JPH0711484B2 - Atomic absorption spectrophotometer - Google Patents

Atomic absorption spectrophotometer

Info

Publication number
JPH0711484B2
JPH0711484B2 JP63330800A JP33080088A JPH0711484B2 JP H0711484 B2 JPH0711484 B2 JP H0711484B2 JP 63330800 A JP63330800 A JP 63330800A JP 33080088 A JP33080088 A JP 33080088A JP H0711484 B2 JPH0711484 B2 JP H0711484B2
Authority
JP
Japan
Prior art keywords
burner
angle
sample
concentration
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63330800A
Other languages
Japanese (ja)
Other versions
JPH02176447A (en
Inventor
日出久 西垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP63330800A priority Critical patent/JPH0711484B2/en
Publication of JPH02176447A publication Critical patent/JPH02176447A/en
Publication of JPH0711484B2 publication Critical patent/JPH0711484B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

【発明の詳細な説明】 (イ)産業上の利用分野 この発明は、原子吸光分光光度計、特に原子化部に特徴
を有する原子吸光分光光度計に関する。
TECHNICAL FIELD The present invention relates to an atomic absorption spectrophotometer, and more particularly to an atomic absorption spectrophotometer characterized by an atomization part.

(ロ)従来の技術 一般に、原子吸光分光光度計には、光源と、バーナ及び
このバーナの炎中に試料を噴霧する手段を含む原子化部
と、光源から炎中を通過してくる光を受光する測光部
と、試料噴霧時の測光値より試料中の物質濃度を検出す
るデータ処理装置を備え、バーナに試料を噴霧しない状
態での光源からの受光値と、バーナに試料を噴霧した時
の測光値による吸光度合よりデータ処理装置に予め記憶
する検量線を用い、試料中に含まれるある物質の濃度を
測定している。
(B) Conventional technology In general, an atomic absorption spectrophotometer includes a light source, an atomization unit including a burner and a means for spraying a sample into the flame of the burner, and a light passing through the flame from the light source. Equipped with a photometer that receives light and a data processing device that detects the substance concentration in the sample from the photometric value when the sample is sprayed.The received light value from the light source when the sample is not sprayed on the burner and when the sample is sprayed on the burner. The concentration of a certain substance contained in the sample is measured by using a calibration curve stored in advance in the data processing device based on the absorbance obtained by the photometric value.

(ハ)発明が解決しようとする課題 上記原子吸光分光光度計において、試料中に含まれる物
質濃度が大であると、炎を通過する光の吸光が大とな
り、測光値と濃度との検量線の直線性の悪い部分で濃度
を同定することになり、精度の高い測定を行うことがで
きない。そこで、従来は、試料の濃度が濃い場合には、
濃度を予め所定の比率で希釈するか、バーナの角度を適
宜手動で変更して光が炎中を通過する度合を変更して、
結果的に測光値が検量線のリニアなところで得られるよ
うに調節していた。
(C) Problem to be Solved by the Invention In the above atomic absorption spectrophotometer, when the concentration of the substance contained in the sample is large, the absorption of light passing through the flame becomes large, and a calibration curve of the photometric value and the concentration is obtained. Since the concentration is identified in the part where the linearity is poor, accurate measurement cannot be performed. Therefore, conventionally, when the concentration of the sample is high,
Dilute the concentration in advance with a predetermined ratio, or manually change the burner angle appropriately to change the degree of light passing through the flame,
As a result, the photometric value was adjusted so as to be obtained at a linear position on the calibration curve.

しかし、試料の濃度を希釈させて調整することは、その
比率を記憶する必要があり、また、バーナの角度を手動
で変える場合、角度を変える毎に検量線を一々設定しな
おすという必要があり、たいへん手間を要するという問
題があった。
However, when adjusting the concentration of the sample by diluting it, it is necessary to memorize the ratio, and when changing the angle of the burner manually, it is necessary to reset the calibration curve each time the angle is changed. , There was a problem that it took a lot of work.

この発明は、上記問題点に着目してなされたものであっ
て、試料の濃度が濃い場合でも、所定の測定精度を確保
し得る原子吸光分光光度計を提供することを目的として
いる。
The present invention has been made in view of the above problems, and an object thereof is to provide an atomic absorption spectrophotometer capable of ensuring a predetermined measurement accuracy even when the concentration of a sample is high.

(ニ)課題を解決するための手段及び作用 この発明の原子吸光分光光度計は、光源と、バーナ及び
このバーナの炎中に試料を噴霧する手段を含む原子化部
と、光源から前記炎中を通過してくる光を受光する測光
部と、前記試料噴霧時の測光値より試料中の物質濃度を
検出する手段とを備えるものにおいて、前記光源からの
光路に対し前記バーナの角度を変化させるバーナ角度駆
動手段と、前記測光値が一定になるように前記バーナ角
度駆動手段を制御する制御手段と、物質濃度とバーナ角
度との検量線が記憶され、この検量線を用いて測光値が
一定のときのバーナ角度から濃度算出等のデータ処理を
行うデータ処理部とを特徴的に備えている。
(D) Means and Actions for Solving the Problems The atomic absorption spectrophotometer of the present invention comprises a light source, an atomization unit including a burner and a means for spraying a sample into the flame of the burner, and a light source from the flame. In a device provided with a photometric unit for receiving light passing through the device and a unit for detecting the concentration of a substance in the sample from the photometric value at the time of spraying the sample, the angle of the burner is changed with respect to the optical path from the light source. A burner angle drive means, a control means for controlling the burner angle drive means so that the photometric value becomes constant, and a calibration curve of the substance concentration and the burner angle are stored, and the photometric value is kept constant using this calibration curve. Characteristically, there is provided a data processing section for performing data processing such as density calculation from the burner angle at the time.

この原子吸光分光光度計は、試料の濃度が大なる場合
に、吸光度が大となり、この吸光度、つまり測光値に応
じバーナ角度駆動手段を制御して、バーナ角度を変化さ
せることにより、測光値を一定となるようにして、バー
ナ角度から濃度を測定するものであり、常に直線性の範
囲内で測定することができ、精度のよい測定をなすこと
ができる。
This atomic absorption spectrophotometer has a high absorbance when the concentration of the sample is high. By controlling the burner angle driving means according to this absorbance, that is, the photometric value, the burner angle is changed to obtain the photometric value. The concentration is measured from the burner angle so as to be constant, and the concentration can always be measured within the linear range, and accurate measurement can be performed.

(ホ)実施例 以下、実施例により、この発明をさらに詳細に説明す
る。
(E) Examples Hereinafter, the present invention will be described in more detail with reference to Examples.

第1図は、この発明の一実施例を示す分光光度計の概略
ブロック図である。
FIG. 1 is a schematic block diagram of a spectrophotometer showing an embodiment of the present invention.

この原子吸光分光光度計は、光源1と、光源1からの光
を検出する検出器4と、この検出器4からの信号を測定
する測光部5と、測光部5からの出力信号を受けて、濃
度算出等のデータ処理をするデータ処理部6と、光源1
と検出器4の光路中に、長手方向の細幅を持つ炎2′を
出すバーナ及びこの炎2′中に試料を噴霧する噴霧手段
を含む原子化部2と、この原子化部2の角度を調整する
駆動部3と、データ処理部6からのデータ、あるいは操
作部9から入力される値により、駆動部3を制御する制
御部7、表示部8、さらに上記操作部9とから構成され
ている。
This atomic absorption spectrophotometer receives a light source 1, a detector 4 for detecting light from the light source 1, a photometric unit 5 for measuring a signal from the detector 4, and an output signal from the photometric unit 5. A data processing unit 6 for performing data processing such as density calculation, and a light source 1.
And an atomization part 2 including a burner for emitting a flame 2'having a narrow width in the longitudinal direction in the optical path of the detector 4 and a spraying means for spraying a sample into the flame 2 ', and the angle of the atomization part 2 The control unit 7 controls the drive unit 3 according to the data from the data processing unit 6 or the value input from the operation unit 9, the display unit 8 and the operation unit 9 described above. ing.

データ処理部6のメモリには、通常モードにおける検量
線が記憶されている。この検出線は、横軸に濃度、縦軸
に測定値を取るものである。さらに、この発明の特徴で
ある横軸に濃度、縦軸にバーナ角の検量線も同様に記憶
されている。
A calibration curve in the normal mode is stored in the memory of the data processing unit 6. This detection line has a horizontal axis of density and a vertical axis of measured value. Further, the concentration is plotted on the horizontal axis and the calibration curve of the burner angle is also stored on the vertical axis, which are features of the present invention.

なお、原子化部2は、第2図に概略外観図を示すよう
に、バーナ21が、炎吹き出し部22がほぼ図示しない光路
と同一線上にあり、この光路に対して、バーナ部の角度
(バーナ角度)を駆動部3のステップモータ31で歩進
し、適宜角度を調整し得るように構成されている。
As shown in the schematic external view of FIG. 2, in the atomization section 2, the burner 21 and the flame blowout section 22 are substantially on the same line as an optical path not shown, and the angle of the burner section with respect to this optical path ( The burner angle) is stepped by the step motor 31 of the drive unit 3 so that the angle can be adjusted appropriately.

次に、上記実施例原子吸光分光光度計のソフト構成及び
全体の制御動作を第3図に示すフロー図により説明す
る。
Next, the software configuration of the atomic absorption spectrophotometer of the above embodiment and the overall control operation will be described with reference to the flow chart shown in FIG.

先ず、動作の開始にあたり、制御部7より駆動部3に制
御信号を送り、バーナ21の炎2′に試料を噴霧する(ス
テップST1)。そして、この試料を噴霧した状態で、光
源1から炎2′を経て、検出器4で検出される光の吸光
度を測光部5で測定し、データ処理部6で吸光度が予め
定める所定値より大か否か判定する(ステップST2)。
吸光度が所定値より大なる場合には、濃度が濃すぎるこ
とを意味する。また、逆に、吸光度が所定値より小さい
場合には、濃度が薄いことを意味する。このステップST
2で吸光度が所定値より大なる場合、つまり、濃度が大
きい場合には判定YESになり、ステップST3に移りバーナ
の角度を大きくする。つまり、光軸に対してバーナ炎の
長軸方向を変位させ、角度を持たせる。そして、ステッ
プST4で、バーナ角度は所定値より大か否か判定する。
これはバーナ角度の角度制御を所定の限界角度に達した
場合には、調節不能としてステップST11で警報出力を出
し、終了させるためである。所定角度以内であれば、ス
テップST2に戻り、吸光度が所定値より大きくない状態
まで、バーナ角度を大きくして行く処理動作を継続する
ことになる。バーナ角度を大きくした結果あるいは当初
から吸光度が所定値よりも大きくない場合、判定ステッ
プST2の判定はNOとなり、次に吸光度が所定値に等しい
か否か判定される(ステップST5)。
First, at the start of the operation, the control unit 7 sends a control signal to the drive unit 3 to spray the sample on the flame 2'of the burner 21 (step ST1). Then, in a state in which this sample is sprayed, the absorbance of the light detected by the detector 4 through the flame 2'from the light source 1 is measured by the photometry unit 5, and the data processing unit 6 makes the absorbance larger than a predetermined value. It is determined whether or not (step ST2).
When the absorbance is higher than the predetermined value, it means that the concentration is too high. On the contrary, when the absorbance is smaller than the predetermined value, it means that the concentration is low. This step ST
If the absorbance is greater than the predetermined value in 2, that is, if the concentration is high, the determination is YES and the process moves to step ST3 to increase the burner angle. That is, the burner flame is displaced in the long axis direction with respect to the optical axis to form an angle. Then, in step ST4, it is determined whether the burner angle is larger than a predetermined value.
This is because when the angle control of the burner angle reaches a predetermined limit angle, it is determined that the burner angle cannot be adjusted, and an alarm output is issued in step ST11 to end the control. If it is within the predetermined angle, the process returns to step ST2, and the processing operation of increasing the burner angle is continued until the absorbance is not higher than the predetermined value. As a result of increasing the burner angle or when the absorbance is not greater than the predetermined value from the beginning, the determination in determination step ST2 is NO, and then it is determined whether the absorbance is equal to the predetermined value (step ST5).

吸光度が予め定める所定値に等しい場合には、測光値が
リニアな検量線部分にあり、適正な測光値であることを
意味し、この状態では、バーナ角度より検量線を参照し
て濃度を抽出し(ステップST6)、その濃度値を表示部
8に表示する。
If the absorbance is equal to a predetermined value, it means that the photometric value is in the linear calibration curve part and that it is a proper photometric value.In this state, the concentration is extracted by referring to the calibration curve from the burner angle. Then (step ST6), the density value is displayed on the display unit 8.

一方、吸光度が所定値より極端に小さい場合には、ステ
ップST2の判定がNO、ステップST5の判定がNOとなり、こ
の場合には、逆にバーナの角度を小さくする(ステップ
ST8)。次に、バーナ角度が最小か否か判定し(ステッ
プST9)、バーナ角度が最小、つまり0の場合には、こ
れ以上調整不可能なので、ステップST10に戻り、通常モ
ードで、つまり測光値と濃度の検量線テーブルより濃度
を抽出し、その結果を表示部8に表示する(ステップST
7)。バーナ角度が最小でない場合、ステップST9の判定
がNOとなり、ステップST2に戻り、以後吸光度が所定値
に等しくなるまで、ステップST2→ステップST5→ステッ
プST8→ステップST9の処理を繰り返し、バーナ角度を小
さくしていく。やがて、吸光度が所定値に等しくなる
と、ステップST5の判定がYESとなり、角度を大きくして
いった場合と同様に、ステップST6でバーナ角度より検
量線を参照して濃度を抽出し、これを表示部8に表示す
ることになる。
On the other hand, if the absorbance is extremely smaller than the predetermined value, the determination in step ST2 is NO, the determination in step ST5 is NO, and in this case, the burner angle is decreased on the contrary (step
ST8). Next, it is judged whether or not the burner angle is the minimum (step ST9), and when the burner angle is the minimum, that is, 0, it is impossible to adjust any more. The concentration is extracted from the calibration curve table of and the result is displayed on the display unit 8 (step ST
7). If the burner angle is not the minimum, the determination in step ST9 is NO, the process returns to step ST2, and thereafter, the process of step ST2 → step ST5 → step ST8 → step ST9 is repeated until the absorbance becomes equal to a predetermined value, and the burner angle is reduced. I will do it. Eventually, when the absorbance becomes equal to the predetermined value, the determination in step ST5 becomes YES, and in the same way as when the angle was increased, the concentration is extracted by referring to the calibration curve from the burner angle in step ST6 and displayed. It will be displayed on the part 8.

(ヘ)発明の効果 この発明によれば、光源からの光路に対しバーナの角度
を変化させるバーナ角度駆動手段と、測光値が一定にな
るようにバーナ角度駆動手段を制御する制御手段と、物
質濃度とバーナ角度との検量線が記憶され、この検量線
を用いて測光値が一定のときのバーナ角度から濃度算出
等のデータ処理を行うデータ処理部とを備え、測光値、
つまり試料濃度に応じ、バーナ角度を変化させて測光値
を一定となるように制御するものであるから、たとえ試
料濃度が濃い場合でも希釈する必要なしに、しかも精度
のよい測定をなすことができる。
(F) Effects of the Invention According to the present invention, a burner angle drive means for changing the angle of the burner with respect to the optical path from the light source, a control means for controlling the burner angle drive means so that the photometric value becomes constant, and a substance A calibration curve of the concentration and the burner angle is stored, and a data processing unit that performs data processing such as concentration calculation from the burner angle when the photometric value is constant using this calibration curve is provided, and the photometric value,
In other words, the burner angle is changed according to the sample concentration so that the photometric value is controlled to be constant, so that even if the sample concentration is high, accurate measurement can be performed without the need for dilution. .

【図面の簡単な説明】[Brief description of drawings]

第1図は、この発明の一実施例を示す原子吸光分光光度
計のブロック図、第2図は、同原子吸光分光光度計の原
子化部の外観図、第3図は、同原子吸光分光光度計の原
子化部処理動作を示すフロー図である。 1:光源、2:原子化部、3:駆動部、4:検出器、5:測光部、
6:データ処理部、7:制御部、8:表示部、9:操作部。
FIG. 1 is a block diagram of an atomic absorption spectrophotometer showing an embodiment of the present invention, FIG. 2 is an external view of an atomization part of the atomic absorption spectrophotometer, and FIG. 3 is an atomic absorption spectrophotometer. It is a flowchart which shows the atomization part process operation of a photometer. 1: Light source, 2: Atomization unit, 3: Driving unit, 4: Detector, 5: Photometry unit,
6: data processing unit, 7: control unit, 8: display unit, 9: operation unit.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】光源と、バーナ及びこのバーナの炎中に試
料を噴霧する手段を含む原子化部と、光源から前記炎中
を通過してくる光を受光する測光部と、前記試料噴霧時
の測光値より試料中の物質濃度を検出する手段とを備え
る原子吸光分光光度計において、 前記光源からの光路に対し前記バーナの角度を変化させ
るバーナ角度駆動手段と、前記測光値が一定になるよう
に前記バーナ角度駆動手段を制御する制御手段と、物質
濃度とバーナ角度との検量線が記憶され、この検量線を
用いて測光値が一定のときのバーナ角度から濃度算出等
のデータ処理を行うデータ処理部とを備えたことを特徴
とする原子吸光分光光度計。
1. A light source, an atomization unit including a burner and means for spraying a sample into a flame of the burner, a photometric unit for receiving light passing through the flame from the light source, and a spraying unit for spraying the sample. In the atomic absorption spectrophotometer including means for detecting the substance concentration in the sample from the photometric value, the burner angle drive means for changing the angle of the burner with respect to the optical path from the light source, and the photometric value becomes constant. As described above, the control means for controlling the burner angle driving means and the calibration curve of the substance concentration and the burner angle are stored, and data processing such as concentration calculation from the burner angle when the photometric value is constant is stored using this calibration curve. An atomic absorption spectrophotometer, comprising: a data processing unit for performing.
JP63330800A 1988-12-27 1988-12-27 Atomic absorption spectrophotometer Expired - Lifetime JPH0711484B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63330800A JPH0711484B2 (en) 1988-12-27 1988-12-27 Atomic absorption spectrophotometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63330800A JPH0711484B2 (en) 1988-12-27 1988-12-27 Atomic absorption spectrophotometer

Publications (2)

Publication Number Publication Date
JPH02176447A JPH02176447A (en) 1990-07-09
JPH0711484B2 true JPH0711484B2 (en) 1995-02-08

Family

ID=18236695

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63330800A Expired - Lifetime JPH0711484B2 (en) 1988-12-27 1988-12-27 Atomic absorption spectrophotometer

Country Status (1)

Country Link
JP (1) JPH0711484B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019012580A1 (en) * 2017-07-10 2019-01-17 株式会社島津製作所 Flame atomic absorption spectrophotometer
WO2019043858A1 (en) 2017-08-31 2019-03-07 株式会社島津製作所 Atomic absorption spectrophotometer and atomic absorption measurement method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04274736A (en) * 1991-02-28 1992-09-30 Shimadzu Corp Atomic absorption spectrophotometer

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53114285U (en) * 1977-02-18 1978-09-11
JPS59220631A (en) * 1983-05-30 1984-12-12 Shimadzu Corp Atomic absorption analyzer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019012580A1 (en) * 2017-07-10 2019-01-17 株式会社島津製作所 Flame atomic absorption spectrophotometer
US11092552B2 (en) 2017-07-10 2021-08-17 Shimadzu Corporation Flame atomic absorption spectrophotometer
WO2019043858A1 (en) 2017-08-31 2019-03-07 株式会社島津製作所 Atomic absorption spectrophotometer and atomic absorption measurement method

Also Published As

Publication number Publication date
JPH02176447A (en) 1990-07-09

Similar Documents

Publication Publication Date Title
US5689114A (en) Gas analyzing apparatus
EP0146781B1 (en) Photometric apparatus with multi-wavelength excitation
JPH10311724A (en) Inclination detecting device
SU845804A3 (en) Device for measuring thickness of optically thick layers
JPH0711484B2 (en) Atomic absorption spectrophotometer
CA2061848C (en) Optical distance measuring apparatus and apparatus for mounting the same
US4558953A (en) Colorimetric method and apparatus
JP4660696B2 (en) Reflection characteristic measuring device
EP0837326A1 (en) Absorptivity detecting apparatus, chromatographic apparatus, method of detecting absorptivity and method of chromatography
JPH10142144A (en) Metal ion concentration measuring method of nonelectrolytic plating solution
US5861949A (en) Atomic absorption spectrophotometer
JPH0197842A (en) Atomic absorption spectroanalyzer
JP2005037180A (en) Absorptiometric analyzer
JP2617320B2 (en) Laser wavelength controller
JP2663865B2 (en) Laser device
JPS647320Y2 (en)
JPH07101397A (en) Autopilot device
JPH06308020A (en) Sample cell
US20240241062A1 (en) Optical measurement device and liquid chromatograph system
JPH1164489A (en) Adjusting method for vehicle-to-vehicle distance sensor
JPS60250234A (en) Infrared gas analyzer
EP0826957A1 (en) Gas analyzing apparatus
JP2008153320A (en) Light source system
JPH09111452A (en) Sputtering target monitor
JPS63101714A (en) Laser energy detector