JPS63145743A - Steel material for spring - Google Patents

Steel material for spring

Info

Publication number
JPS63145743A
JPS63145743A JP29276186A JP29276186A JPS63145743A JP S63145743 A JPS63145743 A JP S63145743A JP 29276186 A JP29276186 A JP 29276186A JP 29276186 A JP29276186 A JP 29276186A JP S63145743 A JPS63145743 A JP S63145743A
Authority
JP
Japan
Prior art keywords
steel material
spring
surface layer
texture
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29276186A
Other languages
Japanese (ja)
Other versions
JP2619864B2 (en
Inventor
Ryuji Adachi
隆二 安達
Tomohiko Ayada
倫彦 綾田
Toyoyuki Tono
東野 豊之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NHK Spring Co Ltd
Original Assignee
NHK Spring Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NHK Spring Co Ltd filed Critical NHK Spring Co Ltd
Priority to JP61292761A priority Critical patent/JP2619864B2/en
Publication of JPS63145743A publication Critical patent/JPS63145743A/en
Application granted granted Critical
Publication of JP2619864B2 publication Critical patent/JP2619864B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To simply and economically obtain a high strength steel material for a spring, by plastically working stock so as to form a worked aggregated texture in which the grains have been extended and made fine in only the surface layer of the resulting steel material and to leave an unworked coarse- grained texture in the interior. CONSTITUTION:Stock for a steel material for a spring is plastically worked with a working means such as dies to obtain a steel material 1 for a spring having a worked aggregated texture 2 in which the grains have been extended and made fine in only the surface layer and an unworked coarse-grained texture 3 in the interior. The grains of the surface layer are extended and made fine by heating the stock only once, a work hardening effect is produced and a high strength steel material 1 for a spring is obtd.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、例えばコイルばねやトーションバー等に使用
されるばね用鋼材に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a spring steel material used, for example, in coil springs, torsion bars, and the like.

〔従来の技術〕[Conventional technology]

自動車の懸架用ばねとしてのコイルばねやトーションバ
ー等に使われるばね用鋼材は、省資源・省エネルギーの
観点から軽量化が強く望まれており、それに伴ってばね
用鋼材は高応力で使われる傾向にある。そしてこの種の
ばね用鋼材においては、疲労強度が高いことがきわめて
重要である。
There is a strong desire for spring steel materials used in coil springs and torsion bars used in automobile suspension springs to be lighter from the perspective of resource and energy conservation, and as a result, spring steel materials tend to be used with high stress. It is in. It is extremely important for this type of spring steel material to have high fatigue strength.

従来、ばね用鋼材としてオイルテンパー処理によって高
強度化されたものが広く使用されてきた。
Conventionally, steel materials for springs that have been made high in strength by oil tempering have been widely used.

このばね用鋼材は、全断面にわたって実質的に均一な焼
戻し組織を得るようにしている。従って、ばねとして使
用される際の曲げやねじり等に対して表層部では高応力
で使われるが、芯部では応力が低い。言い換えると、芯
部では不必要に高強度化されたものとなっており、高強
度化するために費やされたエネルギー等かq効に活用さ
れているとは言いがたい。
This spring steel material has a substantially uniform tempered structure over the entire cross section. Therefore, when used as a spring, the surface layer is subjected to high stress due to bending, twisting, etc., but the stress is low in the core. In other words, the strength of the core is unnecessarily increased, and it is difficult to say that the energy spent to increase the strength is utilized for the q effect.

また、特公昭59−135G7号公報に開示されている
ように、断面内の結晶粒の分布に変化をもたせることに
よって高強度化を図ったばね用鋼材も考えられている。
Further, as disclosed in Japanese Patent Publication No. 59-135G7, a steel material for springs has been considered in which the strength is increased by varying the distribution of crystal grains in the cross section.

このばね用鋼材は、Ac3変聾点以上でかつAr1変態
点以下で加熱と冷却を複数回繰返すことにより、第9図
に桟式的に示されるような結晶組織1aが得られるとさ
れている。
It is said that by repeating heating and cooling multiple times at a temperature above the Ac3 deafness point and below the Ar1 transformation point, this spring steel material can obtain a crystal structure 1a as shown in the cross-section pattern in Fig. 9. .

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら上記従来例のような結晶粒の分布をらつば
ね用鋼材を得るには、高周波誘導加熱と冷却を(−1■
度も繰返す必要があり、加熱回数が多いことによる消費
エネルギーの増大を招いている。
However, in order to obtain a steel material for springs with a grain distribution similar to that of the conventional example, high-frequency induction heating and cooling are required (-1
It is necessary to repeat the process several times, leading to an increase in energy consumption due to the large number of heating times.

しかも、素材の組成が異なれば加熱条件の設定が微妙に
変化する等の理由から、加熱回数が多いと材質の安定性
に欠けるといった問題もあった。
Moreover, if the composition of the material differs, the setting of the heating conditions will change slightly, so there is a problem that the material will lack stability if the number of times of heating is large.

〔問題点を解決するための手段〕[Means for solving problems]

本発明のばね用鋼材は、その表層部のみに、塑性加工に
よって結晶粒が伸展されて微細化した加工集合組織を有
するとともに、この加工集合組織よりも深層に結晶粒の
粗い未加工組織を有したことを特徴とするものである。
The spring steel material of the present invention has a worked texture in which crystal grains are elongated and refined by plastic working only in the surface layer, and an unprocessed structure with coarse grains in a deeper layer than this worked texture. It is characterized by the fact that

このばね用鋼材は、断面円形のもの以外に、矩形や楕1
月形断面であってもよい。
In addition to having a circular cross section, this spring steel material has a rectangular or oval shape.
It may also have a moon-shaped cross section.

〔作用〕[Effect]

表層部の加工は、素材を加熱したのち、冷却の過程で例
えば引抜き加工あるいはスェージング加工等を1度だけ
行なうことによって、表層部のみの結晶粒を伸展させて
微細化させればよい。加工前の加熱は1度行なえばよい
。このように表層部が加工されたばね用鋼材は、結晶粒
の伸展と微細化による効果に加えて、表層部での加工硬
化も発揮されるため、従来のように熱処理のみによって
結晶粒の大きさに変化をもたせたものに比べて、一層の
高強度化が図れる。
The surface layer may be processed by heating the material and performing, for example, drawing or swaging only once during the cooling process, thereby stretching and refining the crystal grains only in the surface layer. Heating only needs to be done once before processing. Spring steel materials processed on the surface layer in this way not only have the effect of elongation and refinement of the crystal grains, but also exhibit work hardening on the surface layer, so it is not possible to reduce the size of the crystal grains by heat treatment alone as in the conventional method. It is possible to achieve even higher strength compared to those with changes in .

そして本発明のばね用鋼材は、表層部のみが強化されて
いるから、コイルばねやトーションバーのように主に曲
げやねじりの加わる応力条件下での使用に対して、高強
度化された部分(表層部)から“効に働くため、高強度
化に費やされたエネルギー等を有効に活用できる。
Since the spring steel material of the present invention is only reinforced at the surface layer, it is suitable for use under stress conditions such as coil springs and torsion bars where bending and torsion are applied. Since it works effectively starting from the surface layer, the energy spent on increasing the strength can be used effectively.

〔実施例〕〔Example〕

本実施例のばね用鋼材1は断面が真円形であり、例えば
コイルばね等に使用される。このばね用鋼材1は、第1
図ないし第4図に模式的に示されるように、表層部のみ
に塑性加工を受けた焼戻し組織2(以下、加工集合組織
と呼ぶ)を有している。
The spring steel material 1 of this embodiment has a perfect circular cross section and is used for, for example, coil springs. This spring steel material 1 has a first
As schematically shown in FIGS. 4 to 4, only the surface layer has a tempered texture 2 (hereinafter referred to as processed texture) that has undergone plastic processing.

そして加工集合組織2よりも深層には、結晶粒の粗い未
加工組織3カ(ある。未加工組織3は通常の調質組織で
よい。
In a deeper layer than the processed texture 2, there are three unprocessed structures with coarse grains.The unprocessed texture 3 may be a normal tempered structure.

加工集合組織2は、第3図および第4図に示されるよう
に鋼材1の軸方向と円周方向とに伸展されて結晶粒が微
細化し、強度(特に降伏点)が著しく上昇する。しかも
この加工集合組織2は結晶粒の微細化に加えて塑性加工
による加工硬化も含むため、結晶粒を微細化した以上の
強度が発揮される。
As shown in FIGS. 3 and 4, the processed texture 2 is extended in the axial direction and circumferential direction of the steel material 1, resulting in finer grains and a marked increase in strength (especially yield point). Moreover, since this work texture 2 includes work hardening due to plastic working in addition to refinement of crystal grains, strength greater than that achieved by refinement of crystal grains is exhibited.

なお、通常のばね用鋼材では耐疲労性の向上を目的とし
て、ショットピーニング処理が行なわれている。ショッ
トピーニングが行なわれた鋼材の断面的残留応力分布の
一般状態は、表層部においては圧縮残留応力場を呈し、
中心に向って引張り応力場を呈する。圧縮から引張りに
移行する材料深さは通常0.1〜0.2 rat位であ
るから、本実施例の加工集合組織2の加工深さもその程
度とすれば充分な効果が期待できる。本実施例では鋼材
1の外径d1に対して、加工集合組w&2の深さを0,
163前後とした。また、組織の粒度は一例として加工
集合組織2では結晶粒度13、未加工組織3では結晶粒
度9である。
Note that ordinary steel materials for springs are subjected to shot peening treatment for the purpose of improving fatigue resistance. The general state of the cross-sectional residual stress distribution of shot-peened steel exhibits a compressive residual stress field in the surface layer.
It exhibits a tensile stress field towards the center. Since the material depth at which the transition from compression to tension occurs is usually about 0.1 to 0.2 rat, sufficient effects can be expected if the working depth of the worked texture 2 of this embodiment is also about that level. In this example, for the outer diameter d1 of the steel material 1, the depth of the machining set w&2 is 0,
It was set at around 163. Further, the grain size of the texture is, for example, a grain size of 13 in the processed texture 2 and a grain size of 9 in the unprocessed texture 3.

第5図に上記ばね用鋼材1を得るための装置の一例を示
す。同図において、加工前の素材1′は、塑性加工を行
なうためのダイス等の加工手段5を通過させて縮径させ
られる。加工手段5の人口側には素材1′をオーステナ
イト化温度・まで加熱可能な加熱手段6と、過冷オース
テナイト温度まで冷却するための冷却手段7が設けられ
ている。加熱手段6は、例えば電源11とこの電源11
に接続されるローラ状の電極12等を備えて構成され、
素材1′に通電することによって抵抗加熱を行なう。
FIG. 5 shows an example of an apparatus for obtaining the above-mentioned spring steel material 1. In the figure, a material 1' before processing is passed through a processing means 5 such as a die for plastic working to reduce its diameter. On the artificial side of the processing means 5, there are provided a heating means 6 capable of heating the material 1' to the austenitizing temperature and a cooling means 7 for cooling it to the subcooled austenite temperature. The heating means 6 includes, for example, a power source 11 and a power source 11.
It is configured with a roller-shaped electrode 12 etc. connected to the
Resistance heating is performed by applying electricity to the material 1'.

加工手段5の出口側には冷却手段13と、焼戻し用の加
熱手段14が設けられている。この加熱手段14も、電
源10に接続されるローラ状の電極15を備えている。
A cooling means 13 and a heating means 14 for tempering are provided on the exit side of the processing means 5. This heating means 14 also includes a roller-shaped electrode 15 connected to the power source 10.

なお、加熱手段6.14は高周波誘導加熱装置であって
もよい。図示例では焼戻し用の加熱手段14を冷却手段
13の搬出側に連続して設けているが、この加熱手段1
4は、焼戻しをバッチで処理するために図示例とは別の
位置に設けられていても差支えない。加工手段5′は、
工業的に大量生産できる点でダイスが望ましいが、例え
ばスェージングマシンを用いた回転鍛造や、回転しごき
加工、ブラッシング等を行なう機械であってもよい。
Note that the heating means 6.14 may be a high frequency induction heating device. In the illustrated example, the heating means 14 for tempering is provided continuously on the discharge side of the cooling means 13;
4 may be provided at a different position from the illustrated example in order to process the tempering in batches. The processing means 5' is
A die is preferable because it can be industrially mass-produced, but a machine that performs rotary forging using a swaging machine, rotary ironing, brushing, etc. may also be used.

素材1′は、第6図に示される温度履歴を経て熱処理と
塑性加工が行なわれる。まず加熱手段6によって素材1
′がオーステナイト域(850°C以上)まで急速加熱
される。そののち、冷却手段7によって上記オーステナ
イト温度からマルテンサイト変態の始まるMs点(約3
00℃)までの間の所定温度に急冷される。この時の温
度は素材1′の組成に応じて適宜に設定される。そして
所望のM S点以りの温度に達した瞬間に加工手段5に
導入されて表層部が加工される。
The material 1' is subjected to heat treatment and plastic working through the temperature history shown in FIG. First, the material 1 is heated by the heating means 6.
' is rapidly heated to the austenitic region (over 850°C). Thereafter, the cooling means 7 cools the austenite temperature to the Ms point (approximately 3
00°C) to a predetermined temperature. The temperature at this time is appropriately set depending on the composition of the material 1'. The moment the temperature reaches a desired MS point or higher, the material is introduced into the processing means 5 and the surface layer portion is processed.

加工度(減面率r)は、素材外径をdO+加工後の外径
をdlとしたとき、 r−1−(dl /do) 2 で表わされる。
The processing degree (area reduction rate r) is expressed as r-1-(dl/do)2, where the outer diameter of the material is dO+the outer diameter after processing is dl.

加工域の長さしと深さhとの比h/LをΔとした場合、
第7図に示される降伏圧力のΔ依存の関係かられかるよ
うに、Δを約8.7以上の値にすれば、変形域が軸芯に
まで及ばなくなる。例えばダイスを用いた引抜き加工に
おいて、ダイス半角α−15° (0,2018rad
 )の場合には、Δ−α (1+Jゴ工−r )  2
/ rなる関係式より、Δ≧8.7の条件を)−1だす
ことのできる減面率rの値を求めると、表層部のみの加
工にとどめるための減面率rは0.11 (11%)以
下となる。但し5%未満では所望の効果が得られなくな
る。なお第8図に示されるように、ダイス半角と変形が
浸透しない限界の減面率との間には相関関係がある。工
業的に使用されるダイス半角は7〜30dQgのものが
多いこと、およびダイス半角が増加するとダイスに加わ
る面圧力が増加し、ダイスの摩耗の増加と寿命の低下を
招くこと、更には、面圧力が増加することにより、加工
熱が増大し、所望の効果が得られるなくなるので、減面
率「は5〜20%の範囲とする。このように表層部のみ
を加工することによって、伸展された微細な粒子の加工
集合組w&2が得られる。
When the ratio h/L of the length of the machining area to the depth h is Δ,
As can be seen from the Δ dependence of the yield pressure shown in FIG. 7, if Δ is set to a value of about 8.7 or more, the deformation region does not extend to the axis. For example, in drawing processing using a die, the die half angle α-15° (0,2018 rad
), then Δ−α (1+Jgok−r) 2
From the relational expression Δ≧8.7), the value of the area reduction rate r that can be calculated by −1 is found to be 0.11 ( 11%) or less. However, if it is less than 5%, the desired effect cannot be obtained. As shown in FIG. 8, there is a correlation between the die half angle and the limit area reduction rate at which deformation does not penetrate. The half angle of the die used industrially is often 7 to 30 dQg, and as the half angle of the die increases, the surface pressure applied to the die increases, leading to increased die wear and shortened life. As the pressure increases, processing heat increases and the desired effect cannot be obtained, so the area reduction rate should be in the range of 5 to 20%. By processing only the surface layer in this way, the A processing set w&2 of fine particles is obtained.

加工後は組織を凍結するために冷却手段13によって更
に冷却が行なわれる。その後、必要に応じて加熱手段1
4を用いて再加熱し、焼戻しが行なわれる。なお、加熱
手段6.14による素材1′の加熱速度については特に
限定しないが、通電加熱や高周波誘導加熱のような急速
加熱の方が炭化物の微細分散と結晶粒の微細化にとって
望ましい。焼戻し後のばね用鋼材1は図示しないコイリ
ングマシンによって成形され、コイルばねになる。
After processing, further cooling is performed by cooling means 13 to freeze the tissue. After that, if necessary, the heating means 1
4 to perform tempering. The heating rate of the material 1' by the heating means 6.14 is not particularly limited, but rapid heating such as electrical heating or high frequency induction heating is preferable for fine dispersion of carbides and refinement of crystal grains. The spring steel material 1 after tempering is formed into a coil spring by a coiling machine (not shown).

次表1は、素材1′にばねf14sUP7を用いた場合
の加工条件の一例である。
Table 1 below shows an example of processing conditions when the spring f14sUP7 is used for the material 1'.

表       1 以上の条件のもとで製造されたばね用鋼材1の主要諸元
を次表2に示す。なお、表1と表2は5UP7をばね用
鋼材に加工する際に、比較的柔らかく加工した例である
Table 1 The main specifications of spring steel material 1 manufactured under the above conditions are shown in Table 2 below. Note that Tables 1 and 2 are examples in which 5UP7 is processed to be relatively soft when processed into a spring steel material.

表       2 なお、表層部の加工が行なわれていない従来材(第9図
参照)では、上記実施例と同じ硬さに熱処理した場合、
引張り強さσBは上記実施例と同等の値が得られたが、
降伏点σ0.2は152に9 f / win 2、疲
労強度σ、b はG6Kgf/朋2であった。すなわち
本実施例品は従来材に比較して降伏点および疲労強度(
107回)とも優れている。
Table 2 In addition, when the conventional material (see Fig. 9) whose surface layer part has not been processed is heat treated to the same hardness as in the above example,
The tensile strength σB obtained a value equivalent to that of the above example, but
The yield point σ0.2 was 9 f/win 2 at 152, and the fatigue strength σ, b was G6Kgf/win 2. In other words, this example product has a lower yield point and fatigue strength (
107 times) is also excellent.

次表3は、5UP7をばね用鋼材に加工する際に、上限
の硬さくHMV−608)に仕上げるための加工条件の
一例である。この加工条件で製造されたばね用鋼材1の
主要諸元を表4に示す。
The following Table 3 is an example of processing conditions for finishing 5UP7 to the upper limit of hardness HMV-608) when processing it into a spring steel material. Table 4 shows the main specifications of the spring steel material 1 manufactured under these processing conditions.

表       3 表       4 表層部の加工が行なわれていない従来材では、上記実施
例と同じ硬さに熱処理した場合、引張り強さく7Bは2
1O1降伏点σ0.2は185 Kg f / rtt
x2、疲労強度σwb  は80に9 f / mm 
2であった。
Table 3 Table 4 For conventional materials whose surface layer has not been processed, when heat treated to the same hardness as in the above example, the tensile strength of 7B is 2.
1O1 yield point σ0.2 is 185 Kg f/rtt
x2, fatigue strength σwb is 80 to 9 f/mm
It was 2.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、表層部の結晶粒が伸展されて微細化し
た組織をもち、それよりも深層は通常の調質組織とした
ため、僅かな回数の加熱処理と1度の表層部の加工を行
なうだけで高強度のばねが得られる。そして表層部での
結晶粒の伸展と微細化に加えて加工硬化も含まれるため
、熱処理だけで結晶粒を微細化しているに過ぎない従来
材に比較して一層の高強度化が図れる。しかも本発明の
ばね用鋼材は表層部のみが強化されているから、コイル
ばねやトーションバーのように主に曲げやねじりの加わ
る使用条件のもとでは高強度化された部分がを効に働く
According to the present invention, the crystal grains in the surface layer are elongated and have a fine structure, and the deeper layers have a normal tempered structure, so that only a few heat treatments and one processing of the surface layer are required. Just by doing this, you can get a high-strength spring. In addition to the elongation and refinement of crystal grains in the surface layer, work hardening is also involved, making it possible to achieve even higher strength compared to conventional materials whose grains are only refined through heat treatment. Moreover, since the steel material for springs of the present invention is only strengthened at the surface layer, the high-strength section works effectively under usage conditions that mainly involve bending and twisting, such as in coil springs and torsion bars. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第6図は本発明の一実施例を示し、第1図
はばね用鋼材の径方向の断面図、第2図は軸方向の断面
図、第3図はt?a1図中のa部分を拡大して示す組織
説明図、第4図は第2図中のb部分を拡大して示す組織
説明図、第5図は熱処理と加工を行なう装置の一例を示
す概略図、第6図は素材の温度履歴を示す図である。第
7図は変形域の長さおよび深さと降伏圧力との関係を示
す図、第8図はダイス半角と減面率との関係を示す図で
ある。第9図は従来材の断面の一部を示す組織説明図で
ある。 1・・・ばね用鋼材、2・・・加工集合組織、3・・・
未加 ゛工組織。 出願人代理人 弁理士 鈴江武彦 ばね用鋼材 未加工組織 第1図    第2図 第3図    第4図 第8 図 Δ−h/L 第7図 1:a 第9図
1 to 6 show an embodiment of the present invention, in which FIG. 1 is a radial sectional view of a steel material for a spring, FIG. 2 is an axial sectional view, and FIG. 3 is a t? Fig. 4 is an explanatory diagram of the structure showing an enlarged view of the part a in Fig. a1, Fig. 4 is an explanatory diagram of the structure showing the enlarged part b of Fig. 2, and Fig. 5 is a schematic diagram showing an example of an apparatus for heat treatment and processing. FIG. 6 is a diagram showing the temperature history of the material. FIG. 7 is a diagram showing the relationship between the length and depth of the deformation region and the yield pressure, and FIG. 8 is a diagram showing the relationship between the die half angle and the area reduction ratio. FIG. 9 is an explanatory diagram of the structure showing a part of the cross section of the conventional material. 1... Steel material for spring, 2... Working texture, 3...
Raw tissue. Applicant's representative Patent attorney Takehiko Suzue Raw structure of steel for springs Figure 1 Figure 2 Figure 3 Figure 4 Figure 8 Figure Δ-h/L Figure 7 1:a Figure 9

Claims (1)

【特許請求の範囲】[Claims] 表層部のみに、塑性加工によって結晶粒が伸展し微細化
した加工集合組織を有するとともに、この加工集合組織
よりも深層に結晶粒の粗い未加工組織を有したことを特
徴とするばね用鋼材。
A steel material for springs having a worked texture in which crystal grains are expanded and refined by plastic working only in the surface layer, and an unworked structure with coarse grains deeper than this worked texture.
JP61292761A 1986-12-09 1986-12-09 Spring steel Expired - Lifetime JP2619864B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61292761A JP2619864B2 (en) 1986-12-09 1986-12-09 Spring steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61292761A JP2619864B2 (en) 1986-12-09 1986-12-09 Spring steel

Publications (2)

Publication Number Publication Date
JPS63145743A true JPS63145743A (en) 1988-06-17
JP2619864B2 JP2619864B2 (en) 1997-06-11

Family

ID=17785991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61292761A Expired - Lifetime JP2619864B2 (en) 1986-12-09 1986-12-09 Spring steel

Country Status (1)

Country Link
JP (1) JP2619864B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53113715A (en) * 1977-03-14 1978-10-04 Sodetal Method of making elongated highhstrength carbon steel member
JPS55125238A (en) * 1979-03-21 1980-09-26 Union Carbide Corp Production of strong wire
JPS5913567A (en) * 1982-07-16 1984-01-24 Nissan Motor Co Ltd Brazing method of tube and mouthpiece
JPS59170241A (en) * 1983-03-18 1984-09-26 Daido Steel Co Ltd Steel for high-strength and high-toughness spring

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53113715A (en) * 1977-03-14 1978-10-04 Sodetal Method of making elongated highhstrength carbon steel member
JPS55125238A (en) * 1979-03-21 1980-09-26 Union Carbide Corp Production of strong wire
JPS5913567A (en) * 1982-07-16 1984-01-24 Nissan Motor Co Ltd Brazing method of tube and mouthpiece
JPS59170241A (en) * 1983-03-18 1984-09-26 Daido Steel Co Ltd Steel for high-strength and high-toughness spring

Also Published As

Publication number Publication date
JP2619864B2 (en) 1997-06-11

Similar Documents

Publication Publication Date Title
JPWO2004085685A1 (en) Manufacturing method of high strength spring
CA2129007C (en) High strength steel sway bars and method of making
JP2682645B2 (en) Oil tempered hard drawn steel wire spring and method for manufacturing the same
KR920001611B1 (en) Process for producing oil quench hardening and tempering and hard drawn steel wire of shaped section
JPS63145743A (en) Steel material for spring
JPS60162726A (en) Method for surface-hardening toothed part of ring gear of flywheel
JPH08134545A (en) Production of coil spring and high-toughness and high tensile coil spring
US3002865A (en) Method of strengthening the surface of metallic springs by warm working
JP2003073737A (en) Method for manufacturing coil spring with high tensile strength and yield strength
JPS63203226A (en) Manufacture of high strength crank shaft
JP2557052B2 (en) Method for manufacturing spring steel
JPH02213422A (en) Production of high strength spring
JPH06272763A (en) Manufacture of flat wire and side rail for oil ring
RU2026885C1 (en) Torsion shaft manufacturing method
JPS5839737A (en) Manufacture of high tensile wire rod
JP2563601B2 (en) Flat wire manufacturing method
JPS62260015A (en) Spring having excellent resistance to fatigue and production thereof
JP2589715B2 (en) Method and apparatus for manufacturing high-strength spring material
JP2524156B2 (en) High carbon steel tough parts manufacturing method
JP4131384B2 (en) Shot peening method
JPS59136420A (en) Preparation of non-quenched-and-tempered steel member having cold processing part
RU2346777C1 (en) Method for production of high-loaded compression springs
JPH02163320A (en) Production of steel products and high-strength steel products
JP3104449B2 (en) Heat treatment of carburized gears
JPS63166930A (en) Method for working spring material

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term