JPS63146423A - Solid electrolytic capacitor - Google Patents

Solid electrolytic capacitor

Info

Publication number
JPS63146423A
JPS63146423A JP29391386A JP29391386A JPS63146423A JP S63146423 A JPS63146423 A JP S63146423A JP 29391386 A JP29391386 A JP 29391386A JP 29391386 A JP29391386 A JP 29391386A JP S63146423 A JPS63146423 A JP S63146423A
Authority
JP
Japan
Prior art keywords
electrolytic capacitor
solid electrolytic
dielectric film
capacitor element
capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29391386A
Other languages
Japanese (ja)
Inventor
淳一 栗田
西山 澄夫
入蔵 功
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP29391386A priority Critical patent/JPS63146423A/en
Publication of JPS63146423A publication Critical patent/JPS63146423A/en
Pending legal-status Critical Current

Links

Landscapes

  • Glass Compositions (AREA)
  • Oscillators With Electromechanical Resonators (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、固体電解コンデンサに関するものであり、さ
らに詳しく言えば、部分的に誘電体酸化皮膜を強化した
固体電解コンデンサに関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a solid electrolytic capacitor, and more specifically, to a solid electrolytic capacitor having a partially reinforced dielectric oxide film.

従来の技術 従来の固体電解コンデンサは、第5図に示すように構成
されている。すなわち、タンタル、アルミニウム、ニオ
ブ、チタン等、弁作用を有する金属粉末に、弁作用を有
する金属リードを植設して加圧成形し焼結したコンデン
サエレメントの表面に陽極酸化皮膜1、半導体層2、カ
ーボン層3、銀ペイント層4を順次形成した後、第1の
外部リード6をコンデンサエレメントのリードに溶接し
、第2の外部リードを銀ペイント層より半田付あるいは
導電性接着剤にて導出し、コンデンサエレメントを含む
主要部分を外装樹脂6にて外装して構成されている。
2. Description of the Related Art A conventional solid electrolytic capacitor is constructed as shown in FIG. That is, a capacitor element is made by implanting a metal lead having a valve action into a metal powder having a valve action, such as tantalum, aluminum, niobium, titanium, etc., press-forming it, and sintering the capacitor element. , after sequentially forming the carbon layer 3 and the silver paint layer 4, the first external lead 6 is welded to the lead of the capacitor element, and the second external lead is led out from the silver paint layer by soldering or conductive adhesive. However, the main parts including the capacitor element are covered with an exterior resin 6.

ところでコンデンサエレメントの表面に形成される陽極
酸化皮膜1はコンデンサエレメントをリン酸水溶液に浸
漬し、コンデンサエレメントを正極、リン酸水溶液を負
極として定格使用電圧に応じた所定の直流電圧を印加し
長時間保持し、陽極酸化法によって形成されるため、エ
レメントの内外部表面には、はぼ均一に誘電体酸化皮膜
が形成されている。そして陽極酸化皮膜表面には固体電
解質である半導体層が形成され、半導体層の酸化皮膜の
修復能力や自己絶縁能力によってコンデンサの耐電特性
を所有することが出来るものである。
By the way, the anodic oxide film 1 formed on the surface of the capacitor element is formed by immersing the capacitor element in a phosphoric acid aqueous solution, applying a predetermined DC voltage corresponding to the rated working voltage for a long time with the capacitor element as the positive electrode and the phosphoric acid aqueous solution as the negative electrode. Since the element is held and formed by anodic oxidation, a dielectric oxide film is formed almost uniformly on the inner and outer surfaces of the element. A semiconductor layer, which is a solid electrolyte, is formed on the surface of the anodic oxide film, and the semiconductor layer can have the electrical resistance characteristics of a capacitor due to its ability to repair the oxide film and its self-insulating ability.

発明が解決しようとする問題点 しかしながら、この陽極酸化皮膜はその表面上に形成さ
れる半導体層が、コンデンサエレメントに半導体出液を
含浸させ、それを200℃以上の高温で熱分解すること
を7〜10回繰り返し、最終的に析出した半導体の余剰
部分を物理的に除去する工程を経て形成されるため、特
にコンデンサエレメントの外層部表面において著しく、
劣化し耐圧を低下させるとともに、その後の組立工程に
おいても物理的ストレスを受は易く、更に、完成品の各
種環境試験においても外装樹脂6や半導体層2の膨張収
縮による物理的ストレスを直接受は易いため、漏れ電流
特性の劣化や短絡故障の発生は殆んどがコンデンサエレ
メント外表面の陽極酸化皮膜の部分で発生している。こ
のエレメントは等価的には例えば第6図に示すように誘
電体皮膜1によるコンデンサ分と、半導体層2の抵抗外
との直列回路として表わすことができるものであるが、
半導体層の厚みの差によってエレメント上面部7と、側
面部8、下面部9で構成されるコンデンサ部では、それ
ぞれ等価的に接続される抵抗外の大きさは己ずと上面部
7では小さく、側面部8、下面部9では大きくなる。
Problems to be Solved by the Invention However, this anodic oxide film does not allow the semiconductor layer formed on its surface to impregnate the capacitor element with semiconductor liquid and thermally decompose it at a high temperature of 200°C or higher. Because it is formed through a process of repeating ~10 times and physically removing the excess portion of the semiconductor that has finally precipitated, it is particularly noticeable on the surface of the outer layer of the capacitor element.
In addition to deteriorating and reducing the withstand voltage, it is also susceptible to physical stress during the subsequent assembly process, and furthermore, in various environmental tests of finished products, it does not directly receive physical stress due to expansion and contraction of the exterior resin 6 and semiconductor layer 2. Therefore, most of the deterioration of leakage current characteristics and occurrence of short circuit failures occur in the anodic oxide film on the outer surface of the capacitor element. This element can be equivalently represented as a series circuit consisting of a capacitor formed by the dielectric film 1 and an external resistor of the semiconductor layer 2, as shown in FIG. 6, for example.
Due to the difference in the thickness of the semiconductor layer, in the capacitor section composed of the element top surface section 7, side surface section 8, and bottom surface section 9, the size of the resistors that are equivalently connected to each other is naturally small in the top surface section 7. It becomes larger at the side surface portion 8 and the lower surface portion 9.

従って、コンデンサエレメントに、陽極リード銀ペイン
ト層を介して直流電圧が印加された場合、直列抵抗分の
大きい側面部8、下面部9、よりむしろ直列抵抗分の小
さい上面部Tで耐圧特性が損われやすい欠点があった。
Therefore, when a DC voltage is applied to the capacitor element through the anode lead silver paint layer, the breakdown voltage characteristics are degraded not at the side surface portion 8 and bottom surface portion 9 where the series resistance is large, but rather at the top surface portion T where the series resistance is small. It had an easy-to-understand drawback.

また、その後の組立工程において上面部7は、物理的ス
トレスを受は易く、更に外装樹脂を施しだ製品の各種環
境試験においても外装樹脂の膨張収縮による物理的スト
レスを直接受は易いため、漏れ電流特性の劣化や短絡故
障の発生は、コンデンサエレメント上面部の誘電体皮膜
の部分に集中する欠点があった。
In addition, the upper surface part 7 is easily subjected to physical stress in the subsequent assembly process, and furthermore, in various environmental tests of products coated with exterior resin, it is easy to directly receive physical stress due to expansion and contraction of the exterior resin, so leakage occurs. The drawback is that deterioration of current characteristics and occurrence of short circuit failures are concentrated in the dielectric film on the top surface of the capacitor element.

本発明はこのような問題点を解決するもので、耐圧特性
、耐物理的ストレス性を向上させることを目的とするも
のである。
The present invention is intended to solve these problems, and aims to improve voltage resistance and physical stress resistance.

問題点を解決するための手段 本発明はこのような問題点を解決するために、コンデン
サエレメント脆弱部の誘電体皮膜を局部的に厚く形成す
る構成としたものである。
Means for Solving the Problems In order to solve the above-mentioned problems, the present invention has a structure in which the dielectric film of the weak portion of the capacitor element is locally thickened.

作用 上記構成とすることにより、コンデンサエレメント脆弱
部の耐電圧を高くすることができ、固体電解コンデンサ
の耐圧特性を向上させることができる。
Effect With the above configuration, the withstand voltage of the fragile portion of the capacitor element can be increased, and the withstand voltage characteristics of the solid electrolytic capacitor can be improved.

また、コンデンサエレメント脆弱部の耐物理的ストレス
性が増し、組立工程の短絡不良率を低減でき、更に各種
環境試験において、信頼性向上を図ることができる。
In addition, the physical stress resistance of the fragile portion of the capacitor element is increased, the short-circuit failure rate in the assembly process can be reduced, and reliability can be improved in various environmental tests.

実施例 以下、本発明の実施例を添付の図面を用いて説明する。Example Embodiments of the present invention will be described below with reference to the accompanying drawings.

第1図はタンタル、チタン、ニオブ、アルミニウム等弁
作用を有する金属粉末焼結体であり、φ2・3 rta
n X l 3.Orrrmの円柱形である。
Figure 1 shows a sintered body of metal powders such as tantalum, titanium, niobium, and aluminum that have valve action, and has a diameter of 2.3 rta.
n X l 3. It is cylindrical in shape.

10は焼結体に植設された0、3mmφの陽極IJ −
ドで、焼結体と同一金属部材により構成されている。こ
のコンデンサエレメントに、第2図に示すような同直径
寸法のマスク部材13を挿入する。
10 is an anode IJ − of 0.3 mmφ implanted in the sintered body.
It is made of the same metal member as the sintered body. A mask member 13 having the same diameter as shown in FIG. 2 is inserted into this capacitor element.

14は挿入穴である。これを低含水有機系溶媒を化成液
とした化成槽に浸漬して、一般的な陽極酸化法によって
、エレメント上面部のみに極部的に厚い誘電体皮膜を形
成させることができる。
14 is an insertion hole. This is immersed in a chemical conversion tank containing a low water content organic solvent as a chemical conversion liquid, and by a general anodic oxidation method, an extremely thick dielectric film can be formed only on the upper surface of the element.

第3図に示すように、焼結体12にマスク部材13を挿
入して電流を遮蔽すると同時に、用いる低含水有機系化
成液16は水酸イオンが少いため、水酸イオンは化成さ
れやすい露出部の皮膜形成に占められ、マスク部の皮膜
形成を行う水酸イオンは存在しなくなる。このために、
低含水有機系化成液15は、マスク部材13以外のエレ
メント露小部分表面のみ化成能力を有し、他のエレメン
ト部に化成が進行することなく、第1図のように局部的
に誘電体皮膜11を形成することができる。
As shown in FIG. 3, a mask member 13 is inserted into the sintered body 12 to block the electric current, and at the same time, since the low water content organic chemical liquid 16 used has a small amount of hydroxide ions, the hydroxide ions are easily exposed to chemical formation. The hydroxide ions that form the film on the mask part no longer exist. For this,
The low water content organic chemical liquid 15 has the ability to chemically form only the exposed surface of the element other than the mask member 13, and forms a dielectric film locally as shown in FIG. 1 without chemically progressing to other element parts. 11 can be formed.

有機溶媒としては、エチレングリコール、γ−プチロラ
クトン、メトキシエタノール、グリセリン、ポリエチレ
ングリコール、ポリカーボネイト。
Examples of organic solvents include ethylene glycol, γ-butyrolactone, methoxyethanol, glycerin, polyethylene glycol, and polycarbonate.

ジメチルホルムアミド等を用いる。Dimethylformamide etc. are used.

次に具体的な実施例を従来例と比較して説明する。実施
例として以下の化成液を使用した。
Next, a specific example will be described in comparison with a conventional example. The following chemical solution was used as an example.

表1  使用化成液 マスクしたコンデンサエレメントを、リン酸0.1!1
1o1/l r−ブチロラクトン溶液中120 V /
 Hrで昇圧し、8ov1o分保持することにより、第
1図のコンデンサエレメント上面部の誘電体皮膜を形成
する。水洗した後続いてo、1mol/ l !Jン酸
氷水溶液中12oV/Hr昇圧し、65v2時間保持し
て化成し、エレメント側面部、下面部、内部の誘電体皮
膜を形成した。
Table 1 Use chemical liquid masked capacitor element with phosphoric acid 0.1!1
120 V/in 1o1/l r-butyrolactone solution
The dielectric film on the upper surface of the capacitor element shown in FIG. 1 is formed by increasing the pressure by 1 hour and holding it for 8 oV1o. After washing with water, continue with o, 1 mol/l! The pressure was raised to 12 oV/Hr in an ice-water solution of phosphoric acid and maintained at 65 V for 2 hours to form a dielectric film on the side surfaces, bottom surface, and inside of the element.

比較用として、従来使用の0.1 mo71/l !J
Jン水溶液中、120 V / Hr  テ昇圧し、5
5v2時間保持して、エレメント上面部、側面部、下面
部、内部とも均一な誘電体皮膜を形成したものを使用す
る。
For comparison, the conventionally used 0.1 mo71/l! J
In an aqueous solution of J, the pressure was increased to 120 V/Hr, and the pressure was increased to 5
An element is used in which a uniform dielectric film is formed on the upper surface, side surfaces, lower surface, and inside of the element by holding the element for 5V for 2 hours.

この後、誘電体皮膜表面に半導体層、カーボン層、銀ペ
イント層を形成したのち、外部引出陰極リードを半田付
し、外部引出陽極リードを抵抗溶接したのち、外装樹脂
を施し、製品とする。
After this, a semiconductor layer, a carbon layer, and a silver paint layer are formed on the surface of the dielectric film, and then the external cathode lead is soldered, the external anode lead is resistance welded, and then an exterior resin is applied to complete the product.

製品の短絡不良率、容量特性、耐圧特性を表2に示す。Table 2 shows the short-circuit failure rate, capacity characteristics, and withstand voltage characteristics of the product.

表2 短絡不良率、容量特性、耐圧特性本発明のコンデ
ンサエレメント脆弱部の誘電体皮膜を局部的に厚く形成
した極部化成製品の短絡不良率は減少している。また、
容量が同等にもかかわらず、耐圧特性は向上している。
Table 2: Short-circuit failure rate, capacitance characteristics, withstand voltage characteristics The short-circuit failure rate of the extreme chemical product in which the dielectric film of the capacitor element fragile portion of the present invention is locally thickened is reduced. Also,
Although the capacity is the same, the breakdown voltage characteristics are improved.

これより短絡不良率、耐圧特性は改善されることが確認
できた。
From this, it was confirmed that the short-circuit failure rate and withstand voltage characteristics were improved.

この製品を85℃90%耐湿寿命試験に1ooO時間供
した。結果を第4図に示す。
This product was subjected to a 90% humidity resistance life test at 85° C. for 100 hours. The results are shown in Figure 4.

試験後、従来の製品は、漏れ電流値が増加しているが本
発明の極部化成製品は漏れ電流特性劣化がほとんど無い
。これより耐湿寿命試験の信頼性は、改善されることが
確認できた。
After the test, the leakage current value of the conventional product increased, but the chemically formed product of the present invention showed almost no deterioration in leakage current characteristics. From this, it was confirmed that the reliability of the moisture resistance life test was improved.

発明の効果 本発明のように、コンデンサエレメント脆弱部の誘電体
皮膜を局部的に厚く形成した固体電解コンデンサは、従
来のリン酸水溶液を用いて均一に化成した固体電解コン
デンサに比べて、製品の不良率は減少しており、また耐
圧特性は向上している。
Effects of the Invention As in the present invention, a solid electrolytic capacitor in which the dielectric film in the fragile part of the capacitor element is locally thickened has a higher product quality than a conventional solid electrolytic capacitor in which the dielectric film is uniformly formed using an aqueous phosphoric acid solution. The defective rate has decreased and the voltage resistance characteristics have improved.

更に、耐湿寿命試験に供した際の信頼性は改善され、そ
の実用的効果は非常に太きい。
Furthermore, the reliability when subjected to a moisture resistance life test is improved, and the practical effects thereof are extremely significant.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明によるコンデンサエレメントの斜視図、
第2図は本発明を実現するだめのマスク部材の斜視図、
第3図は本発明を実現するための化成を示す説明図、第
4図は本発明品の特性を示す特性図、第6図は従来の固
体電解コンデンサの断面図、第6図は一般的なコンデン
サと等個直列回路を示す説明図である。 1o・・・・・・陽極リード、11・・・・・・誘電体
皮膜、12・・・・・・焼結体、13・・・・・・マス
ク部材。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
rM 第2図 第3図 第4図 第5図 第6図
FIG. 1 is a perspective view of a capacitor element according to the present invention;
FIG. 2 is a perspective view of a mask member for realizing the present invention;
Fig. 3 is an explanatory diagram showing the chemical formation to realize the present invention, Fig. 4 is a characteristic diagram showing the characteristics of the product of the present invention, Fig. 6 is a cross-sectional view of a conventional solid electrolytic capacitor, and Fig. 6 is a general FIG. 2 is an explanatory diagram showing an equal number of capacitors and a series circuit. 1o... Anode lead, 11... Dielectric film, 12... Sintered body, 13... Mask member. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
rM Figure 2 Figure 3 Figure 4 Figure 5 Figure 6

Claims (4)

【特許請求の範囲】[Claims] (1)誘電体皮膜を局部的に厚く形成した固体電解コン
デンサ。
(1) A solid electrolytic capacitor with a locally thick dielectric film.
(2)誘電体皮膜を厚く形成した部分がエレメント上面
部および電流集中する部位である特許請求の範囲第1項
記載の固体電解コンデンサ。
(2) The solid electrolytic capacitor according to claim 1, wherein the portion where the dielectric film is thick is the upper surface of the element and the portion where current is concentrated.
(3)低含水有機系化成液中で陽極酸化により誘電体皮
膜を形成した特許請求の範囲第2項記載の固体電解コン
デンサ。
(3) The solid electrolytic capacitor according to claim 2, wherein the dielectric film is formed by anodization in a low water content organic chemical solution.
(4)有機溶媒として、エチレングリコール、γ−ブチ
ロラクトン、メトキシエタノール、グリセリン、ポリエ
チレングリコール、ポリカーボネイト、ジメチルホルム
アミドのうちの一種または2種以上の混合溶媒を用いた
特許請求の範囲第3項記載の固体電解コンデンサ。
(4) The solid according to claim 3, wherein the organic solvent is one or a mixed solvent of two or more of ethylene glycol, γ-butyrolactone, methoxyethanol, glycerin, polyethylene glycol, polycarbonate, and dimethylformamide. Electrolytic capacitor.
JP29391386A 1986-12-10 1986-12-10 Solid electrolytic capacitor Pending JPS63146423A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29391386A JPS63146423A (en) 1986-12-10 1986-12-10 Solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29391386A JPS63146423A (en) 1986-12-10 1986-12-10 Solid electrolytic capacitor

Publications (1)

Publication Number Publication Date
JPS63146423A true JPS63146423A (en) 1988-06-18

Family

ID=17800773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29391386A Pending JPS63146423A (en) 1986-12-10 1986-12-10 Solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JPS63146423A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0364907A (en) * 1989-08-03 1991-03-20 Rubikon Kk Aluminum electrolytic capacitor and manufacture therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0364907A (en) * 1989-08-03 1991-03-20 Rubikon Kk Aluminum electrolytic capacitor and manufacture therefor

Similar Documents

Publication Publication Date Title
US20040066608A1 (en) Solid-state electrolytic capacitor and its manufacturing method
EP0704871A1 (en) Electrolytic capacitor
US6791822B2 (en) Solid electrolytic capacitor
WO2014130500A1 (en) Low esr capacitor
US4121949A (en) Method of making a cathode electrode for an electrolytic capacitor
JP2950670B2 (en) Solid electrolytic capacitors
US7177141B1 (en) Solid electrolytic capacitor element, manufacturing method therefor, and solid electrolytic capacitor
JP2615712B2 (en) Manufacturing method of solid electrolytic capacitor
JPS63146423A (en) Solid electrolytic capacitor
JP4398794B2 (en) Manufacturing method of solid electrolytic capacitor
EP0501805A1 (en) Method of manufacturing solid-state electrolytic capacitor
JP2735262B2 (en) Solid electrolytic capacitor and method of manufacturing the same
JPH06168855A (en) Multilayer solid electrolytic capacitor and fabrication thereof
JPH0645199A (en) Solid-state electrolytic capacitor
JP2811648B2 (en) Method for manufacturing solid electrolytic capacitor
JP3542613B2 (en) Method for manufacturing solid electrolytic capacitor
JP3367221B2 (en) Electrolytic capacitor
JPH04103117A (en) Manufacture of solid electrolytic capacitor
JPS63146425A (en) Manufacture of solid electrolytic capacitor
JPH0777180B2 (en) Method for manufacturing solid electrolytic capacitor
JP2001068381A (en) Solid state electrolytic capacitor element
JPH02277213A (en) Solid electrolytic capacitor and its manufacture
JPH0645200A (en) Solid-state electrolytic capacitor
JP3470765B2 (en) Electrolytic capacitor
JPH0312450B2 (en)