JPS63145948A - Atomic absorption spectrochemical analyzer - Google Patents

Atomic absorption spectrochemical analyzer

Info

Publication number
JPS63145948A
JPS63145948A JP29288286A JP29288286A JPS63145948A JP S63145948 A JPS63145948 A JP S63145948A JP 29288286 A JP29288286 A JP 29288286A JP 29288286 A JP29288286 A JP 29288286A JP S63145948 A JPS63145948 A JP S63145948A
Authority
JP
Japan
Prior art keywords
burner
absorbance
cpu
maximize
flame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29288286A
Other languages
Japanese (ja)
Inventor
Fumio Kawashima
川島 史生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP29288286A priority Critical patent/JPS63145948A/en
Publication of JPS63145948A publication Critical patent/JPS63145948A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To automate positional adjustment of a gas burner, by providing the gas burner with a moving means to control the moving means so that an absorption signal attains the max. value. CONSTITUTION:A burner 3 is set with a CPU at a reference position where a luminous flux thereof 3 passes the center of a flame 2 parallel with the length of the burner 3. The burner 3 is driven longitudinally by a burner position driver 8 from the position while the longitudinal position of the burner 3 and a data of an absorbance signal from an absorbance measuring circuit 7 are stored into the CPU. The CPU set the longitudinal position of the burner 3 to maximize the absorbance. Then, the burner 3 is moved vertically at the longitudinal position to be set at such a height as to maximize the absorbance. Moreover, the burner 3 is turned in place to be set at such an angle as to maximize the absorbance. In this manner, the CPU controls the device 8 to ensure the maximum of the absorbance signal of the circuit 7. This enables the automation of the positional adjustment of the burner 3 to make an operator free from complicated burner position adjusting operation thereby achieving a higher analysis efficiency.

Description

【発明の詳細な説明】 イ、産業上の利用分野 本発明は試料の原子化に炎を用いる原子吸光分光分析装
置に関する。
DETAILED DESCRIPTION OF THE INVENTION A. Field of Industrial Application The present invention relates to an atomic absorption spectrometer that uses flame to atomize a sample.

口、従来の技術 ガス炎によって試料を原子化する原子吸光分析法では、
試料原子化用のガス炎における温度分布とか還元域、酸
化域等の分布状態により、試料にとって分析に最も適し
た領域がある。原子吸光分析では励起光の光束をそのよ
うな最適領域を最も長い距離で通過させるように光束に
対する炎の位置を調節する。このような調節を従来は手
動的に試行釦誤で最適位置を探り当てると云う方法で行
っていた。
In conventional atomic absorption spectrometry, the sample is atomized by a gas flame.
Depending on the temperature distribution, reduction region, oxidation region, etc. in the gas flame for sample atomization, there is a region most suitable for analysis of the sample. In atomic absorption spectrometry, the position of the flame relative to the beam of excitation light is adjusted so that the beam of excitation light passes through such an optimal region over the longest distance. Conventionally, such adjustments have been made manually by trying to find the optimum position by pressing the button incorrectly.

ハ6発明が解決しようとする問題点 上述したような炎の位置の調節はバーナを移動させるこ
とによって行うが、その場合、バーナの位置調節は上下
方向、光束に対して直交水平方向く前後方向)と垂直軸
による回転の3種について行う必要があり、これを手動
的に行うのは大へん繁雑で時間のか\るものである。
C6 Problems to be Solved by the Invention The flame position as described above is adjusted by moving the burner, but in that case, the burner position can be adjusted in the vertical direction, the horizontal direction perpendicular to the light beam, and the front-rear direction. ) and rotation around the vertical axis, and it is very complicated and time-consuming to do this manually.

本発明は原子吸光分析における上述した手動によるバー
ナの位置調節の繁雑さを解消し、分析能率を向上させる
ことを目的とする。
An object of the present invention is to eliminate the above-mentioned complexity of manual burner position adjustment in atomic absorption spectrometry and to improve analysis efficiency.

二0問題点解決のための手段 バーナに上下方、向9前後方向(通過光束の光軸と直交
水平方向)および垂直軸による回転の31!!iの駆動
手段を設け、バーナ位置調節モードにおいて測光系から
吸光度信号をフィードバックして、吸光度最大位置にバ
ーナを停止させる制御手段を設けた。
20 Means for Solving Problems The burner is rotated vertically, in the 9 forward and backward directions (horizontal direction perpendicular to the optical axis of the passing light flux), and 31 in the vertical axis! ! A control means was provided to stop the burner at the maximum absorbance position by feeding back an absorbance signal from the photometry system in the burner position adjustment mode.

ホ0作用 原子吸光分析に用いられる炎は水平断面が通過光束と平
行の方向に長い矩形断面となるように、細長いスリット
から燃料ガスを噴出させて形成する。第2図は原子吸光
分析用のガス炎を示し、0がガス炎の中心で、Fがガス
炎を通過する光束であり、光束Fとガス炎との一関係は
図示のHlB、θの3つのパラメータで規定される。0
点としてガスバーナの火口中心から一定高さの定点をと
れば、H,B、θはガスバーナの位置を規定するパラメ
ータとなる。このガス炎中に標準試料を供給すると、測
光系から吸光度信号が得られる。
The flame used in Ho0 action atomic absorption spectrometry is formed by ejecting fuel gas from an elongated slit so that the horizontal cross section is a rectangular cross section that is long in the direction parallel to the passing light beam. Figure 2 shows a gas flame for atomic absorption spectrometry, where 0 is the center of the gas flame and F is the light flux passing through the gas flame. It is defined by two parameters. 0
If a fixed point at a constant height from the center of the gas burner's crater is taken as the point, H, B, and θ become parameters that define the position of the gas burner. When a standard sample is supplied into this gas flame, an absorbance signal is obtained from the photometric system.

ガスバーナの上記3パラメータに対する駆動手段に微小
駆動信号を与えてガスバーナを微小量動かすと吸光度信
号が変化する。従って吸光度が増加する方向に前記制御
系を作動させれば、ガスバーナは自動的に最適位置に落
着く。
When a minute drive signal is applied to the drive means for the three parameters of the gas burner to move the gas burner by a minute amount, the absorbance signal changes. Therefore, if the control system is operated in a direction that increases the absorbance, the gas burner will automatically settle at the optimum position.

へ、実施例 第1図に本発明の一実施例の構成を示す。1は定量しよ
うとする元素の輝線光を発光する光源、2は試料を原子
化する炎で、3は炎2を形成するバーナである。4は分
光器で炎2を通過した光源1の光が入射せしめられる。
Embodiment FIG. 1 shows the configuration of an embodiment of the present invention. 1 is a light source that emits bright line light of the element to be quantified; 2 is a flame that atomizes the sample; and 3 is a burner that forms the flame 2. 4 is a spectroscope into which the light from the light source 1 that has passed through the flame 2 is incident.

5は分光器出射光を受光する光検出器、6はプリアンプ
で7が吸光度測定回路である。吸光度測定回路7の出力
信号は分光分析装置全体を制御しているマイクロコンピ
ュータCPUに読込まれる。8はバーナ位置駆動装置で
、バーナの高さ方向駆動用パルスモータと、前後方向駆
動用パルスモータと、バーナの垂直軸回りの角位置駆動
用パルスモータとよりなっており、夫々CPUから送ら
れて来る駆動パルスによって駆動される。
5 is a photodetector for receiving light emitted from the spectrometer, 6 is a preamplifier, and 7 is an absorbance measurement circuit. The output signal of the absorbance measurement circuit 7 is read into a microcomputer CPU that controls the entire spectrometer. 8 is a burner position drive device, which consists of a pulse motor for driving the burner in the height direction, a pulse motor for driving the burner in the longitudinal direction, and a pulse motor for driving the angular position around the vertical axis of the burner. It is driven by the incoming drive pulse.

以上の構成でCPUの動作をバーナ位置調節モードに設
定し、バーナ3に標準試料を導入して、動作をスタート
させると、CPUは次のような動作を行う。バーナ3は
当初光束が第2図における炎中心0をバーナの長手方向
と平行に通過する法皇位置に設置され、まずその位置か
ら前方(図で紙面に垂直に手前方向)に駆動され、その
間のバーナの前後位置と吸光度信号のデータがCPUに
メモリされる。このメモリされたデータは第3図に示す
ような形を呈している。CPUはこのデータに基いてバ
ーナの前後位置を吸光度最大となる位置に設定する。次
にその前後方向位置において、バーナに小さな上下移動
を与えて、吸光度が増加する移動方向を検出した後、そ
の方向にバーナを移動させて吸光度とバーナの高さ方向
の位置のデータをメモリし、そのデータに基いて、吸光
度最大となる高さ位置にバーナを設定する。次にその位
置でバーナを水平面内で一方向に回転させ、吸光度最大
となる角位置にバーナを設定する。以上でバーナ位置の
調節を終わる。
With the above configuration, when the CPU is set to the burner position adjustment mode, a standard sample is introduced into the burner 3, and the operation is started, the CPU performs the following operations. The burner 3 is initially installed at a position where the light flux passes through the flame center 0 in Figure 2 parallel to the longitudinal direction of the burner, and is first driven forward from that position (toward the front perpendicular to the paper in the figure). The data of the burner front and rear positions and the absorbance signal are stored in the CPU. This memorized data has a form as shown in FIG. Based on this data, the CPU sets the front and back positions of the burner to the positions where the absorbance is maximum. Next, at that longitudinal position, the burner is given a small vertical movement to detect the direction of movement in which the absorbance increases, and then the burner is moved in that direction and the absorbance and burner height position data are memorized. , Based on that data, set the burner at the height position where the absorbance is maximum. Next, at that position, the burner is rotated in one direction in a horizontal plane, and the burner is set at the angular position where the absorbance is maximum. This completes the burner position adjustment.

バーナの前記3種の移動方向と吸光度との関係は相互独
立ではないので、上記した調節動作ではなお完全な吸光
度最大位置が得られるとは限らない。より完全な動作形
式を次に述べる。第4図にこの動作の・フローチャート
を示ず。CPUのバーナ位置調節動作をスタートさせと
る、前述した方式と同様にして、まず前後方向の一応の
最適位置にバーナを設定(イ)し、次に同様にして上下
方向の一応の最適位置に設定(ロ)し、その位置から再
び前後方向の最適位面を探って、その位置に設定(ハ)
し、そこから再び上下方向の最適位置を探ってその位置
に設定(ニ)し、次にその位置でバーナの最適位置を探
ってバーナの角位置を決める(ホ)。こ\で次の(へ)
のステップでバーナを上下前後に微動して、吸光度変化
があるか否か(吸光度変化が基準の微小値より大きいか
否か)の確認を行い、変化がなければ、(ホ)のステッ
プで決まった位置が最適であるから、そこで動作は終了
し、変化があれば、その位置から前後方向の最適位置(
ト)、上下方向の最適位置(ヂ)、最適角位置(す)の
探査設定を行って動作を終わる。(す)のステップの後
再び(へ)のステップに戻るようにしてもよいが、実際
上その必要11は余りない。また初回の角位置調節を(
ロ)のステップの次でなり、(ニ)のステップの次に置
(のは、角位置による吸光度の変化は小さく、前後位置
と上下位置との相互依存性が大きいのに比し、比較的独
立性が大きいから、後の方の段階で角位置調節を行うこ
とで充分なためである。
Since the relationships between the three burner movement directions and the absorbance are not mutually independent, the above-mentioned adjustment operation does not always result in a perfect absorbance maximum position. A more complete form of operation is described next. A flowchart of this operation is not shown in FIG. Starting the burner position adjustment operation of the CPU, using the same method as described above, first set the burner at the optimal position in the front-back direction (A), and then similarly set it at the optimal position in the vertical direction. (B) From that position, find the optimal position in the front and back direction again, and set it at that position (C)
From there, find the optimal position in the vertical direction again and set it at that position (d), then find the optimal position for the burner at that position and decide the angular position of the burner (e). Go to the next one
In step (e), move the burner slightly up and down and check to see if there is a change in absorbance (whether the change in absorbance is greater than the reference minute value).If there is no change, it is determined in step (e). Since the position is optimal, the movement ends there, and if there is a change, the optimal position in the front and back direction is moved from that position (
The operation is completed by setting the optimum vertical position (ji), and the optimum angular position (su). Although it may be possible to return to step (to) again after step (a), there is actually no need to do so. Also, the initial corner position adjustment (
The change in absorbance due to the angular position is small, and the interdependence between the front and back positions and the top and bottom positions is large. This is because since the independence is large, it is sufficient to adjust the angular position at a later stage.

ト、効果 バーナに移動手段を設け、吸光度信号が最大になるよう
に上記移動手段を制御する制御装置を設けたので、バー
ナの位置調節が自動化されオペレータは繁雑なバーナ位
B調節操作から開放され、分析能率が向上した。
G. Effect: Since the burner is provided with a moving means and a control device is provided to control the moving means so that the absorbance signal is maximized, the burner position adjustment is automated and the operator is freed from the complicated burner position B adjustment operation. , analysis efficiency has improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例装置のブロック図、第2図は
炎の斜視図、第3図はバ:すの位置を変えたときの吸光
度信号の変化を示すグラフ、第4図は本発明の他の一実
施例におけるCPUの主要動作のフローチャートである
。 1・・・光源、3・・・バーナ、4・・・分光器、7・
・・吸光度測定回路、8・・・バーナ位置駆動装置、C
PU・・・マイクロコンピュータ。 代理人  弁理士 縣  浩 介 第1図 第3図
Fig. 1 is a block diagram of an apparatus according to an embodiment of the present invention, Fig. 2 is a perspective view of a flame, Fig. 3 is a graph showing changes in the absorbance signal when the position of the bar is changed, and Fig. 4 is a graph showing changes in the absorbance signal when the position of the bar is changed. It is a flowchart of the main operation|movement of CPU in other one Example of this invention. 1... Light source, 3... Burner, 4... Spectrometer, 7.
...Absorbance measurement circuit, 8...Burner position drive device, C
PU...Microcomputer. Agent: Hiroshi Agata, Patent Attorney Figure 1 Figure 3

Claims (1)

【特許請求の範囲】[Claims] 試料原子化用ガスバーナに上下、前後、回転の各方向駆
動装置を設け、吸光度測定回路の出力信号が最大になる
ように上記各方向駆動装置を駆動する制御手段を設けた
ことを特徴とする原子吸光分光分析装置。
A gas burner for sample atomization is provided with a driving device in each of the vertical, longitudinal, and rotational directions, and a control means is provided for driving the driving device in each direction so that the output signal of the absorbance measuring circuit is maximized. Absorption spectrometer.
JP29288286A 1986-12-09 1986-12-09 Atomic absorption spectrochemical analyzer Pending JPS63145948A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29288286A JPS63145948A (en) 1986-12-09 1986-12-09 Atomic absorption spectrochemical analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29288286A JPS63145948A (en) 1986-12-09 1986-12-09 Atomic absorption spectrochemical analyzer

Publications (1)

Publication Number Publication Date
JPS63145948A true JPS63145948A (en) 1988-06-18

Family

ID=17787597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29288286A Pending JPS63145948A (en) 1986-12-09 1986-12-09 Atomic absorption spectrochemical analyzer

Country Status (1)

Country Link
JP (1) JPS63145948A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04274736A (en) * 1991-02-28 1992-09-30 Shimadzu Corp Atomic absorption spectrophotometer

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59220631A (en) * 1983-05-30 1984-12-12 Shimadzu Corp Atomic absorption analyzer

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59220631A (en) * 1983-05-30 1984-12-12 Shimadzu Corp Atomic absorption analyzer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04274736A (en) * 1991-02-28 1992-09-30 Shimadzu Corp Atomic absorption spectrophotometer

Similar Documents

Publication Publication Date Title
AU618201B2 (en) Atomic absorption spectroscopy photometer
JPS63145948A (en) Atomic absorption spectrochemical analyzer
WO1980000189A1 (en) Calibratiob system for spectroscopes
JPS58135924A (en) Spectrophotometer
US4991960A (en) Atomic absorption spectrometer
GB2133138A (en) Spectrophotometer
JP2002156282A (en) Spectrophotometer
CN208751710U (en) Atomic Absorption Spectrometer and system
US5579104A (en) Apparatus applied to spectroscopy
JPH051413B2 (en)
JPH0434691B2 (en)
JPH0711484B2 (en) Atomic absorption spectrophotometer
JP3114290B2 (en) Detection unit in near-infrared spectrometer
JPS6221952Y2 (en)
JPS57153226A (en) Spectrophotometer
JPH0434444Y2 (en)
JPS63300943A (en) Emission spectrochemical analysis instrument
JP3239914B2 (en) Atomic absorption spectrophotometer with sample concentration function
JPH01295135A (en) Atomic absorption spectrophotometer
JP2934451B2 (en) How to switch hollow cathode lamp of atomic absorption spectrophotometer
JPH01118751A (en) Atomic absorption spectrophotometer
JPH04274736A (en) Atomic absorption spectrophotometer
JPS593224A (en) Wavelength scanning type spectroscopic analyzer
JPH02201124A (en) Spectrophotometer
JPS60135829A (en) Spectrophotometer