JPS63148726A - Wavelength-division multiplex bidirectional optical communication equipment - Google Patents

Wavelength-division multiplex bidirectional optical communication equipment

Info

Publication number
JPS63148726A
JPS63148726A JP61294692A JP29469286A JPS63148726A JP S63148726 A JPS63148726 A JP S63148726A JP 61294692 A JP61294692 A JP 61294692A JP 29469286 A JP29469286 A JP 29469286A JP S63148726 A JPS63148726 A JP S63148726A
Authority
JP
Japan
Prior art keywords
wavelength
optical
light
output
transmission line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61294692A
Other languages
Japanese (ja)
Inventor
Minoru Shikada
鹿田 實
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP61294692A priority Critical patent/JPS63148726A/en
Publication of JPS63148726A publication Critical patent/JPS63148726A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Communication System (AREA)

Abstract

PURPOSE:To simplify a light source, and also, to miniaturize an external form by providing a transmission power source being capable of wavelength modulation, for sending out successively the wavelength corresponding to each channel by time division. CONSTITUTION:A station side 40 uses a semiconductor laser 11 of a single transmission source having a comparatively wide variable wavelength range, selects a wavelength corresponding to each channel and sends it out successively by a time division by a multiplexing circuit 9, and an optical signal being equivalent to wavelength diviation multiplexing is sent out to a subscriber side 41 from an optical fiber transmission line 14 by a single light source. In the subscriber side 41, the optical signal is demultiplexed to each wavelength by an optical demultiplexer 15, photodetected by photodetecting parts 25, 26 and 27, a part of the light beam received by an optical modulator 33 is remodulated and sent back to the station side 40, at this remodulated light beam is received, the station side 40, and bidirectional communication is executed. In such a way, many light sources are not required, and the transmission equipment is miniaturized.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、光通信装置、特に波長分割多重双方向光通信
装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an optical communication device, and more particularly to a wavelength division multiplexing bidirectional optical communication device.

〔従来の技術〕[Conventional technology]

半導体レーザ、光検出器および光ファイバ等の高性能化
に伴って光フアイバ通信システムの普及が急速に広まっ
ている。この光フアイバ通信システムにおいて、光通信
回線の利用効率を高め通信コストを下げるには、信号伝
送速度を上げることや、波長多重通信により1本の回線
で多数の信号を送受信する等の装置を用いるのが有効で
ある。
2. Description of the Related Art Optical fiber communication systems are rapidly becoming popular as semiconductor lasers, photodetectors, optical fibers, and the like become more sophisticated. In this optical fiber communication system, in order to increase the utilization efficiency of optical communication lines and reduce communication costs, it is necessary to increase the signal transmission speed and use devices such as wavelength division multiplexing to transmit and receive multiple signals on one line. is valid.

例えば後者の例としては、石屋らにより電子通信学会技
術研究報告、 C378−28,1978年5月24日
号に記載された双方向波長分割多重システムをあげるこ
とができる。このシステムは、第7図に示すように、伝
送装置70内の波長がそれぞれλ1〜λ。
An example of the latter is the bidirectional wavelength division multiplexing system described by Ishiya et al. in IEICE Technical Report, C378-28, May 24, 1978. In this system, as shown in FIG. 7, the wavelengths in the transmission device 70 are λ1 to λ, respectively.

の第1〜第3の光源71〜73の出力光を光合波器74
により合波して1本の光フアイバ76内に結合し、伝搬
させ、受信側の伝送装置70’の光分波器75において
各波長ごとに分渡し、別々に受信するシステムである。
The output lights of the first to third light sources 71 to 73 are sent to an optical multiplexer 74.
This is a system in which the wavelengths are multiplexed, coupled into one optical fiber 76, propagated, split into wavelengths by the optical demultiplexer 75 of the transmission device 70' on the receiving side, and received separately.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところで、このような従来方式のシステムによるときは
、各信号チャンネルごとに波長の異なる光源を用意しな
ければならないが、チャンネル数の多いシステムを構築
する場合、所望の波長の光源を送信側、受信側の双方に
多数用意することは、必ずしも簡単ではなく、また光源
を多数使うため伝送装置が大形化する等の問題点があっ
た。そのため、チャンネル数が多い波長多重通信装置の
実現は困難であった。
By the way, when using such a conventional system, it is necessary to prepare a light source with a different wavelength for each signal channel, but when building a system with a large number of channels, a light source with a desired wavelength is used on the transmitting side and on the receiving side. It is not necessarily easy to provide a large number of light sources on both sides, and the use of a large number of light sources poses problems such as the transmission device becoming larger. Therefore, it has been difficult to realize a wavelength division multiplexing communication device with a large number of channels.

本発明の目的は、このような欠点を除き、波長の異なる
多数の光源を必要とせず、しかも小形にできる波長分割
多重双方向光通信装置を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to eliminate such drawbacks, provide a wavelength division multiplexing bidirectional optical communication device that does not require a large number of light sources with different wavelengths, and can be made compact.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の波長分割多重双方向光通信装置は、複数の第1
の信号を時分割多重化する多重化回路及びこの多重化回
路により得られる時分割多重化信号に応じて波長変調可
能な光源を備えた第1の送信部と、 この第1の送信部からの出力光を分岐回路を介した徐伝
送する光伝送路と、 この光伝送路を伝搬した光を各波長別に波長分波する第
1の分波手段と、 この第1の分波手段の出力端側に設けられ、分波された
各分波出力光の一部を受光する第1の光受信部と、 前記各分波出力光の他の一部を第2の信号で再変調する
と共に、その再変調出力を前記光伝送路を伝搬させ前記
第1の送信部側へ送信する複数の第2の送信部と、 前記複数の再変調出力を前記分岐回路で分岐しこ後各波
長別に分波する第2の分波手段と、この第2の分波手段
の出力端に接続された複数の第2の受信部とを有するこ
とを特徴としている。
The wavelength division multiplexing bidirectional optical communication device of the present invention includes a plurality of first
a first transmitting section comprising a multiplexing circuit for time-division multiplexing the signals of , and a light source capable of wavelength modulation according to the time-division multiplexed signal obtained by the multiplexing circuit; An optical transmission line that slowly transmits output light via a branch circuit, a first demultiplexer that demultiplexes the light propagated through the optical transmission line into individual wavelengths, and an output end of the first demultiplexer. a first optical receiver provided on the side, which receives a part of each of the demultiplexed output lights, and re-modulates the other part of each of the demultiplexed output lights with a second signal; a plurality of second transmitting units that propagate the re-modulated outputs through the optical transmission line and transmit them to the first transmitting unit side; and the plurality of re-modulated outputs are branched by the branch circuit and separated into wavelengths. It is characterized by having a second demultiplexing means that transmits a wave, and a plurality of second receiving sections connected to the output end of the second demultiplexing means.

〔作用〕[Effect]

本発明は、送信側で比較的広い可変波長範囲を持つ単一
の送信光源を用い、各チャンネルに対応した波長を選び
だして順次時間分割で送出することにより、単一の光源
で波長分割多重と等価な光信号を送出すること、および
受信側では受信した光を検出するとともに受信光の少な
(とも一部を別の信号で再変調して送信側に送り戻し、
送信側ではこの再変調光を受信することにより双方向通
信を行う。これによって多数の光源を必要とせず、しか
も伝送装置が小形の波長分割多重双方向通信装置を提供
できる。
The present invention uses a single transmitting light source with a relatively wide variable wavelength range on the transmitting side, selects wavelengths corresponding to each channel, and sequentially transmits them in a time-division manner, thereby achieving wavelength division multiplexing using a single light source. The receiving side detects the received light, re-modulates a small portion of the received light with another signal, and sends it back to the transmitting side.
The transmitting side performs bidirectional communication by receiving this remodulated light. This makes it possible to provide a wavelength division multiplexing bidirectional communication device that does not require a large number of light sources and has a small transmission device.

〔実施例〕〔Example〕

次に、本発明について図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図は本発明によって得られる波長分割多重双方向光
通信装置の第1の実施例を示すブロック図、第2図はそ
の各部の信号波形等を示す図である。
FIG. 1 is a block diagram showing a first embodiment of a wavelength division multiplexing bidirectional optical communication device obtained by the present invention, and FIG. 2 is a diagram showing signal waveforms of each part thereof.

本実施例は、送受信間で上り4チヤンネル、下り4チヤ
ンネルの双方向通信の場合を示すもので、このようなチ
ャンネル数の双方向通信であっても、送信側(局側)に
1個の光源を用いるだけでよく、受信側(加入者側)に
は光源は用いない構成となっている。
This example shows the case of bidirectional communication with 4 uplink channels and 4 downlink channels between transmitter and receiver. Even in bidirectional communication with such a number of channels, one Only a light source is required, and no light source is used on the receiving side (subscriber side).

第1図に示すように、局側40は、複数の信号、本実施
例の場合は第1〜第4のチャンネル信号5〜8が各チャ
ンネル端子1〜4を通して供給される多重化回路9と、
波形変換回路10と、半導体レーザ11と、分岐回路3
0を備えると共に、加入者側41から局側40に向けて
送られてくる上り信号が分岐回路30を介して供給され
る光分波器36と、局側受信回路37〜39.28とを
備えている。
As shown in FIG. 1, the station side 40 includes a multiplexing circuit 9 to which a plurality of signals, in the case of the present embodiment, first to fourth channel signals 5 to 8 are supplied through respective channel terminals 1 to 4. ,
Waveform conversion circuit 10, semiconductor laser 11, and branch circuit 3
0 and to which the upstream signal sent from the subscriber side 41 to the station side 40 is supplied via the branch circuit 30, and the station side receiving circuits 37 to 39.28. We are prepared.

加入者側41は、局側40の分岐回路30と光フアイバ
伝送路14によって接続された光分波器15と、この光
分波器15とそれぞれ加入者側光ファイバ16〜19で
接続された個別部101〜104と、光受信部24〜2
7を備えている。
The subscriber side 41 includes an optical demultiplexer 15 connected to the branch circuit 30 of the central office side 40 by an optical fiber transmission line 14, and an optical demultiplexer 15 connected to the subscriber side optical fibers 16 to 19, respectively. Individual sections 101 to 104 and optical receiving sections 24 to 2
It has 7.

個別部101は、第1図に示すように、分岐回路31、
32と、光変調器33から成り、光変調器33には加入
者側からの上りチャンネル信号34が加えられるように
なっている。他の個別部102〜104についても、そ
れぞれ個別部101と同じ構成となっている。
As shown in FIG. 1, the individual section 101 includes a branch circuit 31,
32 and an optical modulator 33, to which an up channel signal 34 from the subscriber side is applied. The other individual sections 102 to 104 also have the same configuration as the individual section 101, respectively.

局側40の多重化回路9は、第1〜第4のチャンネル信
号5〜8を時分割多重化する回路であり、半導体レーザ
11は、この多重化回路9により得られた時分割多重化
信号に応じて波長変調可能な光源を構成している。これ
ら多重化回路9と、半導体レーザ11が第1の送信部を
構成することになる。
The multiplexing circuit 9 on the station side 40 is a circuit that time-division multiplexes the first to fourth channel signals 5 to 8, and the semiconductor laser 11 multiplexes the time-division multiplexed signals obtained by this multiplexing circuit 9. This constitutes a light source that can be wavelength modulated according to the wavelength. These multiplexing circuits 9 and the semiconductor laser 11 constitute a first transmitter.

このような送信部からの出力光13は、分岐回路30を
介した後、光伝送路としての光フアイバ伝送路14によ
って加入者側41へ伝送されるようになっている。
The output light 13 from such a transmitter is transmitted to a subscriber side 41 via an optical fiber transmission line 14 as an optical transmission line after passing through a branch circuit 30.

加入者側41の光分波器15は、光フアイバ伝送路14
を伝搬した光を各波長別に波長分波する分波器であり、
また、各光受信部24〜27は、このような分波器の出
力端に接続され、分岐された各分波出力光20〜23の
一部を受光するようになっている。
The optical demultiplexer 15 on the subscriber side 41 connects the optical fiber transmission line 14
It is a demultiplexer that demultiplexes the light propagated into each wavelength.
Further, each of the optical receivers 24 to 27 is connected to the output end of such a demultiplexer, and receives a part of each of the branched demultiplexed output lights 20 to 23.

更に、各個別部101〜104における光変調器33は
、各分波出力光の少なくとも別の一部を加入者側からの
上りチャンネル信号で再変調する変調器である。このよ
うに、それぞれの変調器は、各分波出力光20〜23の
一部を上りチャンネル信号で再変調し、その再変調出力
を光フアイバ伝送路14を介して局側40に伝搬させて
前述した第1の送信部側に送信する第2の送信部を構成
している。
Furthermore, the optical modulator 33 in each individual section 101 to 104 is a modulator that re-modulates at least another part of each demultiplexed output light with an upstream channel signal from the subscriber side. In this way, each modulator re-modulates a part of each demultiplexed output light 20 to 23 with an uplink channel signal, and propagates the re-modulated output to the station side 40 via the optical fiber transmission line 14. It constitutes a second transmitting section that transmits data to the first transmitting section described above.

それぞれの加入者側41の第2の送信部の再変調出力は
、局側40の分岐回路30で分岐された後、光分波器3
6に供給されるようになっている。この光分波器36は
、供給された上りチャンネル信号を各波長別に分波する
分波器であり、この光分波器36の出力端に各局側受信
回路37〜39.28が接続されている。これら局側受
信回路37〜39.28が第2の受信部を構成している
The remodulated output of the second transmitting section of each subscriber side 41 is branched by the branch circuit 30 of the station side 40, and then sent to the optical demultiplexer 3.
6. This optical demultiplexer 36 is a demultiplexer that demultiplexes the supplied upstream channel signal into each wavelength, and each station side receiving circuit 37 to 39.28 is connected to the output end of this optical demultiplexer 36. There is. These station side receiving circuits 37 to 39.28 constitute a second receiving section.

このように、本実施例装置は、複数の第1の信号として
の第1〜第4のチャンネル信号5〜8を時分割多重化す
る多重化回路9及び多重化回路9により得られた時分割
多重化信号に応じて波長変調可能な光源としての半導体
レーザ11を少なくとも備えた第1の送信部と、この送
信部からの出力光13を分岐回路30を介した後伝送す
る光伝送路としての光フアイバ伝送路14と、この光伝
送路を伝搬した光を各波長別に波長分波する第1の分波
器としての光分波器15と、この第1の分波器の出力端
に接続され、分岐された各分波出力光の一部を受光する
光受信部24〜27と、各分波出力光の他部を第2の信
号としての上りチャンネル信号で再変調するとともに、
その再変調出力を前述の光伝送路を伝搬させて第1の送
信部側に送信する複数の第2の送信部と、複数の再変調
出力を分岐回路30で分岐した後各波長別に分波する第
2の分波回路としての光分波器36及び第2の分波回路
の出力端に接続された複数の第2の受信部としての局側
受信回路37〜39.28を有する。
As described above, the device of this embodiment has a multiplexing circuit 9 that time-division multiplexes the first to fourth channel signals 5 to 8 as a plurality of first signals, and A first transmitting section including at least a semiconductor laser 11 as a light source capable of wavelength modulation according to a multiplexed signal, and an optical transmission line for transmitting output light 13 from this transmitting section after passing through a branch circuit 30. An optical fiber transmission line 14, an optical demultiplexer 15 as a first demultiplexer that demultiplexes the light propagated through this optical transmission line into each wavelength, and a connection to the output end of this first demultiplexer. optical receivers 24 to 27 that receive a part of each branched output light, and re-modulate the other part of each branched output light with an upstream channel signal as a second signal;
A plurality of second transmitting units transmit the re-modulated outputs to the first transmitting unit side by propagating the above-mentioned optical transmission line, and a plurality of re-modulated outputs are branched by a branching circuit 30 and then demultiplexed for each wavelength. It has an optical demultiplexer 36 as a second demultiplexer circuit, and a plurality of local receiving circuits 37 to 39, 28 as second receivers connected to the output end of the second demultiplexer circuit.

以下、第2図〜第4図を参照しつつ更に説明する。Further explanation will be given below with reference to FIGS. 2 to 4.

局側40において、第1〜第4のチャンネル端子1〜4
に各チャンネル信号5〜8が入力されると、供給された
第1〜第4のチャンネル信号5〜8(各波形は第2図(
alに示す)は、多重化回路9によって第2図(b)に
示す信号波形に時分割多重された後、波形変換回路10
によって半導体レーザ11の駆動出力12に変換される
On the station side 40, the first to fourth channel terminals 1 to 4
When each channel signal 5 to 8 is input to the , the supplied first to fourth channel signals 5 to 8 (each waveform is shown in Fig. 2 (
al) is time-division multiplexed by the multiplexing circuit 9 into the signal waveform shown in FIG.
It is converted into a drive output 12 of the semiconductor laser 11 by .

この駆動出力12は、第1〜第4の各チャンネル信号5
〜8がマーク(又はl)の時には半導体レーザ11の波
長がそれぞれに対応したλ1〜λ4の波長で発振し、ま
たスペース(又は0)の時にはλ、の波長で発振するよ
うにしたもので第2図fc)のような波形である。
This drive output 12 corresponds to each of the first to fourth channel signals 5.
When ~8 is a mark (or l), the wavelength of the semiconductor laser 11 oscillates at the corresponding wavelength λ1 to λ4, and when it is a space (or 0), the semiconductor laser 11 oscillates at the wavelength λ. The waveform is as shown in Figure 2 fc).

ここで、半導体レーザ11について説明すると、本実施
例では、半導体レーザ11としては、第3図に示すよう
な分布反射構造形の半導体レーザを使用した。この種の
半導体レーザの動作原理および構造については特願昭5
8−241267 (昭和58年10月21日出願)に
詳しく記載されているので、詳細な説明は省略するが、
この半導体レーザ11はInP基板60上に液相成長法
で形成されたInGaAsPの活性層領域61、分布反
射器として働く回折格子領域62および活性層領域61
に直流電流64を注入する第1の電極63と回折格子領
域62に駆動波形12に対応した信号電流65を注入す
る第2の電極66等から成っている。この半導体レーザ
11の出力波長の信号電流65に対する依存性を第4図
に示す。信号電流65の大きさに応じて出力波長が飛び
飛びの値を取ることが分かる。本実施例では第4図に示
すようにλ1〜λ、の部分を使用し、この波長を発振す
るように信号電流65の大きさを決定している。
Here, the semiconductor laser 11 will be explained. In this embodiment, a semiconductor laser having a distributed reflection structure as shown in FIG. 3 is used as the semiconductor laser 11. Regarding the operating principle and structure of this type of semiconductor laser, the patent application
8-241267 (filed on October 21, 1982), so detailed explanation will be omitted.
This semiconductor laser 11 includes an InGaAsP active layer region 61 formed by liquid phase growth on an InP substrate 60, a diffraction grating region 62 serving as a distributed reflector, and an active layer region 61.
It consists of a first electrode 63 for injecting a direct current 64 into the diffraction grating region 62, a second electrode 66 for injecting a signal current 65 corresponding to the drive waveform 12 into the diffraction grating region 62, and the like. The dependence of the output wavelength of this semiconductor laser 11 on the signal current 65 is shown in FIG. It can be seen that the output wavelength takes discrete values depending on the magnitude of the signal current 65. In this embodiment, as shown in FIG. 4, a portion of λ1 to λ is used, and the magnitude of the signal current 65 is determined so as to oscillate at this wavelength.

さて、波形変換回路10の駆動出力12が半導体レーザ
11に与えられると、この駆動出力12によって動作す
る半導体レーザ11は第2図(d)に示すような波長変
化の出力光13を出射する。この出力光13は第1の光
分岐回路30を介して光フアイバ伝送路14に結合して
伝搬し、加入者側41にある第1の光分波器15に入射
する。この第1の光分波器15は回折格子から構成され
たもので、出力光13を波長別に分波して、それぞれの
波長に対応する第1〜第4の加入者側光ファイバ16〜
19に結合させる。第1〜第4の加入者側光ファイバ1
6〜19を伝搬した第1〜第4の分波出力光20〜23
(第2図(e))はそれぞれ第2.第3の分岐回路31
.32を通った後加入者側41の第1〜第4の光受信部
24〜27に入射し、送信側の第1〜第4の各チャンネ
ル信号5〜8が、それぞれ対応する第1〜第4の光受信
部24〜27で復調される。
Now, when the drive output 12 of the waveform conversion circuit 10 is applied to the semiconductor laser 11, the semiconductor laser 11 operated by the drive output 12 emits an output light 13 having a wavelength change as shown in FIG. 2(d). This output light 13 is coupled to the optical fiber transmission line 14 via the first optical branching circuit 30, propagates, and enters the first optical demultiplexer 15 on the subscriber side 41. The first optical demultiplexer 15 is composed of a diffraction grating, and demultiplexes the output light 13 into wavelengths, and connects the output light 13 to the first to fourth subscriber-side optical fibers 16 to 16 corresponding to each wavelength.
19. First to fourth subscriber side optical fibers 1
The first to fourth demultiplexed output lights 20 to 23 propagated through 6 to 19
(Fig. 2(e)) are respectively 2. Third branch circuit 31
.. 32, the signals enter the first to fourth optical receivers 24 to 27 on the subscriber side 41, and the first to fourth channel signals 5 to 8 on the transmitting side are transmitted to the corresponding first to fourth optical receivers 24 to 27 on the subscriber side 41, respectively. It is demodulated by the optical receivers 24 to 27 of No. 4.

次に、この加入者側41から、局側40に向けて上り信
号を送る方法について述べる。第1〜第4のチャンネル
すべてが同様の構成なので、ここでは第1のチャンネル
についてのみ説明する。
Next, a method for transmitting uplink signals from the subscriber side 41 to the station side 40 will be described. Since all of the first to fourth channels have the same configuration, only the first channel will be described here.

第3の分岐回路32において第1の分波出力光20はそ
の一部が分岐され、ニオブ酸すチューム製の加入者側光
変調器33に入射する。この加入者側光変調器33は、
第1のチャンネル信号5の伝送速度に比べ約1720の
伝送速度である上りチャンネル信号34によって動作し
ており、上りチャンネル信号光35(第2図(f))を
第2の分岐回路31.第1の光分波器15を介して光フ
アイバ伝送路14中に送出している。光フアイバ伝送路
14を伝搬した上りチャンネル信号光35は局側40に
戻り、第1の光分岐回路30で分岐されて、第2の分波
器36に入射する。
A part of the first demultiplexed output light 20 is branched in the third branch circuit 32 and is incident on a subscriber-side optical modulator 33 made of niobium oxide. This subscriber side optical modulator 33 is
It operates with an upstream channel signal 34 whose transmission rate is approximately 1720 times higher than the transmission rate of the first channel signal 5, and transmits the upstream channel signal light 35 (FIG. 2(f)) to the second branch circuit 31. It is sent out into the optical fiber transmission line 14 via the first optical demultiplexer 15. The upstream channel signal light 35 propagated through the optical fiber transmission line 14 returns to the station side 40, is branched by the first optical branching circuit 30, and enters the second branching filter 36.

第2の光分波器36は、第1の光分波器15とほぼ同一
の波長分波特性を有しており、上りチャンネル信号光3
5を各チャンネルごとに分波して出力し、第1〜第4の
局側受信回路37〜39.28に入射させる。第1の局
側受信回路37は上りチャンネル信号光35を検出後、
適切な低減ろ波器を用いることにより、例えば第2図(
g)に示すような復調波形29を得ている。
The second optical demultiplexer 36 has almost the same wavelength demultiplexing characteristics as the first optical demultiplexer 15, and the upstream channel signal light 3
5 is demultiplexed into each channel and outputted, and inputted into the first to fourth station-side receiving circuits 37 to 39.28. After the first station-side receiving circuit 37 detects the upstream channel signal light 35,
By using an appropriate attenuation filter, for example, Fig. 2 (
A demodulated waveform 29 as shown in g) is obtained.

このようにして、上り4チヤンネル、下り4チヤンネル
の双方向通信を行うことができる。
In this way, bidirectional communication of four uplink channels and four downlink channels can be performed.

このような双方向通信において、この第1の実施例にお
いては、1個の半導体レーザ11が、4チャンネル分、
上り、下り計8個の光源の働きをしたことになる。従来
例に比べると、多重化回路9や波形変換回路10等の電
気回路系が新たに必要になるが、GaAs−IC等の高
速電気回路技術を使えば、これらの回路の実現は容易で
あり、送信側について言えば、4チヤンネルの場合、従
来方式に従えば4個の駆動回路と4個の波長の異なる光
源が必要となるのに比べ、大きさ、コスト面での改善度
は大きい。また、受信側についても、従来波長がそれぞ
れ異なる個別の光源が4個必要となるものが必要なくな
るのでコスト面、保守面での改善度が大きい。なお、第
1の実施例を適用するシステムとしては、光フアイバ伝
送路14として数km〜lQkm、受信側光ファイバ1
6〜19として数100m〜数In+ある加入者系通信
システム等が有効である。また、第1〜第4のチャンネ
ル信号5〜8としては各々伝送速度100 M b /
s以上までの信号が容易に伝送できた。
In such bidirectional communication, in this first embodiment, one semiconductor laser 11 has four channels,
This means that a total of eight light sources, going up and down, functioned. Compared to the conventional example, new electrical circuit systems such as a multiplexing circuit 9 and a waveform conversion circuit 10 are required, but these circuits can be easily realized using high-speed electrical circuit technology such as GaAs-IC. Regarding the transmitting side, in the case of 4 channels, compared to the conventional method which requires four drive circuits and four light sources with different wavelengths, the degree of improvement in terms of size and cost is large. Furthermore, on the receiving side, there is no longer a need for four individual light sources with different wavelengths, resulting in significant improvements in terms of cost and maintenance. In addition, as a system to which the first embodiment is applied, the optical fiber transmission line 14 is several km to 1Q km, and the receiving side optical fiber 1 is
As 6 to 19, a subscriber communication system of several 100 m to several In+ is effective. Furthermore, the first to fourth channel signals 5 to 8 each have a transmission rate of 100 Mb/
It was possible to easily transmit signals up to 1000 s or more.

第5図は本発明の第2の実施例を示すブロック図、第6
図は各部の信号波形等を示す図である。
FIG. 5 is a block diagram showing a second embodiment of the present invention, and FIG.
The figure is a diagram showing signal waveforms, etc. of each part.

第2の実施例は、上り2チャンネル下り2チヤンネルの
双方向通信で、しかも上り下りともほぼ同伝送速度の通
信ができるところに特徴がある。
The second embodiment is characterized in that it is bidirectional communication with two uplink channels and two downlink channels, and can communicate at almost the same transmission speed for both uplink and downlink.

局側40において、第1.第2のチャンネル端子1.2
に入力した下りの第1.第2のチャンネル信号5,6 
(各波形は第6図(a)に示す)は、多重化回路9によ
って第6図中)に示す信号波形に時分割多重された後、
波形変換回路10によって半導体レーザ11の駆動出力
12に変換される。なお、この際、上りの第1.第2チ
ヤンネル信号50.51用のピントが、第6図中)のよ
うに、全部lの符号(オール・マーク)で挿入されてい
る点が第1の実施例とは異なる。
On the station side 40, the first . Second channel terminal 1.2
The first down line entered in second channel signal 5,6
(Each waveform is shown in FIG. 6(a)) is time-division multiplexed by the multiplexing circuit 9 into the signal waveform shown in FIG.
The waveform conversion circuit 10 converts the signal into a drive output 12 of the semiconductor laser 11 . In addition, at this time, the first uphill. This embodiment differs from the first embodiment in that the focus points for the second channel signals 50, 51 are inserted with all marks (all marks) as shown in FIG.

すなわち、このようにして、後述のように、半導体レー
ザ11の出力光13に上りの第1.第2のチャンネル信
号光52.53用にオール・マークの符号を含ませるよ
うにしており、これにより、上りチャンネルについても
、下りチャンネルの伝送速度と同じ速度まで変調が可能
となるようにしている。
That is, in this way, as will be described later, the output light 13 of the semiconductor laser 11 is supplied with the first . All mark codes are included for the second channel signal light 52, 53, thereby making it possible to modulate the upstream channel up to the same transmission speed as the downstream channel. .

駆動出力12による半導体レーザ11の変調は第1の実
施例と同様であり、第6図(C)のような駆動波形並び
に第6図(dlのような出力光13が得られる。
The modulation of the semiconductor laser 11 by the driving output 12 is the same as in the first embodiment, and the driving waveform as shown in FIG. 6(C) and the output light 13 as shown in FIG. 6(dl) are obtained.

この出力光13は、光分岐回路30を介して光フアイバ
伝送路14に結合して伝搬し、加入者側41において、
第1.第3.第4の光分波器15.54.55で、第6
図(e)に示すように、それぞれ波長別に分離される。
This output light 13 is coupled to the optical fiber transmission line 14 via the optical branch circuit 30 and propagated, and at the subscriber side 41,
1st. Third. In the fourth optical demultiplexer 15.54.55, the sixth
As shown in Figure (e), each wavelength is separated.

この場合、第1.第3の分波出力光20.22はそれぞ
れ第1.第2の光受信部24.25に入射して局側40
の第1.第2のチャンネル信号5.6が復調される。
In this case, 1. The third demultiplexed output lights 20 and 22 are respectively the first and second demultiplexed output lights 20 and 22. The light enters the second optical receiver 24.25 and is transmitted to the station side 40.
No. 1. The second channel signal 5.6 is demodulated.

一方、第2.第4の分波出力光21.23は、第1゜第
2の加入者側光変調器56.57で変調され、上りの第
1.第2チヤンネル信号光52.53として、第2、第
3の分岐回路31.32を介して光フアイバ伝送路14
中を局側40に向けて送信される。加入者側光変調器5
6.57としては半導体光増幅器を用い、この光増幅器
の注入電流を上りのチャンネル信号50、51でon−
offすることによって光強度変調器として作動させた
On the other hand, the second. The fourth demultiplexed output light 21.23 is modulated by the 1st and 2nd subscriber-side optical modulators 56 and 57, and the upstream 1.degree. As the second channel signal light 52.53, the optical fiber transmission line 14 is passed through the second and third branch circuits 31.32.
The inside is transmitted toward the station side 40. Subscriber side optical modulator 5
6.57 uses a semiconductor optical amplifier, and the injection current of this optical amplifier is turned on by the upstream channel signals 50 and 51.
By turning it off, it operated as a light intensity modulator.

第1.第2の上りチャンネル信号光52.53は、第1
の分岐回路30で分岐されて第2の分波器36に入射し
、第1.第2の局側受信回路でそれぞれ受信、復調され
る。
1st. The second upstream channel signal light 52,53
The first branch circuit 30 branches the branch circuit 30 and inputs the second branching filter 36 . The signals are received and demodulated by the second station-side receiving circuit.

この第2の実施例では、1個の半導体レーザ11が上り
、下り2チャンネル計4個の光源の働きをしていること
になる。出力光13には上りの第1゜第2チヤンネル信
号光52.53用にオール・マークの符号が含まれてい
るので、加入者側41でこれを変調すれば最大下りチャ
ンネルの伝送速度と同じ速度まで変調が可能である。
In this second embodiment, one semiconductor laser 11 functions as a light source for a total of four light sources with two channels, one upward and two downward channels. Since the output light 13 includes all mark codes for the upstream 1st and 2nd channel signal lights 52 and 53, if this is modulated on the subscriber side 41, the maximum transmission speed is the same as that of the downstream channel. It is possible to modulate up to the speed.

なお、本発明は、以上の実施例の他にもさまざまな変形
が可能である。まず、半導体レーザ11の変調方法とし
ては、マークがλ、〜λ4、スペースがλ、となるよう
に半導体レーザ11を変調したが、これに限られること
はない。例えば、マーク(1)をλ、〜λ4の中心波長
に、スペース(0)を隣り合うチャンネルの中間の波長
、即ち第1の光分波器15の遮断波長域に設定すること
も可能である。また、λ1〜λ4の各中心波長から長波
長側、あるいは短波長側にそれぞれマーク波長とスペー
ス波長を設定して、いわゆる2値周波数偏移変調的な出
力光13を得ることも可能である。なお、この場合、各
光受信部ではマーク、スペースの波長差を弁別するため
の光弁別器あるいは、光ヘテロゲイン形検波回路の使用
が望ましい。
Note that the present invention can be modified in various ways in addition to the above-described embodiments. First, as a method of modulating the semiconductor laser 11, the semiconductor laser 11 is modulated so that the mark is λ, to λ4, and the space is λ, but the method is not limited to this. For example, it is also possible to set the mark (1) to the center wavelength of λ, to λ4, and the space (0) to the intermediate wavelength between adjacent channels, that is, the cutoff wavelength range of the first optical demultiplexer 15. . It is also possible to set mark wavelengths and space wavelengths on the long wavelength side or short wavelength side from each of the center wavelengths λ1 to λ4, respectively, to obtain the so-called binary frequency shift keying output light 13. In this case, it is desirable to use an optical discriminator or an optical heterogain type detection circuit in each optical receiving section to discriminate the wavelength difference between marks and spaces.

更に、加入者側光変調器33.56.57としては、ニ
オブ酸すチューム製変調器や半導体光増幅器の例を示し
たが、その他にも吸収形半導体スイッチ等光スィッチで
あればあらゆるものが適用可能である。また、実施例の
システムは同時双方向通信が可能な例であるが、時分割
双方向通信であっても良い。この場合非送信時の局側4
0の出力光13はオール・マークで送出するのが望まし
い。
Furthermore, as the subscriber side optical modulator 33, 56, 57, we have shown examples of a modulator made of niobium oxide and a semiconductor optical amplifier, but any other optical switch such as an absorption type semiconductor switch can also be used. Applicable. Further, although the system of the embodiment is an example in which simultaneous two-way communication is possible, time-division two-way communication may be used. In this case, station side 4 when not transmitting
It is desirable that the 0 output light 13 be sent out with all marks.

更に、光源としては分布反射構造形の半導体レーザ11
の例を示したが、これ以外のものでも、変調が容易で、
しかも十分な波長偏移の得られるものであれば使用可能
である。また、波長多重数としては4チャンネル程度の
ものを示したが、信号伝送速度や伝送距離等に応じてチ
ャンネル数を増減することは当然可能である。
Further, as a light source, a semiconductor laser 11 with a distributed reflection structure is used.
An example of this is shown, but other types can be easily modulated,
Moreover, it can be used as long as a sufficient wavelength shift can be obtained. Furthermore, although the number of wavelength multiplexed channels is about four channels, it is of course possible to increase or decrease the number of channels depending on the signal transmission speed, transmission distance, etc.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、波長の異なる多
数の光源を使う必要がなく、従ってこれら光源及び光源
部モジュール、駆動回路部等を必要としないために、伝
送装置のコストの低減、小形化が可能な波長分割多重双
方向光通信装置を得ることができる。
As described above, according to the present invention, it is not necessary to use a large number of light sources with different wavelengths, and therefore, these light sources, light source modules, drive circuit units, etc. are not required, so that the cost of the transmission device can be reduced. A wavelength division multiplexing bidirectional optical communication device that can be miniaturized can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1実施例を示すブロック図、第2図
は第1図の各部の信号波形等を示す図、第3図は本発明
で使用される光源の一例を示す構造図、 第4図はその出力光の波長特性を示す図、第5図は本発
明の第2実施例を示すブロック図、第6図は第2図の各
部の信号波形等を示す図、第7図は従来例の構成を示す
図である。 1〜4・・・チャンネル端子 5〜8・・・チャンネル信号 9・・・多重化回路 10・・・波形変換回路 11・・・半導体レーザ 12・・・駆動出力 13・・・出力光 14・・・光フアイバ伝送路 15、36.54.55・・・光分波器16〜19・・
・加入者側光ファイバ 20〜23・・・分波出力光 24〜27・・・光受信部 28、37〜39・・・局側受信回路 30〜32・・・分岐回路 33、56.57・・・加入者側光変調器34、50.
51・・・上りチャンネル信号35、52.53・・・
上りチャンネル信号光60・・・InP基板 61・・・活性層領域 62・・・回折格子領域 63、66・・・電極 64・・・直流電流 65・・・信号電流 101〜104・・・個別部 代理人弁理士   岩  佐  義  幸1)々 周 
FIG. 1 is a block diagram showing a first embodiment of the present invention, FIG. 2 is a diagram showing signal waveforms of each part in FIG. 1, and FIG. 3 is a structural diagram showing an example of a light source used in the present invention. , FIG. 4 is a diagram showing the wavelength characteristics of the output light, FIG. 5 is a block diagram showing the second embodiment of the present invention, FIG. 6 is a diagram showing signal waveforms etc. of each part of FIG. 2, and FIG. The figure shows the configuration of a conventional example. 1 to 4... Channel terminals 5 to 8... Channel signal 9... Multiplexing circuit 10... Waveform conversion circuit 11... Semiconductor laser 12... Drive output 13... Output light 14. ...Optical fiber transmission line 15, 36.54.55...Optical demultiplexer 16-19...
・Subscriber-side optical fibers 20-23...Demultiplexed output lights 24-27...Optical receivers 28, 37-39...Office-side receiving circuits 30-32...Branch circuits 33, 56.57 . . . subscriber side optical modulators 34, 50 .
51...Uplink channel signal 35, 52.53...
Up channel signal light 60...InP substrate 61...Active layer region 62...Diffraction grating regions 63, 66...Electrode 64...DC current 65...Signal current 101 to 104...Individual Department Representative Patent Attorney Yoshiyuki Iwasa 1) Shu

Claims (1)

【特許請求の範囲】[Claims] (1)複数の第1の信号を時分割多重化する多重化回路
及びこの多重化回路により得られる時分割多重化信号に
応じて波長変調可能な光源を備えた第1の送信部と、 この第1の送信部からの出力光を分岐回路を介した後伝
送する光伝送路と、 この光伝送路を伝搬した光を各波長別に波長分波する第
1の分波手段と、 この第1の分波手段の出力端側に設けられ、分波された
各分波出力光の一部を受光する第1の光受信部と、 前記各分波出力光の他の一部を第2の信号で再変調する
と共に、その再変調出力を前記光伝送路を伝搬させ前記
第1の送信部側へ送信する複数の第2の送信部と、 前記複数の再変調出力を前記分岐回路で分岐した後各波
長別に分波する第2の分波手段と、この第2の分波手段
の出力端に接続された複数の第2の受信部とを有するこ
とを特徴とする波長分割多重双方向通信装置。
(1) A first transmitting unit including a multiplexing circuit that time-division multiplexes a plurality of first signals and a light source capable of wavelength modulation according to the time-division multiplexed signal obtained by the multiplexing circuit; an optical transmission line that transmits the output light from the first transmitting section after passing through a branch circuit; a first demultiplexing means that demultiplexes the light propagated through the optical transmission line for each wavelength; a first optical receiver, which is provided on the output end side of the demultiplexing means, and receives a part of each demultiplexed output light, and a second optical receiver which receives the other part of each demultiplexed output light; a plurality of second transmitting units that re-modulate the signal and transmit the re-modulated output to the first transmitting unit by propagating the re-modulated output through the optical transmission line; and branching the plurality of re-modulated outputs at the branch circuit. A bidirectional wavelength division multiplexing method characterized by having a second demultiplexing means that demultiplexes each wavelength after demultiplexing, and a plurality of second receiving sections connected to the output end of the second demultiplexing means. Communication device.
JP61294692A 1986-12-12 1986-12-12 Wavelength-division multiplex bidirectional optical communication equipment Pending JPS63148726A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61294692A JPS63148726A (en) 1986-12-12 1986-12-12 Wavelength-division multiplex bidirectional optical communication equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61294692A JPS63148726A (en) 1986-12-12 1986-12-12 Wavelength-division multiplex bidirectional optical communication equipment

Publications (1)

Publication Number Publication Date
JPS63148726A true JPS63148726A (en) 1988-06-21

Family

ID=17811070

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61294692A Pending JPS63148726A (en) 1986-12-12 1986-12-12 Wavelength-division multiplex bidirectional optical communication equipment

Country Status (1)

Country Link
JP (1) JPS63148726A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5140451A (en) * 1989-02-15 1992-08-18 The Boeing Company Aircraft signal distribution system
US5323255A (en) * 1991-05-08 1994-06-21 Alcatel N.V. Transceiver arrangement using TDM to transmit assigned subcarrier waveforms

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5966236A (en) * 1982-10-07 1984-04-14 Matsushita Electric Ind Co Ltd Wavelength multiplex communicating method
JPS60121833A (en) * 1983-12-06 1985-06-29 Nec Corp Two-way optical transmission system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5966236A (en) * 1982-10-07 1984-04-14 Matsushita Electric Ind Co Ltd Wavelength multiplex communicating method
JPS60121833A (en) * 1983-12-06 1985-06-29 Nec Corp Two-way optical transmission system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5140451A (en) * 1989-02-15 1992-08-18 The Boeing Company Aircraft signal distribution system
US5323255A (en) * 1991-05-08 1994-06-21 Alcatel N.V. Transceiver arrangement using TDM to transmit assigned subcarrier waveforms

Similar Documents

Publication Publication Date Title
EP0688114B1 (en) Bidirectional fibre-obtical telecommunicationsystem with monolithic integrated WDM multiwavelength source and a broadband incoherent optical source
US4807227A (en) Optical wavelength-division switching system with coherent optical detection system
US7522843B2 (en) Optical repeater converting wavelength and bit rate between networks
EP0503512A2 (en) Method and apparatus for communicating amplitude modulated signals over an optical communication path
US4991975A (en) Division multiplexing and demultiplexing means lightwave communication system comprising optical time
US5715075A (en) Optical processing device operating in a wavelength-synchronized mode and an optical circuit exchanger that uses such an optical processing device
US20080131125A1 (en) Loopback-type wavelength division multiplexing passive optical network system
EP0189273A2 (en) Fiber optic network with reduced coupling losses
US7319818B2 (en) Wavelength-division-multiplexed passive optical network using wavelength-locked optical transmitter
JPH04227139A (en) Bidirectional light waveguide remote communication system
JPH10229385A (en) Two-way transmission system
JPH09219680A (en) Optical transmission system
US5657144A (en) Optical processing device operating in a wavelength-synchronized mode and an optical circuit exchanger that uses such an optical processing device
US5949925A (en) Method, device, and system for optical modulation in wavelength division multiplexing
US6782204B1 (en) Network with shared optical sources
JP2001251252A (en) Optical access network, trunk line node unit and branch line node unit
US6509984B1 (en) Crosstalk reduction in a bidirectional optical link
JPS63148726A (en) Wavelength-division multiplex bidirectional optical communication equipment
US7016614B1 (en) Optical wavelength division multiplexing transmission suppressing four-wave mixing and SPM-GVD effects
JPH05235867A (en) Optical connection system for subscriber terminal and branch station of communication network
JP2003234721A (en) Optical communication system
JP2003244100A (en) Optical wavelength multiplex ring network
WO2004036794A1 (en) Optical modulation devices
JPH01130638A (en) Frequency multiplex optical two-way transmitter
JP3472427B2 (en) Optical transmission system