JPS63148549A - Cadmiun negative electrode for alkaline storage battery and its manufacture - Google Patents

Cadmiun negative electrode for alkaline storage battery and its manufacture

Info

Publication number
JPS63148549A
JPS63148549A JP61294970A JP29497086A JPS63148549A JP S63148549 A JPS63148549 A JP S63148549A JP 61294970 A JP61294970 A JP 61294970A JP 29497086 A JP29497086 A JP 29497086A JP S63148549 A JPS63148549 A JP S63148549A
Authority
JP
Japan
Prior art keywords
cadmium
paste
negative electrode
silicate
electrode plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61294970A
Other languages
Japanese (ja)
Inventor
Hisashi Gunjitou
郡司島 久
Morimasa Sumita
住田 守正
Masaharu Onoe
尾上 正治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP61294970A priority Critical patent/JPS63148549A/en
Publication of JPS63148549A publication Critical patent/JPS63148549A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/26Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To heighten energy density, to increase workability, and to reduce cost by containing silicate in a negative electrode of alkaline storage battery mainly comprising cadmium oxide powder. CONSTITUTION:When an active material mainly comprising cadmium oxide is kneaded with water, silicate is added to a mixture. By adding the silicate, conversion of cadmium oxide in paste into cadmium hydroxide caused by water can be prevented, and expansion of the paste is also prevented. By applying the paste obtained to an electrode substrate, a cadmium electrode having high energy density similar to that obtained by using the paste prepared with organic solvent can be obtained.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明はアルカリ蓄電池に適用されるカドミウム負極板
及びその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a cadmium negative electrode plate applied to alkaline storage batteries and a method for manufacturing the same.

〈従来の技術〉 アルカリ蓄電池用カドミウム負極板を製造する場合、従
来、焼結式又はペースト式の方法が実施されていた。
<Prior Art> When producing a cadmium negative electrode plate for an alkaline storage battery, a sintering method or a paste method has conventionally been used.

焼結式はニッケル又はニッケルメッキした多孔性金属か
らなる集電基板にカドミウム塩を含侵させた後、乾燥し
、次いでアルカリ液により処理して活物質化し、さらに
乾燥するという一連の操作を数回繰り返し行うことによ
りカドミウム負極板を製造するものであるが、その操作
が煩雑で且つコスト高であるという難点があった。よっ
て通常はペースト式が実施されている。
The sintering method involves a series of operations in which a current collector substrate made of nickel or nickel-plated porous metal is impregnated with cadmium salt, dried, then treated with alkaline solution to become an active material, and further dried. Although a cadmium negative electrode plate is manufactured by repeating the process several times, there are drawbacks in that the operation is complicated and the cost is high. Therefore, a paste method is usually used.

ペースト式は酸化カドミウム粉末、金属カドミウム粉末
、水酸化カドミウム粉末等の活物質を用い、この活物質
を結着剤、補強材等の添加物とともにエチレングリコー
ル、プロピレングリコール等の有機溶媒を用いて練合し
てペースト体とし、このペースト体を集電基板へ塗着す
ることによりカドミウム負極板とするというものである
。このペースト式においては活物質として酸化カドミウ
ム粉末、金属カドミウム粉末、水酸化カドミウム粉末等
を用いることができるが、金属カドミウム粉末は粉体特
性が電池用として好適ではなく、また水酸化カドミウム
粉末は単位体積当りのエネルギー密度が低いため、実際
上は酸化カドミウム粉末を用いることが多い。
The paste method uses an active material such as cadmium oxide powder, metal cadmium powder, or cadmium hydroxide powder, and kneads this active material with additives such as a binder and reinforcing material using an organic solvent such as ethylene glycol or propylene glycol. They are combined to form a paste, and this paste is applied to a current collector substrate to form a cadmium negative electrode plate. In this paste type, cadmium oxide powder, metal cadmium powder, cadmium hydroxide powder, etc. can be used as the active material, but metal cadmium powder has powder properties that are not suitable for use in batteries, and cadmium hydroxide powder is In practice, cadmium oxide powder is often used because its energy density per volume is low.

このようにペースト式によりアルカリ蓄電池用カドミウ
ム負極板を製造すると、焼結式に比べて簡単な工程で、
エネルギー密度の高いカドミウム負極板をコスト的にも
有利に得ることができるという利点がある。
In this way, manufacturing cadmium negative electrode plates for alkaline storage batteries using the paste method is a simpler process than the sintering method.
There is an advantage that a cadmium negative electrode plate with high energy density can be obtained at a cost advantage.

〈発明が解決しようとする問題点〉 しかしながら、上述したようなペースト式では有機溶媒
を用いるので、環境衛生上好ましくなく、公害及び作業
性についての対策も必要であるという問題があり、有機
溶媒に替えて水を溶媒として用いたペースト式によるカ
ドミウム負極板の製造方法が検討されている。
<Problems to be solved by the invention> However, since the paste method as described above uses an organic solvent, there are problems in that it is unfavorable in terms of environmental hygiene, and countermeasures against pollution and workability are also required. Instead, a method of manufacturing cadmium negative electrode plates using a paste method using water as a solvent is being considered.

ところが、酸化カドミウム粉末を水と練合すると、酸化
カドミウムが水と容易に結合する性質を有するため練合
している短い間に水酸化カドミウムに変化してしまい、
ペーストとしての柔かさがなくなり練合が困難になると
ともにその後に行う集電基板への塗着の作業性が大幅の
低下するという問題があった。
However, when cadmium oxide powder is kneaded with water, it changes to cadmium hydroxide within a short period of time during kneading because cadmium oxide has the property of easily combining with water.
There was a problem that the paste loses its softness, making it difficult to knead, and the workability of subsequent application to the current collector substrate is significantly reduced.

さらに、上記ペースト体は酸化カドミウムから水酸化カ
ドミウムへの変化によりその体積が約2倍に膨張してし
まうので、この膨張したペースト体を塗着して得たカド
ミウム負極板は単位体積当りのエネルギー密度が約捧に
低下してしまうという問題もあった。
Furthermore, the volume of the above paste expands approximately twice due to the change from cadmium oxide to cadmium hydroxide, so the cadmium negative electrode plate obtained by applying this expanded paste has an energy per unit volume. There was also the problem that the density was reduced to an approx.

本発明はこのような事情に鑑み、エネルギー密度が高く
、シかも、作業性よ(、低コストで環境衛生面上の問題
もなく製造しうるアルカリ蓄電池用カドミウム負極板及
びその製造方法を提供することを目的とする。
In view of these circumstances, the present invention provides a cadmium negative electrode plate for an alkaline storage battery that has high energy density, is easy to work with, and can be manufactured at low cost without causing problems in terms of environmental hygiene, and a method for manufacturing the same. The purpose is to

く問題点を解決するための手段〉 本発明者らは、前記目的を達成するために種々検討を重
ねた結果、酸化カドミウムを主成分とする活物質等を水
で練合するに際し、珪酸塩を添加すると、酸化カドミウ
ムが水酸化カドミウムに変化するのが防止され、しかも
、このようにして製造された珪酸塩を含有するカドミウ
ム電極は、電池を構成して充・放電をくりかえした場合
、金属カドミウムと電気化学的に活性の高いγ−タイプ
の水酸化カドミウムとの間で変化するということを知見
した。
Means for Solving Problems> As a result of various studies to achieve the above object, the present inventors found that when kneading an active material containing cadmium oxide as a main component with water, silicate The addition of silicate prevents cadmium oxide from changing into cadmium hydroxide, and furthermore, the silicate-containing cadmium electrode produced in this way can be used to form a battery and be repeatedly charged and discharged. It was found that there is a change between cadmium and electrochemically highly active γ-type cadmium hydroxide.

かかる知見に基づく本発明にかかるアルカリ蓄電池用カ
ドミウム負極板の構成は酸化カドミウム粉末を主成分と
し、他に金属カドミウム粉末、水酸化カドミウム粉末等
を含有する活物質と、必要に応じて導電材、結着剤、補
強材等の添加物とを溶媒で練合したペースト体を集電基
板に塗着してなるアルカリ蓄電池用負極板において、珪
酸塩を含有することを特徴とし、またアルカリ蓄電池用
カドミウム負極板の製造方法の構成は酸化カドミウム粉
末を主成分とし、他に金属カドミウム粉末、水酸化カド
ミウム粉末等の活物質と、珪酸塩と、必要に応じて導電
材、結着剤、補強材等の添加物とを水を用いて練合して
ペースト体とし、このペースト体を集電基板に塗着する
ことを特徴とする。
The composition of the cadmium negative electrode plate for alkaline storage batteries according to the present invention based on such knowledge is that the main component is cadmium oxide powder, and an active material containing metal cadmium powder, cadmium hydroxide powder, etc., and if necessary, a conductive material, A negative electrode plate for an alkaline storage battery, which is formed by applying a paste obtained by kneading additives such as a binder and a reinforcing material with a solvent to a current collector substrate, and is characterized by containing a silicate. The manufacturing method for a cadmium negative electrode plate consists of cadmium oxide powder as the main component, and other active materials such as metal cadmium powder and cadmium hydroxide powder, silicate, and conductive materials, binders, and reinforcing materials as necessary. It is characterized in that it is kneaded with water and other additives to form a paste, and this paste is applied to a current collecting substrate.

本発明にかかるアルカリ蓄電池用カドミウム負極板は、
従来と同様の材料を用いたカドミウム負極板に珪酸塩を
含有させたものであり、電池を構成して充・放電を行う
と金属カドミウムと電気化学的に活性の高いγ−タイプ
の水酸化カドミウムとの間で変化するので、利用率の高
いものとなっている。
The cadmium negative electrode plate for alkaline storage batteries according to the present invention is
This is a cadmium negative electrode plate made of the same material as before, containing silicate, and when a battery is configured and charged and discharged, it forms a γ-type cadmium hydroxide that is highly electrochemically active with metallic cadmium. It has a high usage rate because it changes between

因に、従来においては、通常のカドミウム負極板を実用
にならないような特殊な条件下で用いた場合にγ−タイ
プの水酸化カドミウムに変化するということが報告され
ているが、通常の条件で用いた場合には、金属カドミウ
ムとβ−タイプの水酸化カドミウムとの間で変化するこ
とが知られている。
Incidentally, it has been previously reported that when a normal cadmium negative electrode plate is used under special conditions that make it impractical, it changes to γ-type cadmium hydroxide. When used, it is known to vary between metallic cadmium and β-type cadmium hydroxide.

本発明のカドミウム負極板と従来のカドミウム負極板の
放電時の状態の違いはx6回折(Cu、にα)のパター
ンにより確認された。
The difference in the state during discharge between the cadmium negative electrode plate of the present invention and the conventional cadmium negative electrode plate was confirmed by the x6 diffraction (Cu, α) pattern.

この結果は第1図(a)、 (b)に示す。同図中、(
a)ハ本発明の放電時のカドミウム電極のx1s回折図
であり、(b)は有機溶媒によるペースト式製造方法に
よって得な従来の放電時のカドミウム電極のX線回折図
である。
The results are shown in Figures 1(a) and (b). In the same figure, (
a) C is an x1s diffraction diagram of the cadmium electrode during discharge according to the present invention; (b) is an X-ray diffraction diagram of the cadmium electrode during discharge according to the conventional method obtained by a paste manufacturing method using an organic solvent.

息下、本発明にかかるカドミウム負極板の好適な一製法
を説明する。
Below, a preferred method for manufacturing a cadmium negative electrode plate according to the present invention will be explained.

本発明のカドミウム負極板は、従来用いられている酸化
カドミウム粉末を主成分とし、金属カドミウム、水酸化
カドミウムを微量含む活物質と珪酸塩とを必要に応じて
導電材、結着剤、補強材等とともに水で練合したペース
トを用いた通常のペースト式によって製造することがで
きる。つまり、珪酸塩を添加した酸化カドミウム粉末の
水によるペースト体は時間が経っても従来のようにペー
スト体が硬くなって作業性が低下することがない。これ
は、珪酸塩を共存させることにより酸化カドミウムの水
酸化カドミウムへの変化が防止されるからである。よっ
て、当然、ペースト体の膨張も起こらないのでこのペー
スト体を集電基板へ塗着することにより、有機溶媒を用
いたもの同程度以上のエネルギー密度を有したカドミウ
ム電極を得ることができる。
The cadmium negative electrode plate of the present invention is mainly composed of conventionally used cadmium oxide powder, and contains an active material containing trace amounts of metal cadmium and cadmium hydroxide, and a silicate as a conductive material, a binder, and a reinforcing material. It can be manufactured by a conventional paste method using a paste kneaded with water and the like. In other words, the paste of cadmium oxide powder added with silicate in water does not become hard over time and do not deteriorate workability as in the case of the conventional paste. This is because the coexistence of silicate prevents cadmium oxide from changing into cadmium hydroxide. Therefore, as a matter of course, the paste does not expand, and by applying this paste to a current collecting substrate, it is possible to obtain a cadmium electrode having an energy density comparable to or higher than that using an organic solvent.

このように珪酸塩を添加することにより水での練合時に
おける酸化カドミウムの水酸化カドミウムへの変化が防
止される理由については明らかでないが、酸化カドミウ
ムの表面に珪酸塩の分子ネットワークが形成されて、水
酸イオンの酸化カドミウムへの作用をell的に阻害す
るためと考えられる。
Although it is not clear why the addition of silicate prevents the conversion of cadmium oxide to cadmium hydroxide during mixing with water, a molecular network of silicate is formed on the surface of cadmium oxide. This is thought to be because the effect of hydroxide ions on cadmium oxide is effectively inhibited.

この効果はX@回折(Cu、Ka)により確認された。This effect was confirmed by X@ diffraction (Cu, Ka).

この結果を第2図(a)、(b)に示す。The results are shown in FIGS. 2(a) and 2(b).

同図中(a)は練合前の酸化カドミウムのX線回折図で
あI) 、(b)は珪酸塩を添加して水と練合した後の
X線回折図である。
In the figure, (a) is an X-ray diffraction diagram of cadmium oxide before kneading, and (b) is an X-ray diffraction diagram after adding silicate and kneading with water.

本発明でいう珪酸塩としては珪酸ナトリウムや珪酸カリ
ウム等が挙げられる。このような珪酸塩は例えば上述し
た方法で用いろ場合には粉体を活物質とともに水で練合
してもよいし、珪酸塩を予め少量の水に溶解しておいて
練合液として用いてもよい。
Examples of the silicates in the present invention include sodium silicate and potassium silicate. For example, when such a silicate is used in the method described above, the powder may be kneaded with water together with the active material, or the silicate may be dissolved in a small amount of water in advance and used as a kneading solution. It's okay.

この珪酸塩の量は、後の試験でも明らかなように活物質
に対して0.05〜20重量%、好ましくは0.1〜1
0重量%がよい。これは、珪酸塩の水酸化カドミウム生
成抑制の効果は約0.05重量%から現われ、増加する
ほどその効果も増大するが、あまり多く用いても結果的
に活物質量を減少させることになるからであり、20%
程度で従来の有機溶媒を用いた場合のものと同程度のエ
ネルギー密度となる。
As is clear from later tests, the amount of this silicate is 0.05 to 20% by weight, preferably 0.1 to 1% by weight based on the active material.
0% by weight is good. This means that the effect of silicate in suppressing cadmium hydroxide generation appears from about 0.05% by weight, and the effect increases as the amount increases, but if too much is used, the amount of active material will decrease as a result. 20%
The energy density is about the same as that when conventional organic solvents are used.

また、従来のものと比べた高いエネルギー密度のものを
目的とする場合には0.1〜10重量%の範囲で実施す
るのがよい。
Further, when the purpose is to obtain a product with a higher energy density than conventional products, it is preferable to carry out the addition in a range of 0.1 to 10% by weight.

以下に、実施例及び試験例を示して本発明をさらに具体
的に説明する。
The present invention will be explained in more detail below by showing Examples and Test Examples.

〈実施例及び試験例〉 実施例1 活物質として酸化カドミウム粉末100重量部(金属カ
ドミウム換算87.5重量部)にニッケル粉末(導電材
)103i量部、合成樹脂短繊維(補強材)0.8重量
部を予めよく混合する。一方、ポリビニルアルコール(
結着剤)0.8重量部を水45重量部に加温(70〜8
0℃)溶解し、これに珪酸ナトリウムの70重量%水溶
液を0.5重量部添加溶解したものを練合液とする。こ
の練合液を用いて上記活物質等の混合物を練合してペー
スト体とする。この練合時には酸化カドミウムが水酸化
カドミウムに変化することなく、流動性が良好だった。
<Examples and Test Examples> Example 1 As an active material, 100 parts by weight of cadmium oxide powder (87.5 parts by weight in terms of metal cadmium), 103i parts of nickel powder (conductive material), and 0.5 parts of synthetic resin staple fiber (reinforcing material) were added. 8 parts by weight are mixed well in advance. On the other hand, polyvinyl alcohol (
Binder) 0.8 parts by weight is heated to 45 parts by weight of water (70 to 8 parts by weight).
0° C.), and 0.5 parts by weight of a 70% by weight aqueous solution of sodium silicate was added and dissolved therein to obtain a kneading solution. Using this kneading solution, a mixture of the above-mentioned active materials and the like is kneaded to form a paste. During this kneading, cadmium oxide did not change to cadmium hydroxide, and the fluidity was good.

このようにして得たペースト体を常法により厚み0.1
mのニッケルメッキした#I製多穴板に厚み0.8mに
塗着し、その後110℃にて乾燥した。
The paste obtained in this way was prepared in a conventional manner to a thickness of 0.1
It was applied to a #I multi-hole plate plated with nickel to a thickness of 0.8 m, and then dried at 110°C.

この塗着板を4X4cmに切断して電池ケースの中央に
1枚配し、その両側面にニッケル正極を配し、水酸化カ
リウム25重量%の電解液を注入して電池Aとした。
This coated plate was cut into 4×4 cm pieces, placed in the center of the battery case, nickel positive electrodes were placed on both sides of the plate, and an electrolytic solution containing 25% by weight of potassium hydroxide was injected to prepare battery A.

この電池Aを用いて活物質の理論容量qの20%の電流
での充電、放電をくりかえして次の式に示す利用率を測
定した。
Using this battery A, charging and discharging were repeated at a current of 20% of the theoretical capacity q of the active material, and the utilization rate shown in the following equation was measured.

なお、比較のため従来の有機溶媒によるペースト式製造
法により同様に製造したもの(珪酸ナトリウムを除いた
以外は同成分)を電池Pとし、同様にして利用率を測定
した。
For comparison, a battery P was manufactured in the same manner using a conventional paste manufacturing method using an organic solvent (same components except that sodium silicate was removed), and the utilization rate was measured in the same manner.

この試翳結果を第3図に示す。同図から明らかなように
、本実施例にかかる電池Aは従来技術にかかる電池Pと
比較して利用率が大幅に向上している。
The results of this trial are shown in Figure 3. As is clear from the figure, the utilization rate of the battery A according to the present example is significantly improved compared to the battery P according to the prior art.

実施例2 酸化カドミウム100重量部に合成樹脂短繊維0.8重
量部をよく混合したものを7バツチ用意する。これらを
第1表に示すように珪酸塩ナトリウムの添加量(活物質
に対する添加量)がそれぞれ変化すような練合液を用い
て練合した。なお、この練合液はポリビニルアルコール
(結着剤)0.8重量%を水45重量部に加温(70〜
80℃)溶解したものに珪酸ナトリウムの70重量%水
溶液を適宜添加して調整した。なお、これらのペースト
体の水酸化カドミウムの生成状態を第1表に示す。
Example 2 Seven batches of 100 parts by weight of cadmium oxide and 0.8 parts by weight of short synthetic resin fibers were prepared. These were kneaded using kneading solutions in which the amount of sodium silicate added (the amount added to the active material) was varied as shown in Table 1. This kneading solution is made by heating 0.8% by weight of polyvinyl alcohol (binder) in 45 parts by weight of water (70~
A 70% by weight aqueous solution of sodium silicate was appropriately added to the solution (80°C) to prepare the solution. Table 1 shows the state of cadmium hydroxide production in these pastes.

これらのペースト体をそれぞれ実施例1と同様にニッケ
ルメッキした鋼製多穴板に塗着した。
Each of these paste bodies was applied to a nickel-plated multi-hole steel plate in the same manner as in Example 1.

このようにして得た各塗着板を4×4傭に切断して負極
板とし、それぞれを用いて上記試験と同様に電池B−H
を構成して、それぞれの利用率を測定した。この結果を
第4図に示す。
Each coated plate obtained in this way was cut into 4×4 pieces to make a negative electrode plate, and each was used in the same manner as in the above test for batteries B-H.
were configured and the usage rate of each was measured. The results are shown in FIG.

第  1  表 これらの結果から明らかなように、水を溶媒として練合
するときの酸化カドミウムの水酸化カルシウムへの変化
を防止するという観点からは0.05重量%以上20重
量%以下の範囲で用いればよい。しかし、あまり多く用
いても酸化カドミウム自体の量が減少してしまうので、
10重量%以下、好ましくは下限の近くで実施するのが
よい。
Table 1 As is clear from these results, from the viewpoint of preventing the change of cadmium oxide to calcium hydroxide when kneading with water as a solvent, the range of 0.05% by weight to 20% by weight is sufficient. Just use it. However, if too much is used, the amount of cadmium oxide itself will decrease, so
It is advisable to carry it out at 10% by weight or less, preferably near the lower limit.

また、第4図より、約0.1〜101i量%、好ましく
は0.2〜1重量%の範囲で珪酸塩を添加すれば利用率
が大幅に増加し、エネルギー密度の大きなカドミウム負
極板となることが確認された。
Also, from Figure 4, if silicate is added in the range of about 0.1 to 101% by weight, preferably 0.2 to 1% by weight, the utilization rate can be greatly increased, and it can be used as a cadmium negative electrode plate with high energy density. It was confirmed that

て発明の効果〉 以上、実施例とともに具体的に説明したように、本発明
のカドミウム負極板は珪酸塩を含有することにより充・
放電時に金属カドミウムとγ−タイプの水酸化カドミウ
ムとの変化をするので、利用率の高いものとなる。
Effects of the Invention> As specifically explained above together with the examples, the cadmium negative electrode plate of the present invention can be charged by containing silicate.
Since it changes into metallic cadmium and γ-type cadmium hydroxide during discharge, it has a high utilization rate.

また、酸化カドミウムを主成分とした活物質を水で練合
してペースト体とする場合に珪酸塩を添加すると酸化カ
ドミウムの水酸化カドミウムへの変化が防止される。よ
って本製造方法によれば、有I/li溶媒を用いること
なく、作業性よく、安価にエネルギー密度の大きなカド
ミウム負極板を得ることができる。
Further, when an active material containing cadmium oxide as a main component is kneaded with water to form a paste, adding a silicate prevents cadmium oxide from changing into cadmium hydroxide. Therefore, according to the present manufacturing method, a cadmium negative electrode plate with high energy density can be obtained with good workability and at low cost without using an I/li solvent.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(al、(b)は本発明にかかるカドミウム負極
板と従来のカドミウム負極板の充・放電サイクルを行っ
た後の放電時の生成物のxss@折図、第2図(al、
(b)は本発明方法における活物質の練合前と練合後の
X!11回折図、第3図は実施例1における試験結果を
示すグラフ、第4図は実施例2における試験結果を示す
グラフである。 特  許  出  願 人 三井金属鉱業株式会社 代    理    人
Fig. 1 (al,
(b) shows X! before and after kneading the active material in the method of the present invention! FIG. 3 is a graph showing the test results in Example 1, and FIG. 4 is a graph showing the test results in Example 2. Patent applicant Mitsui Mining & Mining Co., Ltd. Agent

Claims (1)

【特許請求の範囲】 1)酸化カドミウム粉末を主成分とし、他に金属カドミ
ウム粉末、水酸化カドミウム粉末等を含有する活物質と
、必要に応じて導電材、結着剤、補強材等の添加物とを
溶媒で練合したペースト体を集電基板に塗着してなるア
ルカリ蓄電池用負極板において、珪酸塩を含有すること
を特徴とするアルカリ蓄電池用カドミウム負極板。 2)珪酸塩の含有量が活物質に対して0.05〜20重
量%である特許請求の範囲第1項記載のアルカリ蓄電池
用カドミウム負極板。 3)酸化カドミウム粉末を主成分とし、他に金属カドミ
ウム粉末、水酸化カドミウム粉末等の活物質と、珪酸塩
と、必要に応じて導電材、結着剤、補強材等の添加物と
を水を用いて練合してペースト体とし、このペースト体
を集電基板に塗着することを特徴とするアルカリ蓄電池
用カドミウム負極板の製造方法。 4)珪酸塩の添加量が活物質に対して0.05〜20重
量%である特許請求の範囲第3項記載のアルカリ蓄電池
用カドミウム負極板の製造方法。
[Scope of Claims] 1) An active material whose main component is cadmium oxide powder, and which also contains metal cadmium powder, cadmium hydroxide powder, etc., and addition of a conductive material, a binder, a reinforcing material, etc. as necessary. 1. A cadmium negative electrode plate for an alkaline storage battery, which is formed by applying a paste obtained by kneading a cadmium substance and a solvent with a solvent and applying it to a current collecting substrate, the negative electrode plate containing a silicate. 2) The cadmium negative electrode plate for an alkaline storage battery according to claim 1, wherein the silicate content is 0.05 to 20% by weight based on the active material. 3) The main component is cadmium oxide powder, and other active materials such as metal cadmium powder and cadmium hydroxide powder, silicate, and additives such as conductive materials, binders, reinforcing materials, etc. are mixed with water. 1. A method for producing a cadmium negative electrode plate for an alkaline storage battery, which comprises kneading the paste to form a paste, and applying the paste to a current collecting substrate. 4) The method for producing a cadmium negative electrode plate for an alkaline storage battery according to claim 3, wherein the amount of silicate added is 0.05 to 20% by weight based on the active material.
JP61294970A 1986-12-12 1986-12-12 Cadmiun negative electrode for alkaline storage battery and its manufacture Pending JPS63148549A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61294970A JPS63148549A (en) 1986-12-12 1986-12-12 Cadmiun negative electrode for alkaline storage battery and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61294970A JPS63148549A (en) 1986-12-12 1986-12-12 Cadmiun negative electrode for alkaline storage battery and its manufacture

Publications (1)

Publication Number Publication Date
JPS63148549A true JPS63148549A (en) 1988-06-21

Family

ID=17814661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61294970A Pending JPS63148549A (en) 1986-12-12 1986-12-12 Cadmiun negative electrode for alkaline storage battery and its manufacture

Country Status (1)

Country Link
JP (1) JPS63148549A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010027403A (en) * 2008-07-18 2010-02-04 Mitsui Eng & Shipbuild Co Ltd Paste manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010027403A (en) * 2008-07-18 2010-02-04 Mitsui Eng & Shipbuild Co Ltd Paste manufacturing method

Similar Documents

Publication Publication Date Title
JPS63148549A (en) Cadmiun negative electrode for alkaline storage battery and its manufacture
JPH0696800A (en) Lithium secondary battery
JPS62165860A (en) Manufacture of cadmium negative electrode plate for alkaline secondary cell
JPH0221098B2 (en)
JP4441934B2 (en) Method for producing lead-acid battery
JPS58198856A (en) Manufacture of negative cadmium plate for alkaline storage battery
JPH041992B2 (en)
JPH0430713B2 (en)
JPS5832363A (en) Manufacture of negative cadmium electrode for alkaline storage battery
JPS60170167A (en) Manufacturing method for alkaline cell electrode
JPH02234356A (en) Sealed-type alkali battery
JPS6215994B2 (en)
JP4501246B2 (en) Control valve type stationary lead acid battery manufacturing method
JPS5848990B2 (en) Manufacturing method of cadmium cathode plate for alkaline storage battery
JPH0424823B2 (en)
JPS59154779A (en) Charging method of enclosed type nickel-cadmium storage battery
JPS61240580A (en) Manufacture of cadmium negative plate for alkaline storage battery
JPS61203569A (en) Pasted negative plate for alkaline storage battery
JPH0566714B2 (en)
JP2004179119A (en) Manufacturing method of positive electrode plate for alkaline storage battery
JPS5832745B2 (en) Manufacturing method of cadmium negative electrode plate for alkaline storage batteries
JPS60211766A (en) Paste type negative electrode plate for alkaline storage battery
JPS62211862A (en) Negative mix component for alkaline storage battery
JPS63164162A (en) Cadmium negative electrode for alkaline storage battery
JPS5873963A (en) Manufacture of negative electrode for alkaline storage battery