、ビロリン酸、3リン酸、4リ
ン酸、5リン酸、6リン酸等の鎖状ポリリン酸;3メタ
リン酸、4メタリン酸、5メタリン酸、6メタリン酸等
の環状ポリリン酸を挙げることができる。また、ポリリ
ン酸の塩としては、上記のポリIリン酸の金属塩が何ら
制限されずに用い得るが、特にナトリウム壌、カリウム
壌等のアルカリ金属塩;或いはマグネシウム塩、カルシ
ウム塩、バリウム塩等のアルカリ土類金属環が好適であ
る。本発明で用いられろポリリン酸又はその塩としては
、3リン酸若しくは3メタリン酸以上の鎖状若しくは環
状のボIJ IJリン酸はその塩が好適であり、特に4
リン改若しくは4メタリン酸以上の鎖状若しくは環状の
ポリIリン酸又はその塩が、微生物の増殖及び目的物質
の生産が良好であるために好ましい。
As the polyphosphoric acid used in the present invention, any known polyphosphoric acid can be used without any restriction. Specific examples of polyphosphoric acids used in the present invention include chain polyphosphoric acids such as birophosphoric acid, triphosphoric acid, tetraphosphoric acid, pentaphosphoric acid, and hexaphosphoric acid; Acids, cyclic polyphosphoric acids such as hexa-metaphosphoric acid can be mentioned. In addition, as the salt of polyphosphoric acid, the above-mentioned metal salts of poly-I phosphoric acid can be used without any limitation, but in particular, alkali metal salts such as sodium salt, potassium salt, etc., or magnesium salt, calcium salt, barium salt, etc. alkaline earth metal rings are preferred. As the polyphosphoric acid or its salt used in the present invention, triphosphoric acid or tri-metaphosphoric acid or more chain or cyclic phosphoric acid is preferably a salt thereof.
Phosphorus modified or linear or cyclic poly-I phosphoric acid of 4 or more metaphosphoric acids or a salt thereof is preferable because it facilitates microbial growth and production of the target substance.

上記したポIJ IJリン酸はその塩の使用量は、特に
制限されるものではないが、発酵による生産を増大させ
る観点から、発酵液中に0.007.9/dノ〜1.0
#/djさらにαo 21/ / all〜0.217
64  の範囲で存在させることが好ましい。
The amount of the salt of the above-mentioned poly-IJ IJ phosphoric acid used is not particularly limited, but from the viewpoint of increasing production by fermentation, it is added to the fermentation solution from 0.007.9/d to 1.0/d.
#/dj further αo 21/ / all ~ 0.217
It is preferable to make it exist in the range of 64 degrees.

本発明の通電透析発酵法は、生成物が亀屏質であるもの
であれば、公知のどのような発酵にも適用することがで
きる。例えは、グルタミン酸発酵、リジン発酵、バリン
発酵、オルニチン発酵、ホモセリン発酵、スレオニン発
酵、インロイシン発酵等のアミノ酸発酵;イノシン酸発
酵、グアニル散発酵等の核酸発酵;クエン酸発酵、7マ
ール酸発酵、乳酸発酵、:lハク敏発醇、酢酸発酵、グ
ルコン酸発酵、ピルビン酸発酵、α−テトグルタール散
発陣、イタコン酸発酵、りんご酸発酵等の有機酸発酵;
脂肪酸発酵;抗生物発酵等を挙げることができる。
The current dialysis fermentation method of the present invention can be applied to any known fermentation as long as the product is tortoiseshell. For example, amino acid fermentation such as glutamic acid fermentation, lysine fermentation, valine fermentation, ornithine fermentation, homoserine fermentation, threonine fermentation, and inleucine fermentation; nucleic acid fermentation such as inosinic acid fermentation and guanylic acid fermentation; citric acid fermentation, hexamaric acid fermentation, Organic acid fermentation such as lactic acid fermentation, halogen fermentation, acetic acid fermentation, gluconic acid fermentation, pyruvic acid fermentation, α-tetoglutal sporadic formation, itaconic acid fermentation, malic acid fermentation;
Fatty acid fermentation; antibiotic fermentation, etc. can be mentioned.

また、本発明に於ける発酵で用いる微生物の種類、培地
の組成、培養温度1発健液のPH,通気攪拌の程度等の
培養上の諸条件は、上記した種々の発酵に於いて公知の
条件が何ら制限なく採用される。
In addition, various culture conditions such as the type of microorganism used in the fermentation of the present invention, the composition of the medium, the culture temperature, the pH of the single-shot culture solution, the degree of aeration and agitation, etc., are the same as those known in the above-mentioned various fermentations. The conditions are adopted without any restrictions.

この際、使用する培地としては、主炭素源の他、窒素源
、無機物その他の生育促進物質を程よく含有する培地な
らば合成培地または天然培地の何れも使用可能であるが
、電気透析を行なう時、イオン交換膜の目詰まり、劣化
等が生じて電圧が異常に上昇して電流効果が低下するの
を防止するため、できつる限り合成培地を用いることが
望ましい。
At this time, as a medium to be used, either a synthetic medium or a natural medium can be used as long as it contains a suitable amount of a nitrogen source, inorganic substances, and other growth promoting substances in addition to the main carbon source, but when performing electrodialysis, It is desirable to use a synthetic medium as much as possible in order to prevent clogging, deterioration, etc. of the ion exchange membrane, resulting in an abnormal increase in voltage and a decrease in the current effect.

例えば、よく用いる炭素源としては、シュクロース、ガ
ラクトース、7ラクトース、グルコース、デンプン、マ
ルトース、ラムノース、キシロース、ラクトース等の糖
類;メタノール、エタノール、n−プロピルアルコール
、グリセリン等のアルコール類;n−パラフィンなどの
鎖状炭化水素類等があり、これらを混合して使用する場
合もある。窒素源としては、アンモニア、硫安、墳安、
硝安、燐安、尿素、酢酸アンモニウム、クエン陵アンモ
ニ9ムなどの無機若しくは有機窒素化合物が使用される
。通常はこれらに、リン酸源。
For example, commonly used carbon sources include sugars such as sucrose, galactose, 7-lactose, glucose, starch, maltose, rhamnose, xylose, and lactose; alcohols such as methanol, ethanol, n-propyl alcohol, and glycerin; n-paraffin There are chain hydrocarbons such as, and these may be used in combination. Nitrogen sources include ammonia, ammonium sulfate, ammonium,
Inorganic or organic nitrogen compounds such as ammonium nitrate, ammonium phosphorus, urea, ammonium acetate, ammonium chloride, etc. are used. Usually these include a phosphate source.

カリウム源、マグネシウム源、硫黄源、鉄源。Potassium source, magnesium source, sulfur source, iron source.

マンガン源としてこれらの金属塩をさらにビオチン、チ
アミン等の生育促進物質やPH低下防止剤として炭酸カ
ルシウムを加えることもある。
In addition to these metal salts as a manganese source, growth promoting substances such as biotin and thiamine, and calcium carbonate as a pH lowering preventive agent may also be added.

本発明において、発酵で使用する微生物としては、菌体
の培養液を直接そのまま用い得ろが、公知の方法によっ
て固定化したものがより好ましい。例えば、固定化の方
法としては培養液より遠心分離や濾過によって集菌した
菌を食塩水にM濁し、この菌体Ili!濁液に、ポリビ
ニルアルコール、ポリアクリルアミド。
In the present invention, as the microorganism used in fermentation, the culture solution of bacterial cells can be used directly as it is, but it is more preferable to use one that has been immobilized by a known method. For example, as a method of immobilization, bacteria collected from a culture solution by centrifugation or filtration are suspended in saline solution, and the bacteria Ili! Polyvinyl alcohol and polyacrylamide are added to the cloudy liquid.

カッパー・カラギーナン、アルギン酸カルシウム、光架
橋性樹脂プレポリマー、コラーゲン、セルロースサクシ
ネート、カゼインサクシネー)、メチルアクリレート、
メタアクリル酸共合重体などの担体、架橋剤、又は包括
用材料を加えて固定化した微生物菌体を得るという方法
を挙げることができる。
Kappa carrageenan, calcium alginate, photocrosslinkable resin prepolymer, collagen, cellulose succinate, casein succinate), methyl acrylate,
Examples include a method of obtaining immobilized microbial cells by adding a carrier such as a methacrylic acid copolymer, a crosslinking agent, or an entrapping material.

本発明に於いて、発酵液中に可逆的に酸化還元を受ける
物質を存在させておくことは好ましい態様である。この
ような物質としては、鉄、マンガン、銅、亜鉛、コバル
ト、鉛等の金属イオン;赤血塩、黄血壌等の含鉄錯化合
物;メチルビオロゲン、ベンジルビオロゲン。
In the present invention, it is a preferred embodiment that a substance that undergoes reversible redox is present in the fermentation liquid. Such substances include metal ions such as iron, manganese, copper, zinc, cobalt and lead; iron-containing complex compounds such as red blood salt and yellow blood salt; methyl viologen and benzyl viologen.

二二−トラルレッド、ニュートラルバイオレット等の酸
化還元色素等が挙げられる。これらの物質の使用量とし
ては、特に制限されるものではないが、発酵生装置を勘
案すると、一般に発酵液中に0.11+9/dj〜10
■/d4の範囲で使用することが好ましい。
Examples include redox dyes such as 22-tral red and neutral violet. The amount of these substances to be used is not particularly limited, but considering the fermentation equipment, generally 0.11+9/dj to 10
It is preferable to use it within the range of (1)/d4.

本発明の通電透析発酵法で用いられる電気透析槽は、通
常の電気透析で用いられている電気透析槽が伺ら制限な
く使用し得る。本発明で用いられる電気透析槽の一例を
図示すると第1図のようである。図中、lは陽極2と陰
極3との間に陽イオン交換膜4及び陰イオン交換M5を
交互に配置した電気透析槽である。この電気透析槽1は
、二対の陽イオン交換111[4及び陰イオン交換#5
によって5室に区切られている。これら5室は、陽[i
2の存在する室から順に、陽極室6.濃縮室7.希釈室
8.lll1li7及び陰極室9である。第1図には陽
イオン交換膜及び陰イオン交換膜な二対用いた例を示し
たが、これらイオン交換膜は一対であっても良く、また
、三対以上であっても良い。
The electrodialysis tank used in the current dialysis fermentation method of the present invention can be any electrodialysis tank used in normal electrodialysis without any limitations. An example of an electrodialysis tank used in the present invention is shown in FIG. 1. In the figure, l is an electrodialysis tank in which cation exchange membranes 4 and anion exchange membranes M5 are alternately arranged between an anode 2 and a cathode 3. This electrodialysis tank 1 includes two pairs of cation exchange #4 and anion exchange #5.
It is divided into 5 rooms by. These 5 houses are positive [i
In order from the chamber where chamber 2 is present, the anode chamber 6. Concentration chamber7. Dilution chamber8. ll1li7 and cathode chamber 9. Although FIG. 1 shows an example in which two pairs of cation exchange membranes and anion exchange membranes are used, the number of these ion exchange membranes may be one pair, or three or more pairs.

陽イオン交換膜及び陰イオン交換膜は、公知のものが何
ら制限されず用い得る。この場合、発酵液中に存在する
菌の増殖に必要な培地成分9例えばマグネシウム、マン
ガン、鉄。
Any known cation exchange membrane and anion exchange membrane can be used without any restriction. In this case, medium components 9 necessary for the growth of bacteria present in the fermentation liquid, such as magnesium, manganese, and iron.

カリウム、ナトリウムなどの各種塩類に対する発酵生産
勅の選択透過性の優れたものが好ましい。また、紫外線
、γ−線、アルコール。
It is preferable that the fermentation product has excellent selective permeability to various salts such as potassium and sodium. Also, ultraviolet rays, γ-rays, and alcohol.

界面活性剤、塩素系殺菌剤や加熱等によって滅菌処理が
可能で且つ洗滌操作が行なえるものが望ましい。本発明
に於いて好ましい陽イオン交換膜は、スルホン酸基を有
するものであり、また、陰イオン交換膜は、第4級アン
モニウム環基1に:Tiするものである。さらに、陰イ
オン交換膜としては、平均細孔径が100λ以下である
ものが本発明に放いて好ましく採用される。
It is desirable to use a material that can be sterilized using a surfactant, a chlorine-based disinfectant, heating, etc., and that can also be washed. In the present invention, a preferred cation exchange membrane has a sulfonic acid group, and an anion exchange membrane has a quaternary ammonium ring group 1 containing Ti. Furthermore, as the anion exchange membrane, one having an average pore diameter of 100λ or less is preferably employed in the present invention.

次に、陽極2としては、白金、黒船、銅等が、また、陰
極3としては、白金、鉄、ステンレス等が好適に用いら
れる。陽極液及び陰極液は、公知のものが用い・得るが
、一般には陽極液として硫酸水溶液が、陰極液として水
i’r酸化ナトリウム水溶液が用いられる。また、後述
するように陰極液を用いないで、発酵液を陰極室に通ず
ることもできる。陽極2と陰極3との間には、直流m[
10が接続されている。
Next, as the anode 2, platinum, black ship, copper, etc. are preferably used, and as the cathode 3, platinum, iron, stainless steel, etc. are preferably used. The anolyte and catholyte can be used or obtained from known ones, but generally a sulfuric acid aqueous solution is used as the anolyte and a water i'r sodium oxide aqueous solution is used as the catholyte. Furthermore, as will be described later, the fermentation liquid can also be passed through the cathode chamber without using the catholyte. Between the anode 2 and the cathode 3, a direct current m[
10 are connected.

発酵槽]1で培養された発酵液は、希釈室8及び陰&室
9に導かれ、発酵によって生成した生成物は陰イオン又
換膜5を通過して濃縮室7へと移動する。一方、発酵液
は、発酵槽11に回収される。濃縮室7へ移動した発酵
による生成物は、濃縮室7へ循環されている濃縮液と共
に回収槽12に回収される。第1図では、発酵槽11と
電気透析槽1とが独立して設けられており、発酵と電気
透析が別個の槽で行なわれているが、これら2つの槽を
兼用して、希釈室8及び/又は陰極室9の中で発酵を行
なうこともできる。
The fermentation liquid cultured in the fermenter] 1 is led to a dilution chamber 8 and a shade chamber 9, and the products produced by fermentation pass through an anion exchange membrane 5 and move to a concentration chamber 7. On the other hand, the fermentation liquid is collected into the fermenter 11. The fermentation product transferred to the concentration chamber 7 is collected in the recovery tank 12 together with the concentrated liquid that is being circulated to the concentration chamber 7. In FIG. 1, a fermentation tank 11 and an electrodialysis tank 1 are provided independently, and fermentation and electrodialysis are performed in separate tanks. And/or fermentation can also be carried out in the cathode chamber 9.

第1図には、希釈室と陰極室の両方に発酵液を導入する
電気う析槽を示したが、発酵液の導入はいずれか一方で
もかまわない。
Although FIG. 1 shows an electrolytic deposition tank in which the fermentation solution is introduced into both the dilution chamber and the cathode chamber, the fermentation solution may be introduced into either one.

次に、第2図に長期間連続して通電透析発酵を行なうの
に好適に用いられる電気透析槽の一例を示した。この電
気透析槽では発酵槽11中の発酵液のPH′ik測定し
て、その値に応じて陽極及び陰極間の直流110なオン
・オフ制御或いは電流制御するPHコントローラー13
が組み込まれている。これによって、発酵による目的物
質の濃度が菌の増殖や代射阻害を引き起こす濃度以上と
なつ、て発酵の至適PHの範囲をはずれた場合に電気透
析を開始し、或いは電流密度を高くして目的物質を発酵
液から分離するといったコントロールが可能である。
Next, FIG. 2 shows an example of an electrodialysis tank suitably used for carrying out electrification dialysis fermentation continuously for a long period of time. In this electrodialysis tank, a PH controller 13 measures the PH'ik of the fermented liquid in the fermenter 11 and controls the direct current 110 between the anode and cathode on/off or current according to the measured value.
is included. As a result, electrodialysis is started or the current density is increased when the concentration of the target substance produced by fermentation exceeds the concentration that causes bacterial growth or inhibits injection, and is out of the optimum pH range for fermentation. Control such as separating the target substance from the fermentation liquid is possible.

以上に述べたような電気透析槽の運転は、一般には、電
圧が0.1〜35ポルト、電流密度が1.6〜lOアン
ペア/ ajの範囲から選択されて行なわれる。このよ
うな条件を採用することによって、通常3〜30日間の
安定した運転が可能である。また、前述した固定化微生
物菌体と第2図に示したPHコントロールの可能な電気
透析槽を用いた場合には、3〜8力月の連続運転も可能
である。
The electrodialysis cell as described above is generally operated at a voltage of 0.1 to 35 ports and a current density of 1.6 to 10 ampere/aj. By adopting such conditions, stable operation for usually 3 to 30 days is possible. Further, when the above-mentioned immobilized microbial cells and the electrodialysis tank capable of PH control shown in FIG. 2 are used, continuous operation for 3 to 8 months is also possible.

〔効 果〕 本発明の通電透析発酵法を採用することによって、長期
間にわたって安定した発酵を行なうことが可能となり、
目的とする発酵生産物の生産量を増大させることができ
ろ。即ち、後述する実施例1及び比較例1からも明らか
なように、イオン父換膜な用いた通電発酵において、菌
体の増殖に必要なリン酸イオンとしてポリリン酸(和光
紙ta> tt*地に加えた実施例]では、培養72時
間後の菌体量は660 nmの吸光度で0.4であり、
発酵によるL−乳酸の全生産量は使用した培地18当り
に換算して&09に達している。一方、通常、リン酸イ
オン源として従来から培地に用いられてきたリン酸二水
素カリウムを用い、他は実施例1と同一条件で通電発酵
を行なった比較例1では、培養後の菌体量が0.2に抑
制されており1、L−8駿の生産量も20I/aでしか
ない。
[Effect] By adopting the current dialysis fermentation method of the present invention, it becomes possible to perform stable fermentation over a long period of time,
Be able to increase the production of the desired fermentation product. That is, as is clear from Example 1 and Comparative Example 1, which will be described later, polyphosphoric acid (Wako paper ta > tt [Example added to], the amount of bacterial cells after 72 hours of culture was 0.4 at absorbance at 660 nm,
The total production amount of L-lactic acid by fermentation reached &0.9 per 18 of the medium used. On the other hand, in Comparative Example 1, in which potassium dihydrogen phosphate, which has been conventionally used in culture medium as a phosphate ion source, was used, and other conditions were the same as in Example 1, energization fermentation was carried out. is suppressed to 0.2, and the production amount of 1, L-8 Shun is only 20 I/a.

実施例1の値は、リン酸二水素カリウムとPH調整剤に
10%の炭酸カルシウムを用い、イオン交換震を用いた
通電透析発酵ではな〈従来の通電発酵方法である。比較
例2で得られた値とはは同じである。
The values of Example 1 are based on the conventional energization fermentation method, which uses potassium dihydrogen phosphate and 10% calcium carbonate as a pH adjuster, and is not electrification dialysis fermentation using ion exchange vibration. This value is the same as that obtained in Comparative Example 2.

このように、本発明の通電透析発酵法によれば、リン酸
イオン源として通常培地に加えられて来たリン酸二水素
カリウム又はナトリウム、リン酸−水素二カリウム又は
ナトリウムあるいはそれらな組合せて用いた従来からの
方法に比べて、一定時間培養後の菌体量ならびに発酵に
より生成する目的物質の量が多く、通電発酵の優れた効
果が得られる。しかも、本発明は、発#を行ないながら
、目的物質を迅速且つ容易に発酵液から分離することが
できるため、目的物質による発酵のフィードバック イ
ンヒビジョンを解除し、且つ発酵液のPH変化や粘度上
昇を防き゛、菌体の持つ発酵生産能力の低下を防止でき
る。
As described above, according to the current dialysis fermentation method of the present invention, potassium dihydrogen phosphate or sodium phosphate, dipotassium hydrogen phosphate or sodium phosphate, or a combination thereof, which has been added to a normal medium as a phosphate ion source, can be used. Compared to conventional methods, the amount of bacterial cells after culturing for a certain period of time and the amount of the target substance produced by fermentation are large, and the excellent effects of energized fermentation can be obtained. Moreover, the present invention allows the target substance to be quickly and easily separated from the fermentation liquid while generating ##STR17##, thereby eliminating the feedback inhibition of fermentation caused by the target substance, and preventing changes in pH and viscosity of the fermentation liquid. It is possible to prevent the fermentation production ability of the bacterial cells from decreasing.

さらに、PH調整剤として通常よく使用されるカルシウ
ム壌は、菌体の増殖を阻害する7アージの一体への浸入
を助長するものであるが、本発明によれば、発酵により
生成した目的物質を直ちに発酵液から分離することがで
きるため、このようなPHII4整剤を使用する必要は
ない。従って、本発明によれば、7アージによる菌体の
汚染を防止することが可能となる。さらにまた、ポリリ
ン酸がファージの一体への浸入を抑制する作用を持って
いるため、この点からも7アージ汚染の防止が可能とな
る。
Furthermore, calcium soil, which is commonly used as a pH adjuster, promotes the infiltration of 7-age, which inhibits the growth of bacterial cells, but according to the present invention, the target substance produced by fermentation is There is no need to use such a PHII4 regulator as it can be immediately separated from the fermentation broth. Therefore, according to the present invention, it is possible to prevent bacterial cells from being contaminated by 7Age. Furthermore, since polyphosphoric acid has the effect of suppressing the infiltration of phages into the body, it is possible to prevent 7age contamination from this point as well.

これらの結果として、本発明は、発#を長時間連続して
安定に行なうことを可能にする優れた効果を有する。
As a result of these, the present invention has an excellent effect of making it possible to continuously and stably generate a signal for a long period of time.

〔実施例〕〔Example〕

実施例1及び比較例1.2 種菌として、L−乳酸生産菌であるラクトバチラス・デ
ルプルツ千イーIF03534を用いた。グルコース1
−o 1 /d1. yN IJペプトン5.01/d
l、酵母x + X O,51/(LNp G)なる液
体培地(PH7,0)10−を中盤試験管に分注し、1
21℃、15分間高圧蒸気滅mを行なった。これに檀i
1”tl白金耳接種し、45℃で24時間静置培養を行
なった。この培養液10−を100−の同様に滅菌した
グルコース1.OJ!/dj、ポリペプトン1.0.9
/#、 ll母工牛スα51/d1.酢酸ナトリウムJ
、OJI/dtからなる液体培地(PH6,8)に接種
し、45℃で15時間静置培養することで種母を調製し
た。
Example 1 and Comparative Example 1.2 Lactobacillus delpurz 1.2 IF03534, which is an L-lactic acid producing bacterium, was used as a seed strain. glucose 1
−o 1 /d1. yN IJ Peptone 5.01/d
Dispense 10− of a liquid medium (PH 7,0) consisting of yeast
High-pressure steam sterilization was performed at 21° C. for 15 minutes. Dan i to this
A 1" tl platinum loop was inoculated and static culture was carried out at 45°C for 24 hours. This culture solution 10- was inoculated with 100- of similarly sterilized glucose 1.OJ!/dj, polypeptone 1.0.9
/#, ll mother engineered cow α51/d1. sodium acetate J
, OJI/dt was inoculated into a liquid medium (PH 6, 8), and a seed mother was prepared by statically culturing at 45° C. for 15 hours.

本培養の培地としては、グルコース10.Oj’ / 
dl、酵母x’t X ′L01 / ” # FN 
リヘフトンα8 i /dJ、  4リンIIα02 
117d1. 硫酸マグネシウム7水壌α0517dl
、食塩0.0117dlを用い、PHを7.2とした。
The medium for main culture is glucose 10. Oj' /
dl, yeast x't
Rehefton α8 i /dJ, 4lin II α02
117d1. Magnesium sulfate 7 water α0517dl
Using 0.0117 dl of common salt, the pH was set to 7.2.

第2図に示した電気透析槽を用いて通電透析発酵を行な
うに当たり、75〇−容ガラス製発酵槽に上記の培地5
QQLtを分注し、滅菌後、室?iltで冷却したとこ
ろで前記種母50−を接種し、45℃で静かに攪拌しな
がら培養を行なった。
When carrying out electrification dialysis fermentation using the electrodialysis tank shown in Figure 2, the above medium 5.
After dispensing QQLt and sterilizing it, place it in the room? After cooling with ilt, the seed mother 50- was inoculated and cultured at 45° C. with gentle stirring.

通電透析発酵を行なうために、予め発酵槽に取り付けて
おいた発酵用PH電極(アトバンチツク FX−180
T)を直流電源(高砂製作所■製MPO35−2)と連
結したPHコントローラー(オリエンタル電気■製PH
DII)に接続した。さらに、直流電源は電気透析槽の
各電極に接続されており、これによって発酵液のPHが
指定された値以下になると自動的に電気透析槽に電流が
流れ、電気透析が行なえるようにした。陰イオン交換膜
(徳山曹達■製 ネオセプタ A CH−45T)およ
び陽イオン交換膜(?R山曹達■製ネオセプタ CH−
45T)を組み合わせた電気透析槽の陽極には銅、陰極
には白金を用い、極液として陽極室に0.1NH2So
、、陰極室に0.1NNaOHを使用し、又濃Jl室及
び回収槽には脱イオン水tマイクロチューブポンプ(東
京理化■製 MP−3)で循環した。
In order to carry out electrification dialysis fermentation, a PH electrode for fermentation (Atovanchik FX-180) was attached to the fermenter in advance.
T) connected to a DC power supply (Takasago Seisakusho MPO35-2)
DII). Furthermore, a DC power supply was connected to each electrode of the electrodialysis tank, so that when the pH of the fermentation liquid fell below a specified value, current automatically flowed to the electrodialysis tank, allowing electrodialysis to occur. . Anion exchange membrane (Neocepta A CH-45T manufactured by Tokuyama Soda) and cation exchange membrane (Neocepta CH-45T manufactured by Tokuyama Soda ■)
45T), copper is used for the anode, platinum is used for the cathode, and 0.1NH2So is placed in the anode chamber as the electrolyte.
, 0.1N NaOH was used in the cathode chamber, and deionized water was circulated in the concentrated Jl chamber and recovery tank using a microtube pump (manufactured by Tokyo Rika Corporation, MP-3).

通電透析発酵は、本培養開始約7時間後、発酵液のPH
が4.7に低下した時に発酵液をマイクロチューブポン
プで希釈室に循環して開始した。発酵液中と回収槽中の
L−8散の全生産量を使用した培地1a当りに換算した
値と発酵液中の菌体量をj13FiJに示した。
In electrification dialysis fermentation, the pH of the fermentation liquid is adjusted approximately 7 hours after the start of main culture.
When the temperature decreased to 4.7, the fermentation liquid was circulated to the dilution chamber using a microtube pump and started. The total production amount of L-8 powder in the fermentation liquid and the recovery tank was converted per 1 a of the medium used, and the amount of bacterial cells in the fermentation liquid was shown in j13FiJ.

なお、発酵液中及び回収槽中のL−乳酸量は、バーカー
・サマーラン法によって定量した。菌体量は培養液をI
N壌酸によってl】倍希釈後、その660 n!11 
の吸光度を分光光度計(噛島津製作所 UV−240)
を用いて測定した。
The amount of L-lactic acid in the fermentation liquid and in the recovery tank was determined by the Barker-Summerlan method. The amount of bacterial cells is the culture solution I
After dilution with N-sulfuric acid, its 660 n! 11
The absorbance was measured using a spectrophotometer (Kamishimazu UV-240).
Measured using

比較例1として、本培養の培地中の4リン酸に替えて、
リン酸二水素カリウム0.21/aを用いた以外は、上
記の実施例1と同様にして通電透析発酵を行なった。
As Comparative Example 1, instead of tetraphosphate in the main culture medium,
Electrodialysis fermentation was carried out in the same manner as in Example 1 above, except that 0.21/a of potassium dihydrogen phosphate was used.

さらに比較例2として本培養の培地中の4リン駿に替え
て、リン讃二水素カリウム0217dlを用い、さらに
PH調整剤として160℃で90分間乾熱滅菌を行なっ
た炭酸カルシウム10.0.P/(#を添加した他は、
実施例1及び比較例1と同様にして培養を行なったが、
実施例1及び比較例1と真なり、イオン交換膜を用いた
通電透析発酵は行なわず、従来の通電発酵を行なった。
Further, as Comparative Example 2, 0217 dl of potassium dihydrogen phosphorus was used in place of 4 phosphorus in the main culture medium, and 10.0 dl of calcium carbonate was dry-heat sterilized at 160° C. for 90 minutes as a pH adjuster. P/(except for adding #,
Culture was carried out in the same manner as in Example 1 and Comparative Example 1, but
As in Example 1 and Comparative Example 1, conventional electrification fermentation was performed without conducting electrification dialysis fermentation using an ion exchange membrane.

これらの比較@1.比較例2におけるL −乳駿生産量
、一体量を第3図に併記した。
Comparison of these @1. The production amount and total amount of L-Kishun in Comparative Example 2 are also shown in FIG.

リン酸イオンとして4リン飲を用いた実施例1では、培
養72時間後の薗体鎗が0.4(OD660nm)  
であり、L−乳酸の全生産量は、使用した培地1a当た
りに換算してaO&であった。これに対し、リン酸二水
素カリウムな培地に用いた比較例1では菌体の増殖が0
.2に抑制されているとともに、L −乳#l鰍も2.
01/dlと低かった。
In Example 1, in which tetraphosphorus was used as the phosphate ion, the Sonotaiyori after 72 hours of culture was 0.4 (OD660nm).
The total production amount of L-lactic acid was aO & per 1 a of the medium used. On the other hand, in Comparative Example 1, which was used in a potassium dihydrogen phosphate medium, the growth of bacterial cells was 0.
.. 2, and L-milk #l gills were also suppressed to 2.
It was as low as 0.01/dl.

同様に、リン酸二水素カリウムをリン酸イオンとして用
いた比較例2では、実施例1と同程度のL−乳酸を生産
し、菌体の増殖も見られた。しかしながら、この場合、
L−乳酸の中和のために加えられた炭酸カルシウムとL
−乳酸との間で乳酸カルシウムが生成するため、その濃
度の上昇に伴なって発酵液の粘度が高くなり、72時間
で発酵を停止しなければならなかった。この点、実施例
1では、電気透析によって発酵液中のL−乳酸濃度を0
.5F/dj以下(PHa、5以上)にコントロールし
、しかも中和剤を必要としないので、72時間経過後も
発#を安定して行なうことができた。
Similarly, in Comparative Example 2 in which potassium dihydrogen phosphate was used as the phosphate ion, L-lactic acid was produced to the same extent as in Example 1, and bacterial cell growth was also observed. However, in this case,
Calcium carbonate and L added to neutralize L-lactic acid
- Since calcium lactate is produced between lactic acid, the viscosity of the fermentation liquid increases as its concentration increases, and the fermentation had to be stopped after 72 hours. In this regard, in Example 1, the L-lactic acid concentration in the fermentation liquid was reduced to 0 by electrodialysis.
.. Since it was controlled to 5F/dj or less (PHa, 5 or more) and no neutralizing agent was required, stable # generation was possible even after 72 hours had passed.

実施例2 実施例1で用いた種母培養液より菌体な遠心分離し、水
にて洗滌した。該洗滌自体を生理食塩水に懸濁し、この
1体懸濁液に2sになるようにアルギン酸ナトリウムを
加え、30℃に加温、スラリー化したものを注射器によ
り、0.1モル塩化カルシウム溶液中に滴下凝固させ球
状の固定化菌体を得た。この固定化菌体を用い、時々、
一部の培地を交換する以外は、実施例1と同様にして通
電透析発酵を行なったところ、約8す月間連続して運転
することができた。L−乳酸は、従来の通電発酵で&O
I/dlであるのに対し、本発明によるとその60倍の
生産量が得られた。
Example 2 The bacterial cells from the seed culture solution used in Example 1 were centrifuged and washed with water. The washing itself was suspended in physiological saline, sodium alginate was added to this one-body suspension for 2 s, the slurry was heated to 30°C, and the slurry was poured into a 0.1 molar calcium chloride solution using a syringe. The mixture was dropped onto the plate and solidified to obtain spherical immobilized bacterial cells. Using these immobilized bacterial cells, sometimes
When energization dialysis fermentation was carried out in the same manner as in Example 1 except for replacing some of the culture medium, it was possible to operate continuously for about 8 months. L-lactic acid is produced by conventional electric fermentation.
I/dl, whereas according to the present invention, a production amount 60 times that amount was obtained.

実施例 3 麹汁な高圧滅菌して冷却したのち、これにエタノール4
.097diを加え、酢酸−(アセトバクター アセテ
ィ IF03281)を1白金耳接種し、30℃で3〜
5日間静置培養を行なった。次にグルコースO,lF/
dj。
Example 3 After high-pressure sterilization with koji juice and cooling, add 4 ethanol to this.
.. 097di, inoculated with one platinum loop of acetic acid (Acetobacter aceti IF03281), and incubated at 30°C for 3 to 30 minutes.
Static culture was performed for 5 days. Next, glucose O, 1F/
dj.

グリセリン0.1.9/l/!j、硫酸アンモニウム0
.117d1. 41 fi リ:/110.06 y
/dj、 RW v f * シ’y ム7水40.o
1#/dj1食jJI O,0117d1. #fJi
kx’F7.0.051/dl カラなる滅閑培M (
P H7,0) Ip=tne11.51 /di、 
 x pノール&OF/djな加え、これに前記の培養
液をlO%接種し、30℃で4日間、静置培養を行なう
ことによって馴養した。こうして得た培養液に10%ポ
リビニルアルコール水溶液を】O容量%加えて懸濁させ
、これを凍結乾燥することによって固定化菌体を調製し
た。本培養も同じ培地を用い、固定化菌体を10%(V
/V)加え、実施例1と同様にしてPHを4.5にコン
トロールしながら通電透析発酵を行なった。また、4メ
タリン酸の替わりにリン駿二水素カリウム0.2.!i
’/dlを用いて行なった。生成した全酢酸濃度(1!
/Ω)の経時変化は第1表のとおりであった。
Glycerin 0.1.9/l/! j, ammonium sulfate 0
.. 117d1. 41 fi ri: /110.06 y
/dj, RW v f * sim'y 7 water 40. o
1#/dj1mealjJI O,0117d1. #fJi
kx'F7.0.051/dl Kara naru Makaban M (
P H7,0) Ip=tne11.51/di,
x pnor & OF/dj was added, and the above-mentioned culture solution was inoculated at 10%, and acclimatized by static culture at 30° C. for 4 days. A 10% polyvinyl alcohol aqueous solution was added to the culture solution obtained in this manner in an amount of % by volume, and the suspension was freeze-dried to prepare immobilized bacterial cells. The same medium was used for the main culture, and 10% (V
/V), and electrification dialysis fermentation was carried out in the same manner as in Example 1 while controlling the pH to 4.5. Also, in place of 4-metaphosphoric acid, 0.2. ! i
'/dl was used. The total concentration of acetic acid produced (1!
/Ω) changes over time are shown in Table 1.

第   1   表 また、通電透析発酵は約3ケ月間連続して運転すること
ができた。
Table 1 Also, the energized dialysis fermentation could be operated continuously for about 3 months.

実施例 4 m菌としてクエン酸生産能を有する千ヤンデイダ・ギヤ
マンディ IFO0566を用いた。シヨ糖5.0.9
/dJ?、アスパラギン0.25.9/d1.5リン@
0.02fl/dl、硫酸マグネシウム7水壌0.05
#/cu、炭酸カルシウム!(1/djからなる液体培
地(PH6,0)に斜面、培地から1白金耳接穂し、3
0℃で2日間振盪培養後遠心分離によって集菌した。こ
の菌体81を0.9%食塩水50114に懸濁し、この
R濁液にN、N−ジメチルビニルベンジルアミンポリ!
−41と4,4′−ビス(ジメチルアミノ)ベンゾフェ
ノン5mgを分数させたアセトン50−を加えて乳化さ
せ、これな25℃、2時間超高圧水銀ランプで光を照射
した。生成した固定化ゲルを真空乾燥し、2〜3 *d
の粒子にして固定化歯体を調製した。本培養の培地とし
てはグルコース10.017d1. m化7 ンモニ7
0.41 / dj 。
Example 4 Chiyandida guiyamandi IFO0566, which has citric acid-producing ability, was used as the microorganism. Cane sugar 5.0.9
/dJ? , asparagine 0.25.9/d1.5 phosphorus @
0.02 fl/dl, magnesium sulfate 7 water 0.05
#/cu, calcium carbonate! (1/dj liquid medium (PH 6,0), 1 platinum ear scion from the medium, 3
After culture with shaking at 0°C for 2 days, the bacteria were collected by centrifugation. This bacterial cell 81 was suspended in 0.9% saline solution 50114, and this R suspension was added to N,N-dimethylvinylbenzylamine poly!
Acetone 50-41 and 5 mg of 4,4'-bis(dimethylamino)benzophenone were added to emulsify the mixture, and the mixture was irradiated with light using an ultra-high pressure mercury lamp at 25°C for 2 hours. Vacuum dry the generated immobilized gel for 2 to 3*d
A fixed tooth body was prepared using the particles. The medium for main culture is glucose 10.017d1. m-7 mmoni 7
0.41/dj.

5リン酸α021/dt、硫酸マグネシウム71m o
、osi、/d1. jllz牛スo、39/dltp
らなる液体培地(PH6,0)′lk用い、これに固定
化菌体’k 10.0 % (V/V)接種し、30’
C9200rpmの通気攪拌を行ない、PHを4.8に
コントロールしながら5日間通電透析発酵を行なった所
使用した培地に換算して1317dlのクエン酸を生成
した。また、引き続き、3力月以上通電透析発醇な連続
して行なうことができた。
5 phosphate α021/dt, magnesium sulfate 71 m o
, osi, /d1. jllz cow suo, 39/dltp
Immobilized bacterial cells were inoculated at 10.0% (V/V) into a liquid medium (PH6,0),
C9200 rpm of aerated stirring was performed, and electrification dialysis fermentation was performed for 5 days while controlling the pH at 4.8, and 1317 dl of citric acid was produced in terms of the medium used. In addition, we were able to continue conducting electrification dialysis for more than 3 months.

実施例 5 種菌としてL−グルタミン酸生産−、ブレビバクテリウ
ム−7ラバム A T CC13826を用いた。種母
培地として、グルコース5.0g7d1.尿素10 g
 /dj、  51 fi ’) >FR力!JつAo
、0211/’#+硫酸マグネシウム7水墳0.04.
9 /clj、 1lllji−a 7 水11211
9/d−g。
Example 5 L-glutamic acid producing Brevibacterium 7 labum AT CC13826 was used as the inoculum. As a seed medium, glucose 5.0g7d1. urea 10g
/dj, 51 fi') >FR power! J Tsu Ao
, 0211/'#+magnesium sulfate 7 water mound 0.04.
9 /clj, 1llllji-a 7 Wed 11211
9/d-g.

ビオナシα4μm1フd1.チアミン壌酸#A2op&
/ dl 、 コ−ンX t イーブリ力o、5p7c
uからなる液体培地(PH7,0)を用いた。この培地
に斜面培地から1白金耳接種し、30℃。
Bionashi α4μm1fud1. Thiamin acid #A2op&
/ dl, Corn X t Evely Power o, 5p7c
A liquid medium (PH7,0) consisting of u was used. One platinum loopful of slant culture was inoculated into this medium, and the temperature was kept at 30°C.

36時間振m培養を行ない遠心分離によって集−した。Shaking culture was performed for 36 hours and collected by centrifugation.

この自体10.9を0.9%食塩水50d&:M濁し、
4第のカッパー・カラギーナンと共に加温してスラリー
としたものを注射器より2≦塩化カリウム液に滴下し、
球状に放置ゲル化して固定化菌体を得た。
This itself 10.9 was clouded with 0.9% saline solution 50d&:M,
4. Heat the slurry together with the No. 4 copper carrageenan and drop it into a 2≦potassium chloride solution from a syringe.
The cells were left to gel in a spherical shape to obtain immobilized bacterial cells.

本培養の培地として、グルコース1o−oF/d!、尿
素L 8 Ji’ / ”J p  51 タリン酸カ
リウム0.04.f/dj、硫酸マグネシウム7水壌0
.041 /dj、 am第一鉄7水壌2 Q/dl。
As a medium for main culture, glucose 1o-oF/d! , Urea L 8 Ji' / "J p 51 Potassium talate 0.04.f/dj, Magnesium sulfate 7 Water 0
.. 041 /dj, am ferrous 7 water 2 Q/dl.

硫酸マンガン4水壌2哩7dl、  ビオチン0.4μ
m17di 、チアミン塩酸塩10μm7/d1.カザ
ミノ酸o、11/d1.ニュートラルレッド0.3m9
/djからなる液体培地を用いた。この培地に固定化微
生物菌体を1000%(V/V)接種し、30℃でPH
を7.5にコントロールしながら3日間通電透析発酵を
行なった所、使用した培地に換算して、4.11/dl
のL−グルタミン酸を生産した。
Manganese sulfate 4 water 2 liters 7 dl, biotin 0.4μ
m17di, thiamine hydrochloride 10 μm7/d1. Casamino acids o, 11/d1. Neutral red 0.3m9
A liquid medium consisting of /dj was used. This medium was inoculated with 1000% (V/V) of immobilized microbial cells, and the pH was adjusted at 30°C.
When electrification dialysis fermentation was carried out for 3 days while controlling the temperature to 7.5, the result was 4.11/dl in terms of the medium used.
of L-glutamic acid was produced.

1だ、通電透析発酵は、引き続き連続して3力月以上運
転が可能であった。
1. The energized dialysis fermentation system could be operated continuously for more than three months.

【図面の簡単な説明】[Brief explanation of the drawing]

N1図及び第2g:Jは1本発明の通電透析発酵法で用
いられる電気透析槽の好適な例を示す概略図である。図
中、lは電気占析槽、2は陽極、3は陰極、4は陽イオ
ン交換膜、5は陰イオン交換膜、6は陽極室、7は濃縮
室。 8は希釈室、9は陰極室、10は直流電源。 11は発酵槽、12は回収槽、13はPHコントローラ
ー、14は循環ポンプを夫々示す。 また、第3図は、本発明の通電透析発酵法と従来の方法
に於ける培養時間と醜体社との関係、及び培養時間と生
成した全乳散型との関係l示すグラフである。
Figure N1 and Figure 2g:J are schematic diagrams showing a preferred example of an electrodialysis tank used in the electrification dialysis fermentation method of the present invention. In the figure, l is an electrostatic chamber, 2 is an anode, 3 is a cathode, 4 is a cation exchange membrane, 5 is an anion exchange membrane, 6 is an anode chamber, and 7 is a concentration chamber. 8 is a dilution chamber, 9 is a cathode chamber, and 10 is a DC power supply. 11 is a fermentation tank, 12 is a collection tank, 13 is a PH controller, and 14 is a circulation pump. Further, FIG. 3 is a graph showing the relationship between the culture time and the amount of milk powder produced by the current dialysis fermentation method of the present invention and the conventional method, and the relationship between the culture time and the produced whole milk powder.

Claims (1)

【特許請求の範囲】[Claims] (1)陽極と陰極との間に陽イオン交換膜及び陰イオン
交換膜を配置してなる電気透析槽中で、発酵により得ら
れた生成物を電気透析によつて発酵液から分離する通電
透析発酵法に於いて、該発酵液にポリリン酸又はその塩
を存在させることを特徴とする通電透析発酵法。
(1) Electrodialysis in which the products obtained by fermentation are separated from the fermentation solution by electrodialysis in an electrodialysis tank with a cation exchange membrane and an anion exchange membrane arranged between the anode and the cathode. An electric dialysis fermentation method characterized in that polyphosphoric acid or a salt thereof is present in the fermentation liquid.
JP29660086A 1986-12-15 1986-12-15 Electrodialysis method Expired - Lifetime JPH0710228B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29660086A JPH0710228B2 (en) 1986-12-15 1986-12-15 Electrodialysis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29660086A JPH0710228B2 (en) 1986-12-15 1986-12-15 Electrodialysis method

Publications (2)

Publication Number Publication Date
JPS63148979A true JPS63148979A (en) 1988-06-21
JPH0710228B2 JPH0710228B2 (en) 1995-02-08

Family

ID=17835645

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29660086A Expired - Lifetime JPH0710228B2 (en) 1986-12-15 1986-12-15 Electrodialysis method

Country Status (1)

Country Link
JP (1) JPH0710228B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06319573A (en) * 1993-03-12 1994-11-22 Rhone Poulenc Chim Production of itaconic acid by fermentation
JPH0739368A (en) * 1993-07-28 1995-02-10 Tokuyama Corp Dialysis fermentation
US5637485A (en) * 1993-03-12 1997-06-10 Rhone-Poulenc Chimie Production of itaconic acid by fermentation
US5747306A (en) * 1993-07-09 1998-05-05 Takeda Chemical Industries, Ltd. Process for producing 2-keto-L-gulonic acid using electrodialysis
JP2012501633A (en) * 2008-09-08 2012-01-26 ユラク セパレーション アクティーゼルスカブ Method for controlling pH of liquid composition and target ion level
JP2012060992A (en) * 2010-08-20 2012-03-29 Central Res Inst Of Electric Power Ind Method and apparatus for producing alcohol using microorganism

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06319573A (en) * 1993-03-12 1994-11-22 Rhone Poulenc Chim Production of itaconic acid by fermentation
US5637485A (en) * 1993-03-12 1997-06-10 Rhone-Poulenc Chimie Production of itaconic acid by fermentation
US5747306A (en) * 1993-07-09 1998-05-05 Takeda Chemical Industries, Ltd. Process for producing 2-keto-L-gulonic acid using electrodialysis
JPH0739368A (en) * 1993-07-28 1995-02-10 Tokuyama Corp Dialysis fermentation
JP2012501633A (en) * 2008-09-08 2012-01-26 ユラク セパレーション アクティーゼルスカブ Method for controlling pH of liquid composition and target ion level
JP2015057066A (en) * 2008-09-08 2015-03-26 カールスバーグ・アクティーゼルスカブ Method for controlling ph and target ion level of liquid composition
US9156002B2 (en) 2008-09-08 2015-10-13 Carlsberg A/S Process for controlling the pH and level of target ions of a liquid composition
JP2012060992A (en) * 2010-08-20 2012-03-29 Central Res Inst Of Electric Power Ind Method and apparatus for producing alcohol using microorganism

Also Published As

Publication number Publication date
JPH0710228B2 (en) 1995-02-08

Similar Documents

Publication Publication Date Title
Hongo et al. Novel method of lactic acid production by electrodialysis fermentation
US4882277A (en) Continuous process for preparing organic acids by fermentation
US5002881A (en) Process for the fermentative preparation of organic acids
US3791926A (en) Process for the production of l-aspartic acid
YAO et al. Lactic acid production in electrodialysis culture
Redwood et al. Electro-extractive fermentation for efficient biohydrogen production
JP5989742B2 (en) Method for controlling pH of liquid composition and target ion level
JP4554277B2 (en) Method for producing succinic acid by microorganism
Nomura et al. Factors affecting lactic acid production rate in the built-in electrodialysis fermentation, an approach to high speed batch culture
JPS63148979A (en) Electrodialytic fermentation
Schlote et al. Effect of cell recycle on continuous butanol-acetone fermentation with Clostridium acetobutylicum under phosphate limitation
JP5647610B2 (en) Method and system for improved process parameter control of liquids in reverse electro-enhanced dialysis (REED) systems
JPS61249396A (en) Continuous production of maltulose by enzyme
JPH07155191A (en) Method for fermenting lactic acid
US6001255A (en) Process for the production of water-soluble salts of carboxylic and amino acids
Ferraz et al. Coupling of an electrodialysis unit to a hollow fiber bioreactor for separation of gluconic acid from sorbitol produced by Zymomonas mobilis permeabilized cells
Nomura et al. Continuous production of acetic acid by electrodialysis bioprocess with a computerized control of fed batch culture
DK159460B (en) ETHANOL PREPARATION BY AID OF BACTERIA
JPH11137286A (en) Fermentation of lactic acid
JP3402672B2 (en) Dialysis fermentation method
US5200326A (en) Method for the fermentative production of L-amino acids from α-keto acids
Nomura et al. Rapid and efficient production of L-lactate from xylose using electrodialysis culture-associated product separation
Bhattacharyya et al. Biocatalytic membrane reactor with continuous removal of organic acids by electrodialysis
GB2108128A (en) Production of aspartase
CN115678925A (en) Preparation method of calcium propionate