JPS63146415A - Electromagnetic actuator - Google Patents

Electromagnetic actuator

Info

Publication number
JPS63146415A
JPS63146415A JP29396386A JP29396386A JPS63146415A JP S63146415 A JPS63146415 A JP S63146415A JP 29396386 A JP29396386 A JP 29396386A JP 29396386 A JP29396386 A JP 29396386A JP S63146415 A JPS63146415 A JP S63146415A
Authority
JP
Japan
Prior art keywords
yoke
iron core
magnetic
permanent magnet
magnetic circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29396386A
Other languages
Japanese (ja)
Other versions
JPH0727821B2 (en
Inventor
Masaki Yamaguchi
正樹 山口
Noriyoshi Ohashi
大橋 徳良
Masayuki Okamoto
岡本 正幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP29396386A priority Critical patent/JPH0727821B2/en
Publication of JPS63146415A publication Critical patent/JPS63146415A/en
Publication of JPH0727821B2 publication Critical patent/JPH0727821B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Feeding And Controlling Fuel (AREA)
  • Electromagnets (AREA)

Abstract

PURPOSE:To enhance the conversion efficiency of an applying voltage by disposing a regulating yoke rotatable at a fixed core as a center between the core disposed on a permanent magnet and a yoke thereby to reduce the magnetic resistance near the permanent magnet of an electromagnetic coil. CONSTITUTION:A magnetic circuit A in which a magnetic path is formed of a permanent magnet 1, a stationary core 3, a movable core 2, first and second yokes 4a, 4b is formed, and the core 2 is attracted at its attracting surface 9 against the repelling force of a compression spring 7 to the core 3. A magnetic circuit B in which a magnetic path is formed of a regulating yoke 5 rotatable at the core 3 as a center and yokes 4a, 4b is formed of an electromagnetic coil 6. Then, since the directions of the magnetic fluxes of the circuits A, B are reverse on the attracting surface 9, the yoke 5 is rotated at the core 3 as a center thereby to vary the magnetic resistance of a regulating magnetic circuit C, thereby varying the attracting force F of the surface 9.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、ガス遮断装置やガス機器のガス遮断弁などに
用いられる電磁アクチユエータに関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an electromagnetic actuator used in gas cutoff devices, gas cutoff valves for gas appliances, and the like.

従来の技術 ガス機器の安全装置として従来より電磁アクチュエータ
が広く用いられている。また近年、ガヌ異常使用時およ
びガス漏れ時等を検出しガスを遮断するマイコンガス遮
断装置のガス遮断弁として、電磁アクチュエータの需要
が高まっている。特に、ガス遮断装置等、電池電源を用
いるシステムにおいては、永久磁石を用いた省電力の自
己保持型電磁アクチユエータの有用性が高まってきてい
る。
BACKGROUND OF THE INVENTION Electromagnetic actuators have been widely used as safety devices for gas appliances. Furthermore, in recent years, there has been an increasing demand for electromagnetic actuators as gas cutoff valves for microcomputer gas cutoff devices that detect abnormal usage or gas leaks and shut off gas. In particular, power-saving self-holding electromagnetic actuators using permanent magnets are becoming increasingly useful in systems using battery power sources, such as gas shutoff devices.

一般に電磁アクチユエータは第9図の従来例に示す様な
構造になっている。永久磁石1、磁性材料製の固定鉄芯
3、可動鉄芯2、第1ヨーク4&、第2ヨーク4b1を
配置して環状の永久磁石による磁気回路Aを形成し、こ
の磁気回路Aにより可動鉄芯2にとりつけられたバネ受
け8と第2ヨーク4bとの間に圧縮されて配置された圧
縮バネ7の反撥力fsp  に抗して可動鉄芯2を吸着
面9において、固定鉄芯3に吸着保持している。可動鉄
芯2をとりかこんで第1ヨーク4aの内側に電磁コイ/
L/6が配置され、電流を印加することにより電磁コイ
/L/6の内側に磁界を発生させ、永久磁石1による磁
気回路Aの反対方向に電磁コイpによる磁気回路Bを形
成する。
Generally, an electromagnetic actuator has a structure as shown in the conventional example shown in FIG. A permanent magnet 1, a fixed iron core 3 made of magnetic material, a movable iron core 2, a first yoke 4&, and a second yoke 4b1 are arranged to form a magnetic circuit A of annular permanent magnets. The movable iron core 2 is attached to the fixed iron core 3 on the suction surface 9 against the repulsive force fsp of the compression spring 7 which is compressed and arranged between the spring receiver 8 attached to the core 2 and the second yoke 4b. It holds by adsorption. An electromagnetic coil is placed inside the first yoke 4a surrounding the movable iron core 2.
L/6 is arranged, and by applying a current, a magnetic field is generated inside the electromagnetic coil/L/6, and a magnetic circuit B by the electromagnetic coil p is formed in the opposite direction to the magnetic circuit A by the permanent magnet 1.

その作動原理は電磁コイ/L/6の両端に信号電圧が印
加された時、電磁コイルによる磁気回路Bによる磁束#
bが、永久磁石による磁気回路Aによる磁束#aと逆方
向に吸着面9に発生するため吸着面9における総磁束−
が減少し、吸着面9における可動鉄芯2と固定鉄芯3と
の間の吸着力rは印加された電圧値Vにともなって減少
し、吸着力rが圧縮バネの反撥力fsp以下に低下した
時、可動鉄芯2は吸着面9における吸着保持状態を維持
できなくなり吸着面9を離脱し電磁アクチュエータが作
動する。この時の作動電圧値Vactは電磁アクチュエ
ータの作動特性をあられす最も重要な特性値である。
Its working principle is that when a signal voltage is applied to both ends of the electromagnetic coil/L/6, the magnetic flux # due to the magnetic circuit B by the electromagnetic coil is
Since b is generated on the attracting surface 9 in the opposite direction to the magnetic flux #a caused by the magnetic circuit A of the permanent magnet, the total magnetic flux on the attracting surface 9 -
decreases, and the attraction force r between the movable iron core 2 and the fixed iron core 3 on the attraction surface 9 decreases with the applied voltage value V, and the attraction force r falls below the repulsive force fsp of the compression spring. At this time, the movable iron core 2 is no longer able to maintain the suction/holding state on the suction surface 9 and leaves the suction surface 9, causing the electromagnetic actuator to operate. The operating voltage value Vact at this time is the most important characteristic value that determines the operating characteristics of the electromagnetic actuator.

以上の印加電圧値Vと磁束−a、my、aの関係、およ
び印加電圧Vと吸着力Fと圧縮バネの反撥力fsp17
)関係をそれぞれ第4図、第5図に示した。
The relationship between the above applied voltage value V and magnetic flux -a, my, a, and the applied voltage V, attraction force F, and repulsive force of the compression spring fsp17
) relationships are shown in Figures 4 and 5, respectively.

発明が解決しようとする問題点 しかしながら従来の構成では、電磁コイ/I/6による
磁気回路Bの磁気抵抗が永久磁石1の部分で特に大きく
なり、このため電磁コイ/L/6に印加された電流によ
り発生した磁界が有効に磁気回路Bによる磁束−bに変
換されず、電磁コイ/1/6に印加された電圧値Vの変
化に対する吸着力Fの変化が少なかった。例えば、ある
一定の作動電圧値Vact を得るためには、圧縮バネ
の反撥力fspを高めに設定しなければならず、外部か
らの震動に対して電磁アクチュエータが誤作動する危険
性が高かった。逆に、耐震性を高めようとして圧縮バネ
の反撥力fspを低く設定すると作動電圧Vactが高
くなるため、省エネルギー機器特にマイクロコンピュー
タを使用したガス遮断装置の様に電源として電池を用い
、かつ長期間のメインテナンスフリーを確保しようとす
る機器のアクチュエータとして用いる場合、電池等の電
源に大きな負担を与えるため、機器全体としての作動信
頼性を損っていた。
Problems to be Solved by the Invention However, in the conventional configuration, the magnetic resistance of the magnetic circuit B caused by the electromagnetic coil/I/6 is particularly large in the part of the permanent magnet 1, and therefore, the magnetic resistance applied to the electromagnetic coil/L/6 is particularly large. The magnetic field generated by the current was not effectively converted into magnetic flux -b by the magnetic circuit B, and the change in the attraction force F with respect to the change in the voltage value V applied to the electromagnetic coil/1/6 was small. For example, in order to obtain a certain operating voltage value Vact, the repulsive force fsp of the compression spring must be set high, and there is a high risk that the electromagnetic actuator will malfunction due to external vibrations. Conversely, if the repulsive force fsp of the compression spring is set low to improve earthquake resistance, the operating voltage Vact will increase. When used as an actuator for a device that aims to ensure maintenance-free operation, it places a heavy burden on the power source such as a battery, which impairs the operational reliability of the device as a whole.

上記の様に作動電圧Vact を決定することは機器と
電磁アクチュエータとのマツチングを決める重要なこと
である。しかしながら、永久磁石6や可動鉄芯2、固定
鉄芯3、第1ヨーク4a、第2ヨーク4b等の磁気特性
のバラツキや、各部品の寸法、表面状態のバラツキなど
により、永久磁石1による磁気回路Aと電磁コイ/L/
6による磁気回路Bの磁気抵抗がばらつくため、電磁ア
クチュエータの組み立て前に作動電圧Vactを推定す
るのは困難である。このため組み立て製造工程において
は、反撥力の異なる圧縮バネ7を数種類用意し、作動電
圧Vactの測定値がもし規格値をはずれた場合は圧縮
バネ7を他の反撥力を持つ圧縮バネ7と交換することに
よって作動電圧Vactを管理していた。しかし、前記
の工法を用いると、圧縮バネ7の保管場所が広くなり、
圧縮バネ7の交換工数が多くなるなどのため製造コスト
が大きくなり高価になるといった問題点があった。
Determining the operating voltage Vact as described above is important in determining the matching between the device and the electromagnetic actuator. However, due to variations in the magnetic properties of the permanent magnet 6, movable iron core 2, fixed iron core 3, first yoke 4a, second yoke 4b, etc., and variations in the dimensions and surface conditions of each component, the magnetism caused by the permanent magnet 1 Circuit A and electromagnetic coil /L/
Since the magnetic resistance of the magnetic circuit B due to the electromagnetic actuator 6 varies, it is difficult to estimate the operating voltage Vact before assembling the electromagnetic actuator. For this reason, in the assembly manufacturing process, several types of compression springs 7 with different repulsive forces are prepared, and if the measured value of the operating voltage Vact deviates from the standard value, the compression spring 7 is replaced with another compression spring 7 with a different repulsive force. By doing so, the operating voltage Vact was managed. However, when the above construction method is used, the storage space for the compression spring 7 becomes large,
There is a problem in that the manufacturing cost increases because the number of man-hours required to replace the compression spring 7 increases.

また同時に、組み立て後の作動電圧Vactの微調整が
不可能なため、機器とのマツチングを図ることが困難で
あった。
At the same time, since it is impossible to finely adjust the operating voltage Vact after assembly, it is difficult to match the device with other devices.

以上に示した様に従来の構成では次の問題点があった。As shown above, the conventional configuration has the following problems.

イ、印加電圧Vの変換効率が悪く、省エネルギー性と耐
震性をあわせもつことが困難であった。
B. The conversion efficiency of the applied voltage V was poor, making it difficult to achieve both energy saving and earthquake resistance.

口1作動電圧Vact’の調整を圧縮バネ7の交換で行
うため、製造コストが高かった。
Since the opening 1 operating voltage Vact' is adjusted by replacing the compression spring 7, the manufacturing cost is high.

ハ、製造後の作動電圧Vactの調整ができないため、
機器とのマツチングが困難であった。
C. Since the operating voltage Vact cannot be adjusted after manufacturing,
It was difficult to match the equipment.

本発明は上記従来の問題点を解決するもので、作動電圧
の変更可能をはかり、かつ微調整も可能にした電磁アク
チュエータを提供するものである。
The present invention solves the above conventional problems and provides an electromagnetic actuator whose operating voltage can be changed and finely adjusted.

問題点を解決するための手段 上記問題点を解決するために、本発明は、永久磁石、磁
性材料製の固定鉄芯、可動鉄芯、ヨークとで形成した前
記永久磁石による磁気回路Aと、前記可動鉄芯にとり付
けられ前記ヨークとの間で圧縮された圧縮バネと、前記
可動鉄芯をとりかこんで配置され電流印加により前記可
動鉄芯を励磁する電磁コイルと、前記固定鉄芯と前記ヨ
ークの間に配置され、前記固定鉄芯、前記可動鉄芯、前
記ヨークとで形成する前記電磁コイ〃による磁気回路B
と、前記永久磁石、前記固定鉄芯、前記ヨークとで形成
した調整磁気回路と、前記固定鉄芯を中心に回転するこ
とにより前記調整磁気回路の磁束を変えることの可能な
磁性材料製の調整ヨークを備えた電磁アクチエエータを
構成するものである。
Means for Solving the Problems In order to solve the above problems, the present invention provides a magnetic circuit A using the permanent magnets, which is formed of a permanent magnet, a fixed iron core made of a magnetic material, a movable iron core, and a yoke; a compression spring attached to the movable iron core and compressed between the yoke; an electromagnetic coil disposed surrounding the movable iron core and exciting the movable iron core by applying a current; A magnetic circuit B formed by the electromagnetic coil arranged between the yokes and formed by the fixed iron core, the movable iron core, and the yoke.
and an adjustment magnetic circuit formed by the permanent magnet, the fixed iron core, and the yoke, and an adjustment made of a magnetic material that can change the magnetic flux of the adjustment magnetic circuit by rotating around the fixed iron core. This constitutes an electromagnetic actuator equipped with a yoke.

作  用 本発明の構成によると、電磁コイルによる磁気回路Bが
ヨークから磁気抵抗の高い永久磁石を避けて磁気抵抗の
高い空気中を通るよりも、むしろ磁気抵抗の低い磁性材
料製の調整ヨークを通シ固定鉄芯へ向うため、前記電磁
コイルによる磁気回路の磁気抵抗が小さく、電磁コイル
に印加された電流により発生した磁界が有効に電磁コイ
pによる磁気回路による磁束に変換される。このため電
磁コイルに印加された電圧値の変化に′対して、前記固
定鉄芯と前記可動鉄芯との間の吸着力の変化が大きく、
圧縮バネの反撥力が弱くても低い作動電圧が得られるこ
とより、省エネルギー性と耐震性をあわせもつことが容
易である。
According to the structure of the present invention, the magnetic circuit B made of the electromagnetic coil passes through the adjustment yoke made of a magnetic material with low magnetic resistance rather than passing through the air with high magnetic resistance avoiding the permanent magnet with high magnetic resistance from the yoke. Since the coil is directed toward the fixed iron core, the magnetic resistance of the magnetic circuit formed by the electromagnetic coil is small, and the magnetic field generated by the current applied to the electromagnetic coil is effectively converted into magnetic flux by the magnetic circuit formed by the electromagnetic coil p. Therefore, the change in the adsorption force between the fixed iron core and the movable iron core is large in response to a change in the voltage value applied to the electromagnetic coil.
Since a low operating voltage can be obtained even if the repulsive force of the compression spring is weak, it is easy to achieve both energy saving and earthquake resistance.

また本発明の構成によると、前記永久磁石による磁束が
前記固定鉄芯から前記可動鉄芯をとおる永久磁石による
磁気回路と前記調整ヨークをとおる調整磁気回路に分配
され、また前記調整ヨークは前記固定鉄芯を中心に回転
することにより前記調整磁気回路の磁気抵抗を変化させ
、前記永久磁石による磁気回路をとおる磁束と前記調整
磁気回路をとおる磁束との割合いを変え、前記固定鉄芯
と前記可動鉄芯との吸着面を通る磁束を変化させるため
、吸着力を変化させることが可能である。
Further, according to the configuration of the present invention, the magnetic flux by the permanent magnet is distributed from the fixed iron core to the magnetic circuit by the permanent magnet passing through the movable iron core and the adjusting magnetic circuit passing through the adjusting yoke, and the adjusting yoke is connected to the fixed iron core. By rotating around the iron core, the magnetic resistance of the adjusting magnetic circuit is changed, and the ratio of the magnetic flux passing through the magnetic circuit by the permanent magnet to the magnetic flux passing through the adjusting magnetic circuit is changed, and the fixed iron core and the adjusting magnetic circuit are changed. Since the magnetic flux passing through the attraction surface with the movable iron core is changed, it is possible to change the attraction force.

このため圧縮バネの反撥力を変えることなく作動電圧を
変化させることが可能となり、また電磁アクチェエータ
組み立て後も作動電圧の微調整が可能となる。
Therefore, it is possible to change the operating voltage without changing the repulsive force of the compression spring, and it is also possible to finely adjust the operating voltage even after the electromagnetic actuator is assembled.

実施例 以下、本発明の一実施例の電磁アクチユエータを図面を
参照して説明する。
EXAMPLE Hereinafter, an electromagnetic actuator according to an example of the present invention will be described with reference to the drawings.

本発明の一実施例の電磁アクチユエータは第1図に示す
様な構造になっている。永久磁石1、磁性材料製の固定
鉄芯3、可動鉄芯2、第1ヨーク4a、第2ヨーク4b
を配置して永久磁石1による環状の磁気回路Aを形成し
、この永久磁石による磁気回路Aにより可動鉄芯2にと
りつけられたバネ受け8と第2ヨーク4bとの間に圧縮
されて配置された圧縮バネ7の反撥力f@pに抗して可
動鉄芯2を吸着面9において固定鉄芯3に吸着力Fで吸
着保持している。可動鉄芯2をとりかこんで第1ヨーク
4aの内側に電磁コイ/I/6が配置され、電流を印加
することによりミ磁コイ/L/6の内側に磁界を発生さ
せ、可動鉄芯2、固定鉄芯a1固定鉄芯をとりかこんで
配置され固定鉄芯3を中心に回転可能な磁性材料製の調
整ヨーク6、第1ヨーク4a、第2ヨーク4bを通る電
磁コイ/I/6による環状の磁気回路Bを形成する。こ
の電磁コイルによる磁気回路Bは、吸着面9において永
久磁石1による磁気回路Aと反対方向である。また同時
に調整ヨーク5は、°永久磁石1により、固定鉄芯3、
調整ヨーク5、第1ヨーク4aを通る調整磁気回路Cを
形成している。調整ヨーク5の形状の一例を第2図、第
3図に示したその件動現理は、電磁コイ/v6の両端に
信号電圧が印加された時、電磁コイルによる磁気回路B
による磁束−bが、永久磁石1による磁気回路Aによる
磁束#aと逆方向に吸着面9に発生するため、吸着面9
における総磁束・が減少し、吸着力Fは印加された電圧
値Vにともなって減少し、吸着力Fが圧縮バネ7の反撥
力fsp以下に低下した時、可動鉄芯2は吸着面9にお
ける吸着保持状態を維持できなくなり吸着面9を離脱し
電磁アクチュエータが作動する。
An electromagnetic actuator according to an embodiment of the present invention has a structure as shown in FIG. Permanent magnet 1, fixed iron core 3 made of magnetic material, movable iron core 2, first yoke 4a, second yoke 4b
are arranged to form an annular magnetic circuit A of the permanent magnet 1, and the magnetic circuit A of the permanent magnet compresses and disposes the spring receiver 8 attached to the movable iron core 2 and the second yoke 4b. The movable iron core 2 is suctioned and held by the fixed iron core 3 on the suction surface 9 with the suction force F against the repulsive force f@p of the compression spring 7. An electromagnetic coil/I/6 is arranged inside the first yoke 4a surrounding the movable iron core 2, and by applying a current, a magnetic field is generated inside the electromagnetic coil/L/6, and the movable iron core 2 , by an electromagnetic coil/I/6 that passes through an adjustment yoke 6 made of magnetic material that is arranged surrounding the fixed iron core a1 and is rotatable around the fixed iron core 3, the first yoke 4a, and the second yoke 4b. A ring-shaped magnetic circuit B is formed. The magnetic circuit B formed by this electromagnetic coil is in the opposite direction to the magnetic circuit A formed by the permanent magnet 1 on the attraction surface 9 . At the same time, the adjustment yoke 5 is moved by the permanent magnet 1 to the fixed iron core 3,
An adjustment magnetic circuit C passing through the adjustment yoke 5 and the first yoke 4a is formed. An example of the shape of the adjustment yoke 5 is shown in FIG. 2 and FIG.
Since the magnetic flux -b caused by the permanent magnet 1 is generated on the attraction surface 9 in the opposite direction to the magnetic flux #a caused by the magnetic circuit A of the permanent magnet 1, the attraction surface 9
The total magnetic flux at is decreased, and the attraction force F is decreased with the applied voltage value V. When the attraction force F is lower than the repulsive force fsp of the compression spring 7, the movable iron core 2 is moved to the attraction surface 9. The suction holding state cannot be maintained, the suction surface 9 is detached, and the electromagnetic actuator is activated.

この時の印加電圧Vを作動電圧Vactとする。The applied voltage V at this time is set as the operating voltage Vact.

以上の印加電圧値Vと磁束・a、・bの関係、および印
加電圧Vと吸着力Fと圧縮バネの反撥力fspの関係を
それぞれ第4図、第5図に示した。
The relationship between the above applied voltage value V and the magnetic fluxes ·a, ·b, and the relationship between the applied voltage V, the attraction force F, and the repulsive force fsp of the compression spring are shown in FIGS. 4 and 5, respectively.

第4図によると、本発明において調整ヨーク5を用いて
電磁コイルによる磁気回路Bの永久磁石1の近傍の磁気
抵抗を低下させたため、印加電圧Vの変化に対する電磁
コイルによる磁気回路Bによる磁束−bの変化が大きく
なっており、電気力学エネルギー変換効率が高いことが
わかる。
According to FIG. 4, in the present invention, since the adjustment yoke 5 is used to reduce the magnetic resistance near the permanent magnet 1 of the magnetic circuit B by the electromagnetic coil, the magnetic flux by the magnetic circuit B by the electromagnetic coil with respect to the change in the applied voltage V - It can be seen that the change in b is large, indicating that the electrodynamic energy conversion efficiency is high.

また第5図によると、本発明に調整ヨーク5を用いたた
め、印加電圧Vの変化に対する吸着力Fの変化が大きく
なっており、例えば従来例と同じ反撥力fgpを持つ圧
縮バネ7を用いた場合作動電圧Vactは従来例Vac
e’よシ大幅に小さくすることができ、省エネルギーに
有利な特性であり、また例えば従来例と同じ作動電圧に
設定した場合圧縮バネの反撥力は従来例より小さくする
ことが可能で、耐震性が向上することがわかる。
Furthermore, according to FIG. 5, since the adjustment yoke 5 is used in the present invention, the change in the adsorption force F with respect to the change in the applied voltage V is large. In this case, the operating voltage Vact is the conventional example Vac.
e' can be significantly reduced, which is an advantageous characteristic for energy saving.For example, when the operating voltage is set to the same as that of the conventional example, the repulsive force of the compression spring can be made smaller than that of the conventional example, which improves earthquake resistance. It can be seen that the results are improved.

一方、調整ヨーク5によって、永久磁石による磁束−M
gが、固定鉄芯3から可動鉄芯2をとおる永久磁石によ
る磁気回路Aによる磁束−aと調整ヨーク5をとおる調
整磁気回路Cによる磁束−〇に分配され、また調整ヨー
ク5は固定鉄芯3を中心に回転することにより調整磁気
回路Cの磁気抵抗を変化させ、−aと−Cとの割合いを
変え、吸着面9を通る磁束−aを変化させるため、吸着
力Fを変化させることが可能である。
On the other hand, the magnetic flux -M due to the permanent magnet is adjusted by the adjustment yoke 5.
g is distributed from the fixed iron core 3 to the magnetic flux -a caused by the magnetic circuit A of the permanent magnet that passes through the movable iron core 2, and the magnetic flux -〇 caused by the adjustment magnetic circuit C that passes through the adjustment yoke 5. By rotating around 3, the magnetic resistance of the adjustment magnetic circuit C is changed, the ratio between -a and -C is changed, and the magnetic flux -a passing through the attraction surface 9 is changed, thereby changing the attraction force F. Is possible.

このため圧縮バネ7の反撥力fspを変えることなく作
動電圧Vactを変化させることが可能である。
Therefore, it is possible to change the operating voltage Vact without changing the repulsive force fsp of the compression spring 7.

例えば第2図に示した調整ヨーク5あるいは他の例であ
る調整ヨーク5aを用いた場合について、第1ヨーク4
aに対する調整ヨーク50角度θと磁束−a、#c、#
Mgの関係、調整ヨーク5の角度θと吸着力Fとの関係
、および角度θと作動電圧Vactの関係をそれぞれ第
6図、第7図、第8図に示した。ただし角度θは90°
の範囲で示した。
For example, when using the adjustment yoke 5 shown in FIG. 2 or another example of adjustment yoke 5a, the first yoke 4
Adjustment yoke 50 angle θ with respect to a and magnetic flux -a, #c, #
The relationship between Mg, the relationship between the angle θ of the adjustment yoke 5 and the attraction force F, and the relationship between the angle θ and the operating voltage Vact are shown in FIGS. 6, 7, and 8, respectively. However, the angle θ is 90°
shown in the range.

第8図よシ、調整ヨーク5を回転させることによって、
圧縮バネ7の反撥力fspを変えることなく作動電圧V
actを変化させることが可能であり、また調整ヨーク
5は電磁アクチュエータ組み立て後も回転可能であるた
め作動電圧の微調整が容易に可能となることがわかる。
As shown in Fig. 8, by rotating the adjustment yoke 5,
The operating voltage V without changing the repulsive force fsp of the compression spring 7.
act can be changed, and since the adjustment yoke 5 can be rotated even after the electromagnetic actuator is assembled, it can be seen that fine adjustment of the operating voltage can be easily made.

上記実施例においては、電磁コイ/I/6の内側が可動
鉄芯2の離脱運動の際のガイドとして用いられる場合に
ついて述べたが、電磁コイtv6と、可動鉄芯2と固定
鉄芯3との間に難磁性金属材料製のガイドパイプを設は
可動鉄芯2のガイドとすることも可能である。その場合
、ガイドパイプは固定鉄芯3と調整ヨーク5との間に位
置することも、また固定鉄芯3と調整ヨーク6が直接接
触することも可能である。
In the above embodiment, a case has been described in which the inside of the electromagnetic coil/I/6 is used as a guide when the movable iron core 2 moves away, but the electromagnetic coil tv6, the movable iron core 2, and the fixed iron core 3 It is also possible to provide a guide pipe made of a non-magnetic metal material between them to guide the movable iron core 2. In that case, the guide pipe can be located between the fixed iron core 3 and the adjusting yoke 5, or the fixed iron core 3 and the adjusting yoke 6 can be in direct contact.

発明の効果 以上のように本発明により以下に示す効果が期待できる
Effects of the Invention As described above, the following effects can be expected from the present invention.

イ、印加電圧の変換効率が高く、省エネルギー性と耐震
性をあわせもつことが容易である。
B. The applied voltage conversion efficiency is high, and it is easy to combine energy saving and earthquake resistance.

口0作動電圧の調整を調整ヨークの回転で行えるため、
圧縮バネの交換にともなう製造コストのアップをともな
っていた従来例に比し、そのコストを低減できる。
Since the operating voltage can be adjusted by rotating the adjustment yoke,
The cost can be reduced compared to the conventional example in which the manufacturing cost increases due to the replacement of the compression spring.

ハ、製造後の作動電圧の調整が可能なため、機器とのマ
ツチングが容易である。
C. Since the operating voltage can be adjusted after manufacturing, it is easy to match with other devices.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す電磁アクチュエータの
全体断面図、第2図は本発明の一実施例による調整ヨー
クの分解斜視図、第3図は本発明の他の実施例による調
整ヨークの分解斜視図、第4図は本発明の一実施例およ
び従来例による印加電圧と磁束の関係を示す図、第5図
は本発明の一実施例および従来例による印加電圧と吸着
力の関係を示す図、第6図は本発明の一実施例による調
整ヨークの角度と磁束の関係を示す図、第7図は本発明
の一実施例による調整ヨークの角度と吸着力の関係を示
す図、第8図は本発明の一実施例による調整ヨークの角
度と作動電圧の関係を示す図、第9図は従来の電磁アク
チュエータの全体断面図を示したものである。 1・・・・・・永久磁石、2・・・・・・可動鉄芯、3
・・・・・・固定鉄芯、4・・・・・・ヨーク(4a・
・・・・・第1ヨーク、4b・・・・・・第2ヨーク)
、5・・・・・・調整ヨーク、6・・・・・・電磁コイ
μ、7・・・・・・圧縮バネ、A・・・・・・永久磁石
による磁気回路、B・・・・・・電磁コイルによる磁気
回路、C・・・・・・調整磁気回路。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名3−
1!It  鉄尤 4艷1ヨーグ 易−累2ヨーク 8−バネ受け 9−唄fa c−vi+*濾気回路 忙−磁帆回%Al:jる磁束 田定扶尤の畷着〃 fsp−圧縮バネの反撓カ ! −永久磁石 i3図 菅 本発明1;おける !a−永久磁石1;よる 膳帆回路による磁束 !l、−を塩コイル − Vact−作動電圧 F −畷鴫 D fsp−圧縮バネ反冊力 第4図 第5図   印加電圧V e]it辻 V 第 6 図             frl)−永久
7磁石1:よる樋衆紅−永久磁石1:よる 磁気回路による、礒衆 角度 θ 第7図 iml!ヨークの角度 θ 第8図 訓電ヨークのljXθ
FIG. 1 is an overall cross-sectional view of an electromagnetic actuator according to an embodiment of the present invention, FIG. 2 is an exploded perspective view of an adjustment yoke according to an embodiment of the present invention, and FIG. 3 is an adjustment according to another embodiment of the present invention. FIG. 4 is an exploded perspective view of the yoke. FIG. 4 is a diagram showing the relationship between applied voltage and magnetic flux according to an embodiment of the present invention and a conventional example. FIG. 5 is a diagram showing the relationship between applied voltage and magnetic flux according to an embodiment of the present invention and a conventional example. FIG. 6 is a diagram showing the relationship between the angle of the adjustment yoke and magnetic flux according to an embodiment of the present invention, and FIG. 7 is a diagram showing the relationship between the angle of the adjustment yoke and the attraction force according to an embodiment of the present invention. 8 is a diagram showing the relationship between the angle of the adjustment yoke and the operating voltage according to an embodiment of the present invention, and FIG. 9 is a general sectional view of a conventional electromagnetic actuator. 1...Permanent magnet, 2...Movable iron core, 3
...Fixed iron core, 4...Yoke (4a,
...1st yoke, 4b...2nd yoke)
, 5... Adjustment yoke, 6... Electromagnetic coil μ, 7... Compression spring, A... Magnetic circuit with permanent magnet, B... ...Magnetic circuit using electromagnetic coil, C... Adjustment magnetic circuit. Name of agent: Patent attorney Toshio Nakao and 1 other person3-
1! It iron 4 1 yoke yoke 2 yoke 8 - spring support 9 - song fa c-vi + * filtration circuit busy - magnetic sail rotation %Al: jru magnetic flux 田楤ふ尀の畷着〃 fsp - compression spring The repulsion! -Permanent magnet i3 diagram Suga present invention 1; can be placed! a-Permanent magnet 1; Magnetic flux due to the feeding circuit! l, - Salt coil - Vact - Operating voltage F - D fsp - Compression spring repulsion force Fig. 4 Fig. 5 Applied voltage V e]it Tsuji V Fig. 6 frl) - Permanent 7 magnet 1: Dwelling gutter Shuhong - Permanent magnet 1: Due to the magnetic circuit, the angle θ Fig. 7 iml! Angle of yoke θ Figure 8 ljXθ of training yoke

Claims (1)

【特許請求の範囲】[Claims]  永久磁石、磁性材料製の固定鉄芯、可動鉄芯、ヨーク
とで形成した前記永久磁石による磁気回路Aと、前記可
動鉄芯にとり付けられ、前記ヨークとの間で圧縮された
圧縮バネと、前記可動鉄芯をとりかこんで配置され電流
印加により前記可動鉄芯を励磁する電磁コイルと、前記
固定鉄芯と前記ヨークの間に配置され前記固定鉄芯、前
記可動鉄芯、前記ヨークとで形成し、前記電磁コイルに
よる磁気回路Bと、前記永久磁石、前記固定鉄芯、前記
ヨークとで形成した調整磁気回路と、前記固定鉄芯を中
心に回転することにより前記調整磁気回路の磁束を変え
ることの可能な磁性材料製の調整ヨークとを備えた電磁
アクチュエータ。
A magnetic circuit A by the permanent magnet formed by a permanent magnet, a fixed iron core made of magnetic material, a movable iron core, and a yoke; a compression spring attached to the movable iron core and compressed between the yoke; an electromagnetic coil arranged surrounding the movable iron core and exciting the movable iron core by applying a current; and an electromagnetic coil arranged between the fixed iron core and the yoke, the fixed iron core, the movable iron core, and the yoke. and a magnetic circuit B formed by the electromagnetic coil, an adjusting magnetic circuit formed by the permanent magnet, the fixed iron core, and the yoke, and a magnetic flux of the adjusting magnetic circuit by rotating around the fixed iron core. An electromagnetic actuator with a changeable adjustment yoke made of magnetic material.
JP29396386A 1986-12-10 1986-12-10 Electromagnetic actuator Expired - Fee Related JPH0727821B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29396386A JPH0727821B2 (en) 1986-12-10 1986-12-10 Electromagnetic actuator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29396386A JPH0727821B2 (en) 1986-12-10 1986-12-10 Electromagnetic actuator

Publications (2)

Publication Number Publication Date
JPS63146415A true JPS63146415A (en) 1988-06-18
JPH0727821B2 JPH0727821B2 (en) 1995-03-29

Family

ID=17801454

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29396386A Expired - Fee Related JPH0727821B2 (en) 1986-12-10 1986-12-10 Electromagnetic actuator

Country Status (1)

Country Link
JP (1) JPH0727821B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012243767A (en) * 2011-05-19 2012-12-10 Fei Co Method and structure for controlling magnetic field distribution of e×b wien filter
JP2016051708A (en) * 2014-08-28 2016-04-11 株式会社不二越 Built-in permanent magnet type solenoid

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012243767A (en) * 2011-05-19 2012-12-10 Fei Co Method and structure for controlling magnetic field distribution of e×b wien filter
JP2016051708A (en) * 2014-08-28 2016-04-11 株式会社不二越 Built-in permanent magnet type solenoid

Also Published As

Publication number Publication date
JPH0727821B2 (en) 1995-03-29

Similar Documents

Publication Publication Date Title
US20210296039A1 (en) Electromagnet-switchable permanent magnet device
US4237439A (en) Release electromagnet assembly
US6940376B2 (en) Electromagnet and actuating mechanism for switch device, using thereof
JP4066040B2 (en) Electromagnet and operation mechanism of switchgear using the same
US20020017749A1 (en) Vibration damping apparatus using magnetic circuit
US9190233B2 (en) Solenoid device and electromagnetic relay
US4451808A (en) Electromagnet equipped with a moving system including a permanent magnet and designed for monostable operation
JP2003151826A (en) Electromagnet and open/close device
CN111541352A (en) Solenoid including a displaceable ferromagnetic member within an air gap
KR19990063951A (en) Method and apparatus for manufacturing intake valve of plate type
JPH03500594A (en) Solenoid valve closed by permanent magnet
JP2010283948A (en) Generation device
US6794968B2 (en) Magnetic latching contactor
JP2006222438A (en) Electromagnet and operating mechanism of switching device using the same
US4064471A (en) Electromagnetic relay
JP2011108452A (en) Electromagnetic relay
JP2001291461A (en) Electromagnetic switch
JPS63146415A (en) Electromagnetic actuator
JPS63133505A (en) Release type electromagnet device
JPS6138166Y2 (en)
JPS6350819Y2 (en)
KR20240151657A (en) Relay
JPH0648647B2 (en) Electromagnetic actuator
JPS63296320A (en) Electromagnetic actuator
JPH08124463A (en) Vacuum circuit breaker

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees