JP2014068092A - Optical communication system - Google Patents

Optical communication system Download PDF

Info

Publication number
JP2014068092A
JP2014068092A JP2012210356A JP2012210356A JP2014068092A JP 2014068092 A JP2014068092 A JP 2014068092A JP 2012210356 A JP2012210356 A JP 2012210356A JP 2012210356 A JP2012210356 A JP 2012210356A JP 2014068092 A JP2014068092 A JP 2014068092A
Authority
JP
Japan
Prior art keywords
optical
light
onu
olt
communication system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012210356A
Other languages
Japanese (ja)
Other versions
JP6026832B2 (en
Inventor
Sang-Yuep Kim
サンヨプ キム
Jun Terada
純 寺田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2012210356A priority Critical patent/JP6026832B2/en
Publication of JP2014068092A publication Critical patent/JP2014068092A/en
Application granted granted Critical
Publication of JP6026832B2 publication Critical patent/JP6026832B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an economical optical communication system that can secure optical power budget in a high multi-value signal.SOLUTION: An optical communication system 301 is an optical communication system in which an ONU 100 and an OLT 200 are connected by an optical fiber 150. The OLT 200 makes light of an optical source 21 for downlink transmission to the ONU 100 into pump light generating Stimulated Brillouin Scattering (SBS) light in the optical fiber 150. The ONU 100 transmits an uplink optical signal with an optical frequency included in the frequency band of the SBS light generated from the pump light to the OLT 200.

Description

本発明は誘導ブリルアン散乱(SBS:Stimulated Brillouin Scattering)を利用した光増幅を行う光通信システムに関する。   The present invention relates to an optical communication system that performs optical amplification using Stimulated Brillouin Scattering (SBS).

高多値信号を使用したシステムは、制限されたアナログ帯域幅にもShannon capacity理論に近接するシステムスループットを実現できる。このシステムは、信号対雑音比を犠牲にしているため、PON構成で光パワーバジェットを確保する必要がある。光パワーバジェットを確保する第1の手法としては、局側光端末回線装置(OLT:Optical Line Terminal)や加入者側光端末回線装置(ONU:Optical Network Unit)に高出力パワー光源を使用する手法がある。   Systems using high multilevel signals can achieve system throughput close to Shannon capacity theory, even in limited analog bandwidth. Since this system sacrifices the signal-to-noise ratio, it is necessary to ensure an optical power budget with a PON configuration. As a first method for securing an optical power budget, a method using a high output power light source for a station side optical terminal line device (OLT) or a subscriber side optical terminal line device (ONU: Optical Network Unit). There is.

また、光パワーバジェットを確保する第2の手法としては、局側光端末回線装置(OLT:Optical Line Terminal)及び加入者側光端末回線装置(ONU:Optical Network Unit)にコヒーレント受信器を置いて光局部発振器からの光を用いて光受信信号を増幅する手法も提案されている。   Further, as a second method for securing the optical power budget, a coherent receiver is placed in the station side optical terminal line device (OLT) and the subscriber side optical terminal line device (ONU: Optical Network Unit). A method of amplifying an optical reception signal using light from an optical local oscillator has also been proposed.

しかし、第1及び第2の手法は、対応を各ONUに施すことになりシステムコストを増大させるという課題があった。そこで、光パワーバジェットを確保するため、ODN(Optical Distribution Network)区間で信号光を増幅させる手法も知られている。   However, the first and second methods have a problem of increasing the system cost because the correspondence is applied to each ONU. Therefore, a method for amplifying signal light in an ODN (Optical Distribution Network) section is also known in order to secure an optical power budget.

その手法としては、ODN区間に個別光増幅器を使用する手法(第3の手法)がある。ODN区間で光増幅をするには個別デバイスであるDFA(rare earth doped fiber amplifier)あるいはSOA(semiconductor optical amplifier)を使う。   As the technique, there is a technique (third technique) using an individual optical amplifier in the ODN section. In order to perform optical amplification in the ODN section, DFA (rare earth doped fiber amplifier) or SOA (semiconductor optical amplifier) which is an individual device is used.

また、ODN区間で光増幅をする手法としては、SBS光増幅現象をPON(Passive Optical Network)システムの物理層に適用する手法(第4の手法)がある。SBS光増幅の原理を以下に説明する(非特許文献1を参照。)。ポンプ光源から所定の光強度より大きい光(ポンプ光)を光ファイバに入力すると、ポンプ光の周波数よりおおよそ11GHz下にストークスシフトされたストークス光が発生する。ストークス光は、ポンプ光と逆方向に伝搬しながら増幅される。ストークス光は同一の周波数の信号光を増幅することができる。そのとき、利得帯域幅は数十MHzのブリルアン線幅になる。ポンプ光を一定の帯域幅で変調することで、ブリルアン線幅を増加させて利得帯域幅を拡張することができる。   In addition, as a technique for performing optical amplification in the ODN section, there is a technique (fourth technique) in which the SBS optical amplification phenomenon is applied to the physical layer of a PON (Passive Optical Network) system. The principle of SBS optical amplification will be described below (see Non-Patent Document 1). When light (pump light) greater than a predetermined light intensity is input from the pump light source to the optical fiber, Stokes light that is Stokes shifted approximately 11 GHz below the frequency of the pump light is generated. Stokes light is amplified while propagating in the opposite direction to the pump light. Stokes light can amplify signal light of the same frequency. At that time, the gain bandwidth is a Brillouin line width of several tens of MHz. By modulating the pump light with a constant bandwidth, the Brillouin line width can be increased and the gain bandwidth can be expanded.

N.A.Olsson and J.P.VAN DER ZIEL,“Characteristics of a Semiconductor Laser Pumped Brillouin Amplifier with Electronically Controlled Bandwidth”, J.Lightwave Technol., vol. LT−5, no.1, 147−153,1987.N. A. Olsson and J.M. P. VAN DER ZIEL, “Characteristics of a Semiconductor Laser Pumped Brillouin Amplifier with Electrically Controlled Bandwidth”, J. VAN DER ZIEL, “Characteristics of a Semiconductor Laser Pumped Brillouin Amplifier with Electrically Controlled Bandwidth”. Lightwave Technol. , Vol. LT-5, no. 1, 147-153, 1987.

しかし、第3の手法は光増幅用のデバイスが必要であり、第4の手法もポンプ光源やポンプ光を伝送路に注入するための光部品が必要になるなど、システムが複雑で高価になるという課題があった。そこで、上記課題を解決すべく、本発明は、高多値信号における光パワーバジェットを確保できる経済的な光通信システムを提供することを目的とする。   However, the third method requires a device for optical amplification, and the fourth method also requires a pump light source and an optical component for injecting pump light into the transmission path, and the system becomes complicated and expensive. There was a problem. Therefore, in order to solve the above-described problems, an object of the present invention is to provide an economical optical communication system that can secure an optical power budget in a high multilevel signal.

上記目的を達成するために、本発明は、OLT側に高出力LDを搭載し、各ONUからの上り通信をODN上でSBS光増幅可能とすることで、ONUに搭載するLD出力の要求条件を下げることで光通信システムの経済化を実現する。   In order to achieve the above object, the present invention is equipped with a high-power LD on the OLT side, and enables upstream communication from each ONU to be SBS optically amplified on the ODN. The economics of the optical communication system is realized by lowering.

具体的には、本発明に係る光通信システムは、加入者側光端末回線装置(ONU:Optical Network Unit)と局側光端末回線装置(OLT:Optical Line Terminal)とを光ファイバで接続した光通信システムであって、
前記OLTは、前記ONUへの下り送信用光源の光を、前記光ファイバで誘導ブリルアン散乱(SBS:Stimulated Brillouin Scattering)光を発生させるポンプ光としており、
前記ONUは、前記ポンプ光で発生する前記SBS光の周波数帯域に含まれる光周波数の上り光信号を前記OLTへ送信することを特徴とする。
Specifically, the optical communication system according to the present invention includes an optical fiber in which a subscriber-side optical terminal line device (ONU) and a station-side optical terminal line device (OLT) are connected by an optical fiber. A communication system,
The OLT uses light from a light source for downstream transmission to the ONU as pump light that generates stimulated Brillouin scattering (SBS) light in the optical fiber,
The ONU transmits an upstream optical signal having an optical frequency included in a frequency band of the SBS light generated by the pump light to the OLT.

本光通信システムは、SBS光増幅のためのポンプ光源をOLTの下り光信号の送信用光源に兼用させている。このため、上記第4の手法で課題となっていたポンプ光源やポンプ光を伝送路に注入するための光部品が不必要になり、システムがシンプルで経済的になる。従って、本発明は、高多値信号における光パワーバジェットを確保できる経済的な光通信システムを提供することができる。   In this optical communication system, a pump light source for SBS optical amplification is also used as a light source for transmitting an OLT downstream optical signal. For this reason, the pump light source and the optical component for injecting the pump light into the transmission path, which are problems in the fourth method, are not necessary, and the system becomes simple and economical. Therefore, the present invention can provide an economical optical communication system that can secure an optical power budget in a high-value signal.

本発明に係る光通信システムの前記OLTは、前記ONUへの下り送信用光源の光を、直交周波数分割多重(OFDM:Orthogonal Frequency Division Multiplexing)変調を行うOFDM光変調部を有することを特徴とする。OFDM信号のフラットなスペクトラム特性により、別途の利得平坦光デバイスを使わずにSBS利得帯域の拡張ができる。   The OLT of the optical communication system according to the present invention includes an OFDM optical modulation unit that performs orthogonal frequency division multiplexing (OFDM) modulation on light of a light source for downlink transmission to the ONU. . Due to the flat spectrum characteristics of the OFDM signal, the SBS gain band can be expanded without using a separate gain flat optical device.

本発明に係る光通信システムは、PON構成としてONUを複数とすることができる。そして、各ONUは上り信号について同一光周波数としてもよいし、前記ONUは複数であり、前記ONU毎に上り光信号のサブキャリアが異なるとしてもよい。   The optical communication system according to the present invention can have a plurality of ONUs as the PON configuration. Each ONU may have the same optical frequency for the upstream signal, and there may be a plurality of ONUs, and the subcarrier of the upstream optical signal may be different for each ONU.

本発明に係る光通信システムの前記OLTは、複数の波長の下り光信号を合波して前記光ファイバに結合することができる。本光通信システムを波長分割多重方式(WDM:Wavelength Division Multiplexing)とし、伝送量を増大させることができる。   The OLT of the optical communication system according to the present invention can combine downstream optical signals having a plurality of wavelengths and couple them to the optical fiber. The optical communication system can be a wavelength division multiplexing (WDM) system to increase the transmission amount.

本発明は、高多値信号における光パワーバジェットを確保できる経済的な光通信システムを提供することができる。   The present invention can provide an economical optical communication system that can secure an optical power budget in a high-level multilevel signal.

本発明に係る光通信システムの構成を説明する図である。It is a figure explaining the structure of the optical communication system which concerns on this invention. 本発明に係る光通信システムのOLTとONUの光送信周波数の配置を説明する図である。It is a figure explaining arrangement | positioning of the optical transmission frequency of OLT and ONU of the optical communication system which concerns on this invention. 本発明に係る光通信システムの構成を説明する図である。It is a figure explaining the structure of the optical communication system which concerns on this invention. 本発明に係る光通信システムのOLTとONUの光送信周波数の配置を説明する図である。It is a figure explaining arrangement | positioning of the optical transmission frequency of OLT and ONU of the optical communication system which concerns on this invention. 本発明に係る光通信システムの構成を説明する図である。It is a figure explaining the structure of the optical communication system which concerns on this invention. 本発明に係る光通信システムのOLTとONUの光送信周波数の配置を説明する図である。It is a figure explaining arrangement | positioning of the optical transmission frequency of OLT and ONU of the optical communication system which concerns on this invention.

添付の図面を参照して本発明の実施形態を説明する。以下に説明する実施形態は本発明の実施例であり、本発明は、以下の実施形態に制限されるものではない。なお、本明細書及び図面において符号が同じ構成要素は、相互に同一のものを示すものとする。また、枝番号を付さずに説明している場合は、当該符号の全ての枝番号に共通する説明である。   Embodiments of the present invention will be described with reference to the accompanying drawings. The embodiments described below are examples of the present invention, and the present invention is not limited to the following embodiments. In the present specification and drawings, the same reference numerals denote the same components. Moreover, when it demonstrates without attaching a branch number, it is description common to all the branch numbers of the said code | symbol.

(実施形態1)
図1は、本実施形態の光通信システム301を説明する図である。光通信システム301は、ONU100とOLT200とを光ファイバ150で接続した光通信システムである。OLT200は、ONU100への下り送信用光源21の光を、光ファイバ150でSBS光を発生させるポンプ光としている。ONU100は、ポンプ光で発生するSBS光の周波数帯域に含まれる光周波数の上り光信号をOLT200へ送信する。
(Embodiment 1)
FIG. 1 is a diagram for explaining an optical communication system 301 of the present embodiment. The optical communication system 301 is an optical communication system in which the ONU 100 and the OLT 200 are connected by an optical fiber 150. The OLT 200 uses the light of the downstream transmission light source 21 to the ONU 100 as pump light that generates SBS light by the optical fiber 150. The ONU 100 transmits an upstream optical signal having an optical frequency included in the frequency band of the SBS light generated by the pump light to the OLT 200.

OLT200は、光トランシーバの光送信部に増幅臨界値を超える高出力光源21を有する。さらに、OLT200は、波長ロッカ22を有し、高出力光源21をストークスシフトを考慮した所望の光周波数に合わせる。さらに、OLT200は、ONU100への下りデータで高出力光源21からの光を変調する光変調部23を有する。なお、OFDM変調を行う場合、光変調部23はOFDM光変調部となる。OLT200は、高出力光源21からの光(供給光)を光変調部23を介して光ファイバ150に結合する。   The OLT 200 includes a high-power light source 21 that exceeds the amplification critical value in the optical transmission unit of the optical transceiver. Further, the OLT 200 includes a wavelength locker 22 and adjusts the high-power light source 21 to a desired optical frequency considering the Stokes shift. Further, the OLT 200 includes a light modulation unit 23 that modulates light from the high-power light source 21 with downstream data to the ONU 100. In addition, when performing OFDM modulation, the optical modulation unit 23 becomes an OFDM optical modulation unit. The OLT 200 couples light (supply light) from the high-power light source 21 to the optical fiber 150 via the light modulation unit 23.

ONU100は、光トランシーバの光送信部に光源11、波長ロッカ12、及び光変調部13を有する。波長ロッカ12は、OLT200からの光で光ファイバ150に生じるストークス光の光周波数に含まれる光を光源11に出力させる。光変調部13は、OLT200への上りデータで光源11からの光を変調する。なお、OFDM変調を行う場合、変調部13はOFDM光変調部となる。また、nはONU100の数を示している。本実施形態はnが1であるSS(Single Star)方式にも同等な効果がある。   The ONU 100 includes a light source 11, a wavelength locker 12, and an optical modulation unit 13 in the optical transmission unit of the optical transceiver. The wavelength locker 12 causes the light source 11 to output light included in the optical frequency of the Stokes light generated in the optical fiber 150 by the light from the OLT 200. The light modulator 13 modulates the light from the light source 11 with the upstream data to the OLT 200. When performing OFDM modulation, the modulation unit 13 is an OFDM optical modulation unit. N indicates the number of ONUs 100. The present embodiment has an equivalent effect even in an SS (Single Star) system in which n is 1.

図2は、光通信システム301のOLT200とONU100の光送信周波数の配置を説明する図である。OLT200は、供給光を光ファイバ150に出力する。供給光は、SBS光増幅用のポンプ光としてストークスシフト分低い光周波数の位置にストークス光を発生させる。このストークス光の帯域がSBS利得帯域となり、光ファイバ150がSBS利得媒質として作用する。ONU100は、供給光の周波数からストークスシフト分低い光周波数の上り光信号を出力する。ONU100からの上り光信号はOLT200へ伝搬されながら増幅される。なお、図2では、上り光信号をストークスシフト分低い光周波数としているが、ストークスシフト分高い光周波数としてもよい。   FIG. 2 is a diagram for explaining the arrangement of optical transmission frequencies of the OLT 200 and the ONU 100 of the optical communication system 301. The OLT 200 outputs supply light to the optical fiber 150. The supplied light generates Stokes light as a pump light for amplifying SBS light at a position having an optical frequency lower by the Stokes shift. The Stokes light band becomes the SBS gain band, and the optical fiber 150 acts as an SBS gain medium. The ONU 100 outputs an upstream optical signal having an optical frequency that is lower than the frequency of the supplied light by a Stokes shift. The upstream optical signal from the ONU 100 is amplified while being propagated to the OLT 200. In FIG. 2, the upstream optical signal has an optical frequency lower by the Stokes shift, but may have an optical frequency higher by the Stokes shift.

OLT200は、供給光を光ファイバ150に常時出力する。ONU100の上り光信号の送信タイミングにかかわらず光ファイバ151を常に励起し、上り光信号を常に増幅可能状態としておく。具体的には、光変調部23は、OLT200からONU100への下りデータが無い場合、ダミーデータを用いて高出力光源21からの供給光を変調して光ファイバ150へ出力する。このようにダミーデータを用いることでSBS利得帯域を広げることができる。また、光変調部23は、OLT200からONU100への下りデータがある場合、下りデータを用いて高出力光源21からの供給光を変調して光ファイバ150へ出力する。これによりOLT200は光ファイバ150を励起するとともに、下り光信号をONU100へ到達させることができる。   The OLT 200 always outputs supply light to the optical fiber 150. The optical fiber 151 is always excited regardless of the transmission timing of the upstream optical signal of the ONU 100, and the upstream optical signal is always in an amplifiable state. Specifically, when there is no downlink data from the OLT 200 to the ONU 100, the light modulation unit 23 modulates the supply light from the high output light source 21 using the dummy data and outputs the modulated light to the optical fiber 150. In this way, the SBS gain band can be expanded by using dummy data. Further, when there is downlink data from the OLT 200 to the ONU 100, the light modulation unit 23 modulates the supply light from the high output light source 21 using the downlink data and outputs the modulated light to the optical fiber 150. As a result, the OLT 200 can excite the optical fiber 150 and allow the downstream optical signal to reach the ONU 100.

光変調器23がOFDM変調を行う場合(OFDM光変調器の場合)、供給光は図2のように所定の帯域幅を持つことになる。下りのデータがない場合は、任意のダミーデータでOFDM変調を行う。これに伴い、ストークス光も同等の帯域幅に広がり、フラットな利得スペクトラムとなりSBS利得帯域を広げることができる。ONU100の波長ロッカ12は、上りOFDM光信号の光周波数がSBS利得帯域に収まるように光源11の光周波数を合わせる。   When the optical modulator 23 performs OFDM modulation (in the case of the OFDM optical modulator), the supplied light has a predetermined bandwidth as shown in FIG. When there is no downstream data, OFDM modulation is performed with arbitrary dummy data. Along with this, Stokes light also spreads to the same bandwidth, resulting in a flat gain spectrum and the SBS gain bandwidth can be expanded. The wavelength locker 12 of the ONU 100 matches the optical frequency of the light source 11 so that the optical frequency of the uplink OFDM optical signal is within the SBS gain band.

(実施形態2)
図3は、本実施形態の光通信システム302を説明する図である。光通信システム302と図1の光通信システム301との違いは、光通信システム302がONU100毎に上り光信号のサブキャリアが異なる点である。なお、光通信システム302は、OLT200もONU100もOFDM変調を行う。図4は、光通信システム302のOLT200とONU100の光送信周波数の配置を説明する図である。各ONU100が出力する全ての上り光信号の光周波数は、OLT200からの供給光によるSBS利得帯域内に収まっている。
(Embodiment 2)
FIG. 3 is a diagram illustrating the optical communication system 302 of the present embodiment. A difference between the optical communication system 302 and the optical communication system 301 of FIG. 1 is that the optical communication system 302 has different subcarriers of the upstream optical signal for each ONU 100. In the optical communication system 302, both the OLT 200 and the ONU 100 perform OFDM modulation. FIG. 4 is a diagram for explaining the arrangement of optical transmission frequencies of the OLT 200 and the ONU 100 of the optical communication system 302. The optical frequencies of all upstream optical signals output from each ONU 100 are within the SBS gain band of the light supplied from the OLT 200.

より具体的に説明する。ONU100の光変調器13は光キャリア抑圧OFDM光変調器である。光キャリア抑圧OFDM光変調器は、光キャリアを抑圧し、OFDM光信号のうち、所望のサブキャリアのみを残して他のサブキャリアを消去して出力することができる。例えば、ONU100−1は、SBS利得帯域に含まれる光周波数f1のサブキャリアのみの光信号を出力する。同様に、ONU100−nは、SBS利得帯域に含まれる光周波数fnのサブキャリアのみの光信号を出力する。なお、「光キャリア抑圧」とは、各ONUがf1〜fnでサブキャリアを違えていても、光キャリア成分による干渉を抑圧するという意味である。   This will be described more specifically. The optical modulator 13 of the ONU 100 is an optical carrier suppression OFDM optical modulator. The optical carrier suppressing OFDM optical modulator can suppress the optical carrier and erase and output other subcarriers in the OFDM optical signal while leaving only the desired subcarrier. For example, the ONU 100-1 outputs an optical signal of only the subcarrier having the optical frequency f1 included in the SBS gain band. Similarly, the ONU 100-n outputs an optical signal of only a subcarrier having an optical frequency fn included in the SBS gain band. “Optical carrier suppression” means that even if each ONU has different subcarriers in f1 to fn, interference due to the optical carrier component is suppressed.

OLT200の波長ロッカ22及びONU100の波長ロッカ12の動作は実施形態1の説明と同じである。すなわち、波長ロッカ12は、各ONU100の光源11からの光の光周波数を同一とし、OFDM変調した上り光信号がSBS利得帯域に収まるような光周波数の光を光源11に出力させる。したがって、ONU100ごとに光周波数が異なる上り光信号はすべて光ファイバ150でSBS増幅される。   The operations of the wavelength locker 22 of the OLT 200 and the wavelength locker 12 of the ONU 100 are the same as those described in the first embodiment. That is, the wavelength locker 12 makes the light frequency of the light from the light source 11 of each ONU 100 the same, and causes the light source 11 to output light having an optical frequency such that the upstream optical signal modulated by OFDM falls within the SBS gain band. Therefore, all upstream optical signals having different optical frequencies for each ONU 100 are SBS amplified by the optical fiber 150.

(実施形態3)
図5は、本実施形態の光通信システム303を説明する図である。光通信システム303と図1の光通信システム301との違いは、光通信システム303がWDM方式を採用している点にある。OLT200’は、複数の波長の下り光信号をアレイ導波路回折格子(AWG:Arrayed Waveguide Grating)24で合波して光ファイバ150に結合する。ONU100はAWG152を介して光ファイバ150に接続する。
(Embodiment 3)
FIG. 5 is a diagram illustrating the optical communication system 303 of the present embodiment. The difference between the optical communication system 303 and the optical communication system 301 in FIG. 1 is that the optical communication system 303 adopts the WDM system. The OLT 200 ′ combines downstream optical signals having a plurality of wavelengths with an arrayed waveguide grating (AWG) 24 and couples the optical signals to the optical fiber 150. The ONU 100 is connected to the optical fiber 150 via the AWG 152.

図6は、光通信システム303のOLT200’とONU100の光送信周波数の配置を説明する図である。OLT200’は各ONU100に対応する光トランシーバの送信部を有する。OLT200’のそれぞれの波長ロッカ22はそれぞれの高出力光源21に図6の下り光信号の光周波数で発振させる。ONU100のそれぞれの波長ロッカ12は、光源11に図6の上り光信号の光周波数で発振させる。上りの光信号はそれぞれの供給光によるSBS利得帯域に含まれるため、WDM上り信号はすべて光ファイバでSBS増幅される。   FIG. 6 is a diagram illustrating the arrangement of optical transmission frequencies of the OLT 200 ′ and the ONU 100 of the optical communication system 303. The OLT 200 ′ has an optical transceiver transmission unit corresponding to each ONU 100. Each wavelength locker 22 of the OLT 200 'causes each high-power light source 21 to oscillate at the optical frequency of the downstream optical signal in FIG. Each wavelength locker 12 of the ONU 100 causes the light source 11 to oscillate at the optical frequency of the upstream optical signal in FIG. Since the upstream optical signal is included in the SBS gain band of each supplied light, all the WDM upstream signals are SBS amplified by the optical fiber.

以下は、本実施形態の光通信システムを説明したものである。
(概要)
本光通信システムは、SBSから増幅機能を持つOFDM−PONシステムの構成技術である。本光通信システムは、OLTに存在する下り送信用光源をSBSポンプ光源に兼用することで、ODNの光ファイバでSBS光増幅を発生させ上り信号を光増幅する。
(効果)
(1)高多値信号を伝送フォーマットとするOFDM−PONシステムにおいて、ODNで別途のアクティブ光デバイスを使わずにONUの送信光パワーの要求条件を低めることができ、PONシステムの経済性確保ができる。
(2)OFDM信号のフラットなスペクトラム特性により、別途の利得平坦光デバイスを使わずに利得帯域幅の拡張ができる。
The following describes the optical communication system of the present embodiment.
(Overview)
This optical communication system is a configuration technology of an OFDM-PON system having an amplification function from SBS. In this optical communication system, the downlink transmission light source existing in the OLT is also used as the SBS pump light source, thereby generating SBS optical amplification in the ODN optical fiber and optically amplifying the upstream signal.
(effect)
(1) In an OFDM-PON system using a high multilevel signal as a transmission format, the ODN transmission optical power requirements can be reduced without using a separate active optical device in the ODN, thereby ensuring economic efficiency of the PON system. it can.
(2) Due to the flat spectrum characteristic of the OFDM signal, the gain bandwidth can be expanded without using a separate gain flat optical device.

11:光源
12:波長ロッカ
13:光変調部
21:高出力光源
22:波長ロッカ
23:光変調部
24:AWG
100、100’:ONU
150:光ファイバ
151:スプリッタ
152:AWG
200、200’:OLT
11: Light source 12: Wavelength locker 13: Light modulator 21: High power light source 22: Wavelength locker 23: Light modulator 24: AWG
100, 100 ': ONU
150: Optical fiber 151: Splitter 152: AWG
200, 200 ': OLT

Claims (4)

加入者側光端末回線装置(ONU:Optical Network Unit)と局側光端末回線装置(OLT:Optical Line Terminal)とを光ファイバで接続した光通信システムであって、
前記OLTは、前記ONUへの下り送信用光源の光を、前記光ファイバで誘導ブリルアン散乱(SBS:Stimulated Brillouin Scattering)光を発生させるポンプ光としており、
前記ONUは、前記ポンプ光で発生する前記SBS光の周波数帯域に含まれる光周波数の上り光信号を前記OLTへ送信することを特徴とする光通信システム。
An optical communication system in which a subscriber side optical terminal line device (ONU: Optical Network Unit) and a station side optical terminal line device (OLT: Optical Line Terminal) are connected by an optical fiber,
The OLT uses light from a light source for downstream transmission to the ONU as pump light that generates stimulated Brillouin scattering (SBS) light in the optical fiber,
The optical communication system, wherein the ONU transmits an upstream optical signal having an optical frequency included in a frequency band of the SBS light generated by the pump light to the OLT.
前記OLTは、前記ONUへの下り送信用光源の光を、直交周波数分割多重(OFDM:Orthogonal Frequency Division Multiplexing)変調を行うOFDM光変調部を有することを特徴とする請求項1に記載の光通信システム。   2. The optical communication according to claim 1, wherein the OLT includes an OFDM optical modulation unit that performs orthogonal frequency division multiplexing (OFDM) modulation on light of a downstream transmission light source to the ONU. system. 前記ONUは複数であり、前記ONU毎に上り光信号のサブキャリアが異なることを特徴とする請求項2に記載の光通信システム。   The optical communication system according to claim 2, wherein there are a plurality of ONUs, and a subcarrier of an upstream optical signal is different for each ONU. 前記OLTは、複数の波長の下り光信号を合波して前記光ファイバに結合することを特徴とする請求項1から3のいずれかに記載の光通信システム。   4. The optical communication system according to claim 1, wherein the OLT combines downstream optical signals having a plurality of wavelengths and couples the optical signals to the optical fiber. 5.
JP2012210356A 2012-09-25 2012-09-25 Optical communication system Active JP6026832B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012210356A JP6026832B2 (en) 2012-09-25 2012-09-25 Optical communication system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012210356A JP6026832B2 (en) 2012-09-25 2012-09-25 Optical communication system

Publications (2)

Publication Number Publication Date
JP2014068092A true JP2014068092A (en) 2014-04-17
JP6026832B2 JP6026832B2 (en) 2016-11-16

Family

ID=50744118

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012210356A Active JP6026832B2 (en) 2012-09-25 2012-09-25 Optical communication system

Country Status (1)

Country Link
JP (1) JP6026832B2 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5884550A (en) * 1981-11-16 1983-05-20 Nec Corp Optical fiber bidirectional transmission system
JPS63179633A (en) * 1987-01-21 1988-07-23 Nippon Telegr & Teleph Corp <Ntt> Optical communication system
JPH01112830A (en) * 1987-10-26 1989-05-01 Nec Corp Two-way optical transmission device
JPH01130638A (en) * 1987-11-16 1989-05-23 Nec Corp Frequency multiplex optical two-way transmitter
JPH08251109A (en) * 1995-01-09 1996-09-27 At & T Corp Self-amplification network
JP2009273109A (en) * 2008-05-01 2009-11-19 Nec Lab America Inc Centralized lightwave wdm-pon employing intensity modulated downstream and upstream data signals
JP2010056709A (en) * 2008-08-27 2010-03-11 Fujitsu Telecom Networks Ltd Communication apparatus at subscriber home
JP2010114621A (en) * 2008-11-06 2010-05-20 Nippon Telegr & Teleph Corp <Ntt> Optical communication system, transmitter of onu, receiver of olt, and method of transmitting up-link signal of onu
JP2011023831A (en) * 2009-07-13 2011-02-03 Nec Corp Wdm-pon system

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5884550A (en) * 1981-11-16 1983-05-20 Nec Corp Optical fiber bidirectional transmission system
JPS63179633A (en) * 1987-01-21 1988-07-23 Nippon Telegr & Teleph Corp <Ntt> Optical communication system
JPH01112830A (en) * 1987-10-26 1989-05-01 Nec Corp Two-way optical transmission device
JPH01130638A (en) * 1987-11-16 1989-05-23 Nec Corp Frequency multiplex optical two-way transmitter
JPH08251109A (en) * 1995-01-09 1996-09-27 At & T Corp Self-amplification network
JP2009273109A (en) * 2008-05-01 2009-11-19 Nec Lab America Inc Centralized lightwave wdm-pon employing intensity modulated downstream and upstream data signals
JP2010056709A (en) * 2008-08-27 2010-03-11 Fujitsu Telecom Networks Ltd Communication apparatus at subscriber home
JP2010114621A (en) * 2008-11-06 2010-05-20 Nippon Telegr & Teleph Corp <Ntt> Optical communication system, transmitter of onu, receiver of olt, and method of transmitting up-link signal of onu
JP2011023831A (en) * 2009-07-13 2011-02-03 Nec Corp Wdm-pon system

Also Published As

Publication number Publication date
JP6026832B2 (en) 2016-11-16

Similar Documents

Publication Publication Date Title
KR101980128B1 (en) Hybrid passive optical network
KR100870897B1 (en) High performance optical network system based on reflective semiconductor optical amplifier
US10009106B2 (en) Silicon photonics multicarrier optical transceiver
US20110222855A1 (en) Wavelength division multiplexing-passive optical network system
JP5165754B2 (en) High bit rate bi-directional passive optical network, associated optical switch and line termination equipment
US20100158522A1 (en) Seed light module based on single longitudinal mode oscillation light source
KR100469746B1 (en) Self-seeded fabry-perot laser device for wavelength division multiplexing system
JP5305377B2 (en) Optical transmission system using Raman optical amplification
Lin et al. Cross-seeding schemes for WDM-based next-generation optical access networks
Chow et al. Rayleigh backscattering mitigation using wavelength splitting for heterogeneous optical wired and wireless access
CN113169799A (en) Optical line terminal and optical fiber access system with enhanced flexibility
Spiekman Active devices in passive optical networks
WO2017193601A1 (en) Transmission apparatus for ultra-narrow band spectrum segmentation incoherent light source based on ffp filter and ffp-soa in wdm-pon
US20120263474A1 (en) Method for Arbitrary Optical Microwave and MM-Wave Generation
Schrenk et al. Energy-efficient optical access networks supported by a noise-powered extender box
Muciaccia et al. A TWDM-PON with advanced modulation techniques and a multi-pump Raman amplifier for cost-effective migration to future UDWDM-PONs
US8380083B2 (en) All optical up-conversion system
Olonkins et al. Cost effective WDM-AON with multicarrier source based on dual-pump FOPA
JP6026832B2 (en) Optical communication system
Smolorz et al. Next generation access networks: PIEMAN and beyond
Huynh et al. 200-Gb/s baudrate-pilot-aided QPSK/direct detection with single-section quantum-well mode-locked laser
Xu et al. Wavelength sharing and reuse in dual-band WDM-PON systems employing WRC-FPLDs
US20090324230A1 (en) Optical transmission system using four-wave mixing
JP6470028B2 (en) Bidirectional optical amplifier
Chow et al. Long-reach WDM PONs

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141002

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151216

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160517

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160815

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20160823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161007

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161013

R150 Certificate of patent or registration of utility model

Ref document number: 6026832

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150