JPH01130638A - Frequency multiplex optical two-way transmitter - Google Patents

Frequency multiplex optical two-way transmitter

Info

Publication number
JPH01130638A
JPH01130638A JP62290211A JP29021187A JPH01130638A JP H01130638 A JPH01130638 A JP H01130638A JP 62290211 A JP62290211 A JP 62290211A JP 29021187 A JP29021187 A JP 29021187A JP H01130638 A JPH01130638 A JP H01130638A
Authority
JP
Japan
Prior art keywords
optical
frequency
light
optical fiber
return signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62290211A
Other languages
Japanese (ja)
Inventor
Takahiro Aoki
青木 恭弘
Katsumi Emura
克己 江村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP62290211A priority Critical patent/JPH01130638A/en
Publication of JPH01130638A publication Critical patent/JPH01130638A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/29Repeaters
    • H04B10/291Repeaters in which processing or amplification is carried out without conversion of the main signal from optical form
    • H04B10/2912Repeaters in which processing or amplification is carried out without conversion of the main signal from optical form characterised by the medium used for amplification or processing
    • H04B10/2916Repeaters in which processing or amplification is carried out without conversion of the main signal from optical form characterised by the medium used for amplification or processing using Raman or Brillouin amplifiers

Abstract

PURPOSE:To attain low cost and to improve reliability by applying Brillouin amplification so as to select a channel and using a return signal so as to modulate and send back excited light used for the Brillouin amplification thereby constituting a simple subscriber terminal equipment. CONSTITUTION:A signal light subject to frequency multiplex by an optical multiplexer 2 is made incident in an optical fiber 3 through an optical demultiplexer 51. On the other hand, the excited light projected from a semiconductor laser 61 is modulated by a return signal fed to an electric signal input terminal 62 of an intensity modulator 63 and coupled with an optical fiber 3 by an optical demultiplexer 72. The oscillated frequency of the semiconductor laser 61 is set higher than the frequency of a prescribed channel by the Brillouin shift by a control section 81. Then a photoreception section 71 reads the return signal by using the excited light, that is, the return signal light. Thus, no optical demultiplexer for frequency multiplex light is required at the subscriber terminal equipment and one light source is enough for the system, then the network with low cost and high reliability can be constituted.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、木、ットワークで用いられる周波数多重光双
方向伝送装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a frequency multiplexed optical bidirectional transmission device used in a tree network.

(従来の技術) 近年、情報化社会の進展に伴って情報の量および種類の
増大、質の向上が求められ、動画像信号超高速データ等
の高速/広帯域情報サービスを提供するためのネットワ
ークの検討が始まっている。
(Prior art) In recent years, with the advancement of the information society, there has been a demand for an increase in the amount and variety of information and an improvement in quality. Consideration has begun.

さらに近年の光通信技術の向上により、ネットワークへ
の光技術の導入もさかんに検討されている。
Furthermore, with the recent improvements in optical communication technology, the introduction of optical technology into networks is being actively considered.

光技術の中でも、周波数が異なった信号光を合波して一
本の光ファイバを用いて伝送させる周波数多重光伝送技
術は、光ファイバ伝送後において所定の周波数の信号光
を抽出することにより情報の選択が可能であるから、ネ
ットワークに適した技術であると考えられ、そのネット
ワークへの適用について検討が行なわれている。
Among optical technologies, frequency division multiplexing optical transmission technology, which combines signal lights with different frequencies and transmits them using a single optical fiber, extracts signal lights of a predetermined frequency after being transmitted through optical fibers, thereby transmitting information. Since it is possible to select the following, it is considered to be a technology suitable for networks, and its application to networks is being studied.

この周波数多重光伝達では、複数のチャンネルの中から
所定のチャンネルを取り出すためには、周波数多重信号
光を合波及び分波するために光分波回路が必要である。
In this frequency multiplexed optical transmission, in order to extract a predetermined channel from a plurality of channels, an optical demultiplexer circuit is required to multiplex and demultiplex the frequency multiplexed signal light.

しかしながら、現状の光分波回路は、その挿入損失が大
きく、このことがチャンネル収容数を制限する一要因と
なっている。
However, current optical demultiplexing circuits have a large insertion loss, which is one of the factors that limits the number of channels that can be accommodated.

また、周波数分離特性が十分ではなく、クロストークに
より情報の品質劣化を生じさせるという問題がある。こ
の様なチャンネル選択の問題を解決する方法として、最
近ブリユアン増幅を用いる方法が提案された(エレクト
ロニクスレターズ(Electronics Lett
ers) 、第22巻、 1986年。
Furthermore, there is a problem in that the frequency separation characteristics are not sufficient and the quality of information is degraded due to crosstalk. Recently, a method using Brillouin amplification has been proposed as a method to solve this problem of channel selection (Electronics Letters).
ers), Volume 22, 1986.

1084−1085ページ)。(pages 1084-1085).

この方法では、抽出したいチャンネルの信号光の周波数
よりもブリユアンシフト量だけ周波数が高い励起光を信
号光とは逆方向に伝搬するように光ファイバに入射する
。このとき、ブリユアン増幅の利得帯域幅は通常数百M
Hz程度以下で狭いので、各チャンネル間の周波数間隔
を利得帯域幅以上に設定すれば、1つのチャンネルだけ
がブリユアン増幅され、その他のチャンネルは増幅され
ない、したがって、増幅度を十分に大きくすれば、抽出
したいチャンネルの光パワーをその他のチャンネルの光
パワーに比べて極めて大きくできるので、所定のチャ、
ンネルを抽出することが可能になる。また、チャンネル
の選択は、励起光の周波数を変えることによって行なえ
る。
In this method, excitation light whose frequency is higher than the frequency of the signal light of the channel to be extracted by the Brillouin shift amount is incident on the optical fiber so as to propagate in the opposite direction to the signal light. At this time, the gain bandwidth of Brillouin amplification is usually several hundred M
Since it is narrow at about Hz or less, if the frequency interval between each channel is set to be greater than the gain bandwidth, only one channel will be Brillouin amplified, and the other channels will not be amplified. Therefore, if the amplification degree is made large enough, The optical power of the channel you want to extract can be made extremely large compared to the optical power of other channels.
It becomes possible to extract the channel. Moreover, channel selection can be performed by changing the frequency of excitation light.

(発明が解決しようとする問題点) さてここでネットワークの構成を考えるとその加入者端
末が家庭に置かれる場合がある。この場合その端末では
装置が簡単であることが望まれる。
(Problems to be Solved by the Invention) Now, when considering the configuration of a network, the subscriber terminals may be located at home. In this case, it is desired that the terminal has a simple device.

また、端末からセンターへ低速ではあるがデータ切り換
えのための返送信号が送られなけらばならない、この光
双方向伝送のためには端末にも返送信号送信用の光源が
必要となる。しかしながら、励起光源の他に返送信号返
送用光源を端末に設けたのではコストや信頼性の点で問
題が生ずる。
In addition, a return signal for data switching must be sent from the terminal to the center, albeit at a low speed, and for this bidirectional optical transmission, the terminal also requires a light source for transmitting the return signal. However, if a terminal is provided with a light source for sending back signals in addition to an excitation light source, problems arise in terms of cost and reliability.

本発明の目的は、高度な機能を有するネットワークにお
いても簡便な加入者端末を構成し、コストや信頼性を向
上させるための周波数多重光双方向伝送装置を提供する
ことにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a frequency multiplexed optical bidirectional transmission apparatus that can configure a simple subscriber terminal even in a network with advanced functions and improve cost and reliability.

(問題点を解決するための手段) 本発明の周波数多重光双方向伝送装置は、光ファイバと
、周波数多重信号光を前記光ファイバに送出する光送信
器と、面記周波数多重信号光のうちの所定の周波数の信
号光を前記光ファイバ伝搬中においてブリユアン光増幅
する励起光を出射する励起光源と、前記励起光源の発振
周波数を制御する制御手段と、ブリユアン増幅後の前記
周波数多重信号光を受信する第1の光受信器と、前記励
起光を返送用信号によって変調する手段と、前記光ファ
イバ伝搬後の変調された励起光を前記光送信器側におい
て受信する第2の光受信器とを含むことを構成上の特徴
としている。
(Means for Solving the Problems) A frequency multiplexed optical bidirectional transmission device of the present invention includes an optical fiber, an optical transmitter that sends a frequency multiplexed signal light to the optical fiber, and a a pumping light source that emits a pumping light that performs Brillouin amplification of a signal light having a predetermined frequency during propagation through the optical fiber; a control means that controls the oscillation frequency of the pumping light source; and a control means that controls the frequency-multiplexed signal light after Brillouin amplification. a first optical receiver for receiving, a means for modulating the excitation light with a return signal, and a second optical receiver for receiving the modulated excitation light after propagation through the optical fiber at the optical transmitter side. A structural feature is that it includes.

(作用) 一般に、加入者端末ではセンターからの情報を選択して
受信するとともに、センターへアクセス信号等を返送す
る必要がある0本発明の周波数多重光双方向伝送装置で
は、ブリユアン増幅によってチャンネルの選択を行なう
とともに、そのブリユアン増幅に用いる励起光を返送信
号によって変調して送り返している。したがって、加入
者端末では、周波数多重光を分波するための光分波器を
必要とせず、かつ光源が1つで済むので従来に比べて低
価格で信、顕性の高いネットワークを構成できる。以下
にこの理由について一層詳しく説明する。
(Function) In general, subscriber terminals need to select and receive information from the center and also send back access signals etc. to the center. At the same time, the pump light used for Brillouin amplification is modulated by a return signal and sent back. Therefore, subscriber terminals do not require an optical demultiplexer to demultiplex frequency-multiplexed light and only need one light source, making it possible to construct a network with high reliability and visibility at a lower cost than in the past. . The reason for this will be explained in more detail below.

ブリユアン増幅の利得帯域幅は、通常数百MHz以下で
あるので、周波数多重信号光の各チャンネルの周波数間
隔をその利得帯域幅以上に設定しておけば複数のチャン
ネルが同時にブリユアン増幅されることはない、したが
って、励起光の周波数を、抽出したいチャンネルの周波
数よりもブリユアンシフト量だけ高くなるように制御す
れば、1つのチャンネルだけを選択的に増幅することが
可能になる。ここで、抽出すべきチャンネルの選択は、
励起光の周波数を変えることによって容易に行なうこと
ができる。
The gain bandwidth of Brillouin amplification is usually several hundred MHz or less, so if the frequency interval of each channel of frequency-multiplexed signal light is set to be greater than the gain bandwidth, multiple channels will not be amplified simultaneously. Therefore, if the frequency of the excitation light is controlled to be higher than the frequency of the channel to be extracted by the amount of Brillouin shift, it becomes possible to selectively amplify only one channel. Here, the selection of channels to extract is
This can be easily done by changing the frequency of the excitation light.

次に、このブリユアン増幅によるチャンネル選択方法を
ネットワークに適用することを考える。
Next, consider applying this channel selection method using Brillouin amplification to a network.

ネットワークでは加入者端末からセンターへ適宜アクセ
ス信号等を送る必要があるが、この上り回線にはそれ程
広い帯域は要求されない、一方、プリュアン増幅では〜
励起光は信号光とは異なる一端から光ファイバに入)(
され信号光とは逆方向に伝搬する。したがって、励起光
を返送用信号によって変調すれば、この励起光によって
返送用信号をセンターに送ることが可能になる。ここで
、前述のように返送用信号は低速でよいので、励起光の
変調によるスペクトル拡がり量はブリユアン増幅の利得
帯域幅に比べて小さい、この結果、ブリユアン増幅にお
いて、励起光を変調したことによる増幅利得の低下はほ
とんどない、また、このブリユアン増幅では、励起光と
信号光とは光ファイバ中を逆方向に、伝搬している。そ
の結果、増幅利得は励起光の強度の平均で与えられるの
で、励起光が変調によって時間的に変化していても増幅
利得の変化はほとんど生じない。
In the network, it is necessary to send access signals etc. from subscriber terminals to the center as appropriate, but this uplink does not require a very wide bandwidth.
The excitation light enters the optical fiber from one end different from the signal light) (
and propagates in the opposite direction to the signal light. Therefore, if the excitation light is modulated by the return signal, it becomes possible to send the return signal to the center using the excitation light. Here, as mentioned above, since the return signal only needs to be sent at a low speed, the amount of spectral broadening due to modulation of the pump light is smaller than the gain bandwidth of Brillouin amplification. There is almost no decrease in amplification gain, and in this Brillouin amplification, the pump light and signal light propagate in opposite directions in the optical fiber. As a result, the amplification gain is given by the average intensity of the pumping light, so even if the pumping light changes over time due to modulation, the amplification gain hardly changes.

なお、本発明では、センターから加入者端末への下り回
線ではブリユアン増幅によって光受信器で受光される信
号光パワーレベルを大きくしているので、受信電気回路
雑音の影響を見かけ上減少させることができ、実質的な
受光レベルを下げることができる。一方、加入者端末か
らセンターへの上り回線は1.伝送速度が低いので所要
受光レベルは小さい、その結果、上下回線間での許容伝
送路損失をほぼ等しくかつ大きくできるので、チャンネ
ル数を増やしたり伝送距離を伸ばすことができる。
In addition, in the present invention, since the power level of the signal light received by the optical receiver is increased by Brillouin amplification in the downlink from the center to the subscriber terminal, it is possible to apparently reduce the influence of receiving electrical circuit noise. This allows the actual light reception level to be lowered. On the other hand, the uplink from the subscriber terminal to the center is 1. Since the transmission speed is low, the required light reception level is small.As a result, the allowable transmission path loss between the upper and lower lines can be made almost equal and large, so the number of channels and the transmission distance can be increased.

(実施例) 次に、図面を参照して本発明の周波数多重光双方向伝送
装置について詳細に説明する。
(Example) Next, a frequency multiplexed optical bidirectional transmission apparatus of the present invention will be described in detail with reference to the drawings.

第1図は、本発明の一実施例の構成図である。FIG. 1 is a block diagram of an embodiment of the present invention.

この実施例は、3波周波数多重光双方向伝送装置である
This embodiment is a three-wave frequency multiplexed optical bidirectional transmission device.

第1図において、信号光源11.21.31及び励起光
源61はいずれも波長1.3−帯のI nGaAsP/
 I n P分布帰還型半導体レーザ、外部変調器13
゜23、33.63はL i N b Os強度変調器
、光合波器2は、Ti拡散L i N b Os基板に
マツハツエンダ干渉型光導波路を作成し、それを2段接
続したものであり、入出力用に単一モード光ファイバピ
ッグティルが付いている。ここで、この素子の損失は約
8dBである。また、光分波器51.52には分岐比が
1対1の単一イード光ファイバカップラを、光ファイバ
3にはコア径が101JI+、ファイバ長が50km、
波長1.3四での伝送損失が0 、4 d B / k
I+の単一モード光ファイバを用いている。この光ファ
イバの波長1.3μ目でのブリユアン利得帯域幅は10
0MHzであった。
In FIG. 1, the signal light sources 11, 21, 31 and the excitation light source 61 are all InGaAsP/
I n P distributed feedback semiconductor laser, external modulator 13
23 and 33.63 are L i N b Os intensity modulators, and the optical multiplexer 2 is a Matsuhatsu Ender interference type optical waveguide created on a Ti-diffused L i N b Os substrate and connected in two stages. It has a single mode fiber optic pigtil for input and output. Here, the loss of this element is about 8 dB. In addition, the optical demultiplexers 51 and 52 are equipped with a single EID optical fiber coupler with a branching ratio of 1:1, and the optical fiber 3 has a core diameter of 101JI+ and a fiber length of 50 km.
Transmission loss at wavelength 1.34 is 0,4 dB/k
An I+ single mode optical fiber is used. The Brillouin gain bandwidth of this optical fiber at wavelength 1.3μ is 10
It was 0MHz.

この実施例において、半導体レーザ11.21.31か
ら出射された信号光は、t、1Nbos強度変調器13
.23.33の電気信号入力端子12.22.32に印
加された32Mb/sの2値符号電気パルスによって強
度変調されている。そして、光合波器2によって周波数
多重された後に、励起光と分離するための光分波器51
を通って光ファイバ3に入射されている。ここで、各々
の信号光の中心周波数間隔は3 G Hzに設定されて
いる。このチャンネル間隔はブリユアン利得帯域幅10
0MHzよりも十分に広いので、所定の周波数のチャン
ネルのみを選択的にブリユアン増幅できる。
In this embodiment, the signal light emitted from the semiconductor laser 11.21.31 is transmitted to the t, 1Nbos intensity modulator 13
.. The intensity is modulated by a 32 Mb/s binary code electric pulse applied to the electric signal input terminal 12.22.32 of 23.33. After being frequency-multiplexed by the optical multiplexer 2, an optical demultiplexer 51 is used to separate the pump light from the pump light.
The light passes through the optical fiber 3 and enters the optical fiber 3. Here, the center frequency interval of each signal light is set to 3 GHz. This channel spacing is Brillouin gain bandwidth 10
Since it is sufficiently wider than 0 MHz, Brillouin amplification can be performed selectively only on channels of a predetermined frequency.

一方、半導体レーザ61から出射された励起光は、L 
i N b Os強度変調器63の電気信号入力端子6
2に印加された伝送速度がI M b / sの返送信
号によって変調され、光分波器72によって光ファイバ
3に結合されている。ここで、制御部81には所定のチ
ャンネル選択のための制御信号が制御信号入力端子82
から入力されている。そして、この制御部81によって
、半導体レーザ61の発振周波数はブリユアンシフト量
に等しい13GHzだけ所定のチャンネルの周波数より
も高く設定されている6本実施例では、制御部81は半
導体レーザ61の駆動電流を制御しており、これによっ
て発振周波数を変化させている。光受信部41では、ブ
リユアン増幅された周波数多重信号光をG e −A 
P Dで直接検波して出力端子42からデータを出力し
ている。また、光受信部71では、励起光すなわち返送
信号光によって返送信号の読み取りを行なっている。
On the other hand, the excitation light emitted from the semiconductor laser 61 is
Electrical signal input terminal 6 of i N b Os intensity modulator 63
The transmission rate applied to the optical fiber 2 is modulated by a return signal of I M b /s, and is coupled to the optical fiber 3 by an optical demultiplexer 72 . Here, the control section 81 receives a control signal for selecting a predetermined channel from a control signal input terminal 82.
It is input from. The control section 81 sets the oscillation frequency of the semiconductor laser 61 higher than the frequency of a predetermined channel by 13 GHz, which is equal to the amount of Brillouin shift. The current is controlled, which changes the oscillation frequency. The optical receiver 41 converts the Brillouin-amplified frequency-multiplexed signal light into G e -A
The data is directly detected by the PD and output from the output terminal 42. Further, the optical receiver 71 reads the return signal using excitation light, that is, return signal light.

本実施例において、光ファイバ3への入力光パワーは各
々の周波数の信号光が一10dBm、励起光が10dB
mであった。このとき、ブリユアン増幅度は25dBで
あり、受光器41での情報信号を検波するための受光レ
ベルは一35dBmであった。
In this embodiment, the input optical power to the optical fiber 3 is 110 dBm for the signal light of each frequency and 10 dBm for the pump light.
It was m. At this time, the Brillouin amplification was 25 dB, and the light reception level for detecting the information signal at the photoreceiver 41 was -35 dBm.

このレベルは非増幅時Gキ換算すると一60dBmであ
り、この実施例での伝送損失20dBを考えると30d
Bのマージンを持って債報を伝送させることができた。
This level is -60 dBm when converted to G when not amplified, and considering the transmission loss of 20 dB in this example, it is 30 dBm.
I was able to transmit the debt report with a margin of B.

また、受信器71での励起光すなわち返送信号光の返送
信号を検波するための受光レベルは一55dBmであり
、伝送マージンは65dBであった。したがって、この
実施例の装置では、全体として30dBのマージンを実
現することができた。
Further, the light reception level for detecting the pumping light, that is, the return signal of the return signal light in the receiver 71 was -55 dBm, and the transmission margin was 65 dB. Therefore, the device of this example was able to achieve an overall margin of 30 dB.

この30dBのマージンはネットワークの拡張に使うこ
とができ、さらに大規模なネットワークの構築が可能で
あることが確認された。また、端末においては、1個の
光源によりチャンネルの選択とともに返送信号を送り出
すことができ、低価格化とともに信頼性の向上が実現で
きた。
This 30 dB margin can be used to expand the network, and it has been confirmed that it is possible to construct an even larger network. In addition, in the terminal, a single light source can select a channel and send out a return signal, making it possible to reduce costs and improve reliability.

以上、本発明による周波数多重光双方向伝送装置につい
て一実施例を挙げて説明したが、本発明はこの実施例に
限られることなくいくつかの変形が考えられる0例えば
、本実施例では、信号光源11、21.31や励起光源
8としてはI nGaAsP/ I n P分布帰還型
半導体レーザを用いたが、他の材料の半導化レーザ、あ
るいは固体レーザ、ガスレーザなどの多種のレーザでも
よい、また、光ファイバは分散シフトファイバをはじめ
としてGeO* * P2O5などの他の組成の光ファ
イバを使用してもよい、また、光合波器や分波器は、そ
の所要性能を有する限り、いかなる構造種類であっても
良いことは言うまでもない、さらに、周波数多重チャン
ネル数も3波に限らず、さらに多重してもよい。
The frequency division multiplexed optical bidirectional transmission apparatus according to the present invention has been described above with reference to one embodiment. However, the present invention is not limited to this embodiment, and several modifications can be made. For example, in this embodiment, a signal Although InGaAsP/InP distributed feedback semiconductor lasers were used as the light sources 11 and 21.31 and the excitation light source 8, various types of lasers such as semiconductor lasers made of other materials, solid lasers, gas lasers, etc. may also be used. In addition, the optical fiber may be a dispersion-shifted fiber or an optical fiber with other compositions such as GeO**P2O5, and the optical multiplexer or demultiplexer may have any structure as long as it has the required performance. Needless to say, the number of frequency multiplexed channels is not limited to three, and may be further multiplexed.

(発明の効果) 以上に説明したように、本発明の周波数多重光双方向伝
送装置では、ブリユアン増幅によって、チャンネルの選
択を行なうとともに、ブリユアン増幅に用いる励起光を
返送信号によって変調して送り返している。したがって
、本発明の周波数多重光双方向伝送装置を採用すごこと
により、加入者端末では、周波数多重光の光分波器を必
要とせず、かつ光源が1つで済むので低価格で信頼性の
高いネットワークを構成できる。
(Effects of the Invention) As explained above, in the frequency division multiplexed optical bidirectional transmission device of the present invention, channels are selected by Brillouin amplification, and the pumping light used for Brillouin amplification is modulated by a return signal and sent back. There is. Therefore, by adopting the frequency-multiplexed optical bidirectional transmission device of the present invention, subscriber terminals do not need an optical demultiplexer for frequency-multiplexed light and only need one light source, resulting in low cost and reliability. You can configure a high-performance network.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一欠施例の構成図である。 1・・・光送信部、11.21.31・・・信号光源、
12゜22、32.62・・・電気信号入力端子、13
.23.33.63・・・外部変調器、2・・・光合波
器、3・・・光ファイバ、41、71・・・光受信器、
42.72・・・電気信号出力端子、51、52・・・
光分波器、61・・・励起光源、81・・・制御部、8
2・・・制御信号入力端子。
FIG. 1 is a block diagram of a partial embodiment of the present invention. 1... Optical transmitter, 11.21.31... Signal light source,
12゜22, 32.62... Electrical signal input terminal, 13
.. 23.33.63... External modulator, 2... Optical multiplexer, 3... Optical fiber, 41, 71... Optical receiver,
42.72... Electric signal output terminal, 51, 52...
Optical demultiplexer, 61... Excitation light source, 81... Control unit, 8
2...Control signal input terminal.

Claims (1)

【特許請求の範囲】[Claims] 光ファイバと、周波数多重信号光を前記光ファイバに送
出する光送信号器と、前記周波数多重信号光のうちの所
定の周波数の信号光を前記光ファイバ伝搬中においてブ
リユアン光増幅する励起光を出射する励起光源と、前記
励起光源の発振周波数を制御する制御手段と、ブリユア
ン増幅後の前記周波数多重信号光を受信する第1の光受
信器と、前記励起光を返送用信号によって変調する手段
と、前記光ファイバ伝搬後の変調された励起光を前記光
送信器側において受信する第2の光受信器とを含むこと
を特徴とする周波数多重光双方向伝送装置。
an optical fiber, an optical transmitter that sends a frequency-multiplexed signal light to the optical fiber, and emits pump light that performs Brillouin optical amplification of a signal light of a predetermined frequency of the frequency-multiplexed signal light while propagating through the optical fiber. a control means for controlling an oscillation frequency of the excitation light source; a first optical receiver for receiving the frequency-multiplexed signal light after Brillouin amplification; and means for modulating the excitation light with a return signal. and a second optical receiver that receives the modulated excitation light after propagation through the optical fiber at the optical transmitter side.
JP62290211A 1987-11-16 1987-11-16 Frequency multiplex optical two-way transmitter Pending JPH01130638A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62290211A JPH01130638A (en) 1987-11-16 1987-11-16 Frequency multiplex optical two-way transmitter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62290211A JPH01130638A (en) 1987-11-16 1987-11-16 Frequency multiplex optical two-way transmitter

Publications (1)

Publication Number Publication Date
JPH01130638A true JPH01130638A (en) 1989-05-23

Family

ID=17753186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62290211A Pending JPH01130638A (en) 1987-11-16 1987-11-16 Frequency multiplex optical two-way transmitter

Country Status (1)

Country Link
JP (1) JPH01130638A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0342637A (en) * 1989-07-10 1991-02-22 Furukawa Electric Co Ltd:The Optical signal amplification system
US5515192A (en) * 1992-03-19 1996-05-07 Fujitsu Limited Optical systems making use of phenomenon of stimulated brillouin scattering
JPH08331060A (en) * 1996-06-10 1996-12-13 Fujitsu Ltd Optical transmitter, optical communication system and method for transmitting optical signal
JPH08331059A (en) * 1996-06-10 1996-12-13 Fujitsu Ltd Optical transmitter, optical communication system and method for amplifying optical signal
JP2014068092A (en) * 2012-09-25 2014-04-17 Nippon Telegr & Teleph Corp <Ntt> Optical communication system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5884550A (en) * 1981-11-16 1983-05-20 Nec Corp Optical fiber bidirectional transmission system
JPS63179633A (en) * 1987-01-21 1988-07-23 Nippon Telegr & Teleph Corp <Ntt> Optical communication system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5884550A (en) * 1981-11-16 1983-05-20 Nec Corp Optical fiber bidirectional transmission system
JPS63179633A (en) * 1987-01-21 1988-07-23 Nippon Telegr & Teleph Corp <Ntt> Optical communication system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0342637A (en) * 1989-07-10 1991-02-22 Furukawa Electric Co Ltd:The Optical signal amplification system
JP2749645B2 (en) * 1989-07-10 1998-05-13 古河電気工業株式会社 Optical signal amplification method
US5515192A (en) * 1992-03-19 1996-05-07 Fujitsu Limited Optical systems making use of phenomenon of stimulated brillouin scattering
US5598289A (en) * 1992-03-19 1997-01-28 Fujitsu Limited Optical systems making use of phenomenon of stimulated brillouin scattering
JPH08331060A (en) * 1996-06-10 1996-12-13 Fujitsu Ltd Optical transmitter, optical communication system and method for transmitting optical signal
JPH08331059A (en) * 1996-06-10 1996-12-13 Fujitsu Ltd Optical transmitter, optical communication system and method for amplifying optical signal
JP2014068092A (en) * 2012-09-25 2014-04-17 Nippon Telegr & Teleph Corp <Ntt> Optical communication system

Similar Documents

Publication Publication Date Title
US5940196A (en) Optical communications system with wavelength division multiplexing
KR100480540B1 (en) Wavelength division multiplexing passive optical network system
KR100480246B1 (en) Passive optical network using loop back of multi-wavelength light generated at central office
US5793512A (en) Optical communication system
EP0449475B1 (en) Telemetry for optical fiber amplifier repeater
US5786913A (en) Optical TDMA ring network with a central transmitting and receiving device
US7194205B2 (en) Optical transmission apparatus and optical systems
EP0721261A1 (en) Self-amplified optical networks
KR100334432B1 (en) Bidirectional add/drop optical amplifier module using one arrayed-waveguide grating multiplexer
JPH08265299A (en) Optical fiber communication of a plurality of channels
US6661973B1 (en) Optical transmission systems, apparatuses, and methods
US6366376B1 (en) Optical transmitting device using wavelength division multiplexing to transmit signal lights having frequencies arranged to eliminate effects of four-wave mixing (FWM)
JPH0697915A (en) Wavelength-divided multiplexing optical communication system and its transmitting apparatus
US6424774B1 (en) Tunable wavelength four light wave mixer
EP0506753B1 (en) Lossless optical component
US20020063928A1 (en) Filtering of data-encoded optical signals
US6025948A (en) Optical signal transmission installation including a repeater monitoring system
JPH01130638A (en) Frequency multiplex optical two-way transmitter
US6407842B1 (en) Method and apparatus for transmitting a WDM optical signal having nonuniform channel spacings
JP2890031B2 (en) Millimeter-wave signal optical multiplex transmission system and device
US5796503A (en) Optical communication system wherein optical beat interference at the center is reduced
KR100404518B1 (en) Optical Communication System using 4 Wavelength Add/Drop Type Wavelength Division Multiplexing
US6449085B1 (en) Optical direct amplifier and control method thereof
WO2023162208A1 (en) Light monitoring device, light monitoring system, and light monitoring method
KR100404517B1 (en) Optical Communication System using 4 Wavelength Circulator Add/Drop Type Wavelength Division Multiplexing