JPS63145734A - Copper alloy for electronic apparatus and its production - Google Patents
Copper alloy for electronic apparatus and its productionInfo
- Publication number
- JPS63145734A JPS63145734A JP10693287A JP10693287A JPS63145734A JP S63145734 A JPS63145734 A JP S63145734A JP 10693287 A JP10693287 A JP 10693287A JP 10693287 A JP10693287 A JP 10693287A JP S63145734 A JPS63145734 A JP S63145734A
- Authority
- JP
- Japan
- Prior art keywords
- alloy
- copper alloy
- less
- ingot
- strength
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910000881 Cu alloy Inorganic materials 0.000 title claims abstract description 10
- 238000004519 manufacturing process Methods 0.000 title claims description 10
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 23
- 239000000956 alloy Substances 0.000 claims abstract description 23
- 238000005098 hot rolling Methods 0.000 claims abstract description 11
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 10
- 229910052733 gallium Inorganic materials 0.000 claims abstract description 7
- 239000002245 particle Substances 0.000 claims abstract description 7
- 229910052787 antimony Inorganic materials 0.000 claims abstract description 6
- 229910052796 boron Inorganic materials 0.000 claims abstract description 6
- 238000000265 homogenisation Methods 0.000 claims abstract description 6
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 6
- 229910052698 phosphorus Inorganic materials 0.000 claims abstract description 6
- 229910052720 vanadium Inorganic materials 0.000 claims abstract description 6
- 229910052726 zirconium Inorganic materials 0.000 claims abstract description 6
- 238000001816 cooling Methods 0.000 claims abstract description 5
- 239000012535 impurity Substances 0.000 claims abstract description 5
- 229910052738 indium Inorganic materials 0.000 claims abstract description 5
- 229910052745 lead Inorganic materials 0.000 claims abstract description 5
- 229910052742 iron Inorganic materials 0.000 claims abstract description 4
- 229910052749 magnesium Inorganic materials 0.000 claims abstract description 4
- 229910001122 Mischmetal Inorganic materials 0.000 claims abstract 5
- 229910052782 aluminium Inorganic materials 0.000 claims abstract 2
- 239000002244 precipitate Substances 0.000 claims description 8
- 229910052791 calcium Inorganic materials 0.000 claims description 5
- 239000010949 copper Substances 0.000 claims description 3
- 239000004065 semiconductor Substances 0.000 abstract description 7
- 229910052725 zinc Inorganic materials 0.000 abstract description 3
- 238000013329 compounding Methods 0.000 abstract 1
- 239000000463 material Substances 0.000 abstract 1
- 229910052718 tin Inorganic materials 0.000 abstract 1
- 238000007747 plating Methods 0.000 description 12
- 238000005452 bending Methods 0.000 description 10
- 230000000052 comparative effect Effects 0.000 description 8
- 230000000694 effects Effects 0.000 description 8
- 229910000679 solder Inorganic materials 0.000 description 6
- 230000006866 deterioration Effects 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 238000000137 annealing Methods 0.000 description 3
- 238000004140 cleaning Methods 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 238000005336 cracking Methods 0.000 description 2
- 230000017525 heat dissipation Effects 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- 239000002893 slag Substances 0.000 description 2
- 230000008961 swelling Effects 0.000 description 2
- 229910052727 yttrium Inorganic materials 0.000 description 2
- 229910000967 As alloy Inorganic materials 0.000 description 1
- 241000218645 Cedrus Species 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000009749 continuous casting Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 210000004709 eyebrow Anatomy 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 210000003127 knee Anatomy 0.000 description 1
- 210000002414 leg Anatomy 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 238000003303 reheating Methods 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 238000005482 strain hardening Methods 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Conductive Materials (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野〕
本発明【ま強度か高く、導電・[1及び耐熱tq、 /
)<優れ、かつ加工性やメッキ密省性か良好で、ハング
との界面強度の経Ti.1劣化を起すことかない電子機
器用銅合金とその製造法に関り“るものである。[Detailed description of the invention] (Industrial application field) The present invention
)<Excellent, with good workability and plating density, and good interface strength with the hanger Ti. 1. This relates to a copper alloy for electronic devices that does not cause deterioration and a method for producing the same.
(従来の技術)
一般に半導体機器、例えば?r導体のり一トフレームに
は下記の13↑j1か霊水されている。(Prior art) Semiconductor equipment in general, for example? The following 13↑j1 or sacred water is placed on the r conductor glue frame.
(1)強度が高く、耐熱性か良いこと、(2)放熱性、
即ら熱伝導性(電気伝導性)が高いこと、
(3)フレーム形成後の曲げ成型・[1か良いこと、(
4)メツ:を一密着性及び61脂との−し一ルド性が良
いこと、
(5)ハングとの接合部の経時劣化が無いこと、従来電
子機器のリードフレームには主として42合金(F e
−42wt%Ni>が用いられている。(1) High strength and good heat resistance, (2) Heat dissipation,
In other words, it must have high thermal conductivity (electrical conductivity), (3) Bending and forming after forming the frame.
4) Good adhesion and bonding properties with 61 resin, (5) No deterioration over time of the joint with the hanger, and lead frames of conventional electronic devices mainly use 42 alloy (F). e
-42wt%Ni> is used.
この合金は引張強さ63KFj/rrvA、耐熱性67
0℃(30分間の加熱により初期強度の70%の強度に
なる温度)の優れた特性を示すも、導電率は3%lAC
3程度と劣るものCある。This alloy has a tensile strength of 63 KFj/rrvA and a heat resistance of 67
Although it exhibits excellent properties at 0°C (the temperature at which the strength reaches 70% of the initial strength after heating for 30 minutes), the electrical conductivity is only 3% lAC.
There is C, which is inferior to about 3.
近年半導体素子は集積度の増大及び小型化と同時に高信
頼性が求めら、れるようになり、半導体素子の形態も従
来のDIP型1Gからチップキトリアー型やPGA型へ
と変化しつつある。In recent years, semiconductor devices have been required to have higher reliability as well as increased integration and miniaturization, and the form of semiconductor devices is also changing from the conventional DIP type 1G to the chip kitria type and PGA type.
このため半導体素子用のリードフレームも薄肉。For this reason, lead frames for semiconductor devices are also thin.
小型化され、同時に42合金を1廻る特性が要求される
ようになった。即ら薄肉化による構成部品の強度低下を
防ぐための強度向上と、集&!i度の増大にJ、る敢然
=t’lの向上のために、熱伝導性と同一1!J′PI
(ある導電性の向に、史には優れたt14熱性と゛1′
−導体のフレーム上の固定及び半導体からリードフレー
ムの足の部分の配線へのボンfイング前処理としてのリ
ードフレーム表面へのメツ−Tij[及びメッキ密る性
、141樹脂とのモールド・1(1の向」ニ、史には信
頼性の問題としてフレームと基板との接合におけるハン
ダ接合強度の経(1,1劣化が無いことが望まれている
。At the same time, it became necessary to have characteristics that are equivalent to those of 42 alloy. In other words, we need to improve the strength of the components to prevent the strength from decreasing due to thinning of the walls, and the collection and! To increase i degree, J, rudan = t'l increase, same as thermal conductivity 1! J'PI
(In the direction of certain conductivity, history has excellent t14 thermal properties and ゛1'
- Fixing the conductor on the frame and bonding from the semiconductor to the wiring at the leg part of the lead frame.Metsu on the surface of the lead frame as a pretreatment - Tij [and plating density, mold with 141 resin 1 ( In terms of reliability, it is desired that there be no deterioration of the solder joint strength between the frame and the board over time (1,1).
上記42合金は導電率が3%祐C3と低く、放熱性に劣
る欠点があり、これに代えて銅合金を用いれば導電率を
50〜30%lAC3と飛躍的に向上ざUることができ
るも、42合金と同等の伯の特性を有ることは困難であ
る。The 42 alloy mentioned above has a low conductivity of 3% AC3 and has the disadvantage of poor heat dissipation, but if a copper alloy is used instead, the conductivity can be dramatically improved to 50-30% AC3. However, it is difficult for alloy 42 to have the same properties as alloy 42.
〔問題点4−解決するための手段〕
本発明はこれに鑑み種々検討の結果、42合金と同等以
上の強度と、はるかに優れた導電性を示1電子機器用銅
合金とその製造法を開発したーしのである。[Problem 4 - Means for Solving] In view of this, the present invention has been developed as a result of various studies, and has been developed to provide a copper alloy for electronic devices and a method for manufacturing the same, which has a strength equal to or higher than alloy 42 and far superior conductivity. It was developed by Shino.
即も本発明合金は、Ni0.4〜3、Owt%(以1;
NVt%を%と略記)、Ti0.1〜0.7%の範囲
内でNiとTiをNi/Tih14より大きくなるよう
に含み、更に3n0.1〜6.0%と7n。The alloy of the present invention contains Ni0.4-3, Owt% (hereinafter referred to as 1;
(NVt% is abbreviated as %), contains Ni and Ti in a range of Ti0.1 to 0.7% so as to be larger than Ni/Tih14, and further contains 3n0.1 to 6.0% and 7n.
Mn、Mg、ミッシユメタル(以下MMと略記>、 B
、 Sb、 Tc、 Si、 Co、 Zr。Mn, Mg, Missile Metal (hereinafter abbreviated as MM), B
, Sb, Tc, Si, Co, Zr.
AJ!、Fe、V、P、Ga、I n、A9.Y。AJ! , Fe, V, P, Ga, In, A9. Y.
Ca、Pbの何れか1種又は2種以上を合計0.005
〜3.0%とを含み、α含Ct Nを20ppm以下、
析出物粒子を5μm以下とし、残部CUと不可避的不純
物からなることを特徴とするものである。One or more of Ca and Pb in total 0.005
~3.0%, and α-containing CtN of 20 ppm or less,
It is characterized in that the precipitate particles are 5 μm or less, and the remainder consists of CU and unavoidable impurities.
また本発明製造法は、Ni0.4〜3.0%。Further, in the manufacturing method of the present invention, Ni is 0.4 to 3.0%.
lio、1〜0.7%の範囲内でNiとTiをNi/T
iが4より大きくなるように含み、更に3nO,1〜6
.0%とZn、Mn、Mg、MM。io, Ni and Ti within the range of 1 to 0.7% Ni/T
Including so that i is larger than 4, and further including 3nO, 1 to 6
.. 0% and Zn, Mn, Mg, MM.
B、Sb、 Te、3i、Co、Zr、A1゜Fe、V
、P、Ga、In、A9.Y、Ca。B, Sb, Te, 3i, Co, Zr, A1°Fe, V
, P, Ga, In, A9. Y, Ca.
pbの何れか1種又は2種以上を合i10.005〜3
.0%含み、α含有量を20ppm以下、析出物粒子を
5 II In以トとし、残部CLIと不可避的不純物
からなる合金病1鬼を、7bO〜960 ”Cで0.5
〜 15Ti、i問均7′i化処理した後、700
〜880″Cから熱間l’E−延を施し、しかる1な直
らに冷却することを1!1徴とりるしのである。A combination of any one or two or more of pb i10.005 to 3
.. 0%, the α content is 20 ppm or less, the precipitate particles are 5 II In or more, and the balance is CLI and unavoidable impurities.
~ 15Ti, after i level 7'i treatment, 700
It is a sign that hot rolling from ~880''C followed by immediate cooling is recommended.
(作 用〕
本発明にa3いて、NiとTiの添加は両元素の相乗効
果により優れた強度と導電率を1−Iるためで、Ni含
05Tiを0.4〜3.0%、T’ + 3イ1帛を0
.1〜0.7%と限定したのは、何れも下限未:!1で
は15性の向上が見られず、上限を越えると鋳込性、加
工性及び曲げ成型性を著しく低下し、製造が国難となる
。またNiと一1i/!−Ni/1 iが4より大きく
なるように限定したのは、42合金より優れた導電率と
、小型、 ンi?肉化を計るためのにり以上の優れた強
度を得るためてあり、Ni/T!が4以下て・は39電
率が優れているし、より以十の強度かi/られないため
であり、好ましくはN ! / −1−!を4〜10稈
度とすることか望ましい。(Function) In the present invention, the addition of Ni and Ti is to achieve excellent strength and conductivity due to the synergistic effect of both elements. ' + 3i 1 piece to 0
.. The lower limit was set at 1% to 0.7%. No. 1 shows no improvement in the 15 properties, and if the upper limit is exceeded, the castability, workability and bending formability are significantly reduced, and production becomes a national disaster. Also Ni and 1i/! -Ni/1 is limited to be greater than 4 because of its superior conductivity compared to 42 alloy, its small size, and Ni? Ni/T! This is because when N is less than 4, it has an excellent electrical conductivity of 39 and cannot have an intensity greater than 10, and is preferably N! / -1-! It is desirable that the culm degree is 4 to 10.
3 nの添加は3nのマトリックスへの固溶とCu−3
n−N i −1” i或いは3n−Ni−1°iの析
出物として強度を向上すると共に曲げ加工性を向上し、
かつ熱間圧延条件(開始温度。The addition of 3n leads to solid solution of 3n in the matrix and Cu-3
As a precipitate of n-Ni-1"i or 3n-Ni-1°i, it improves strength and bending workability,
and hot rolling conditions (starting temperature.
終了温度、冷TJI速度等)によるバラツキを抑制する
ためであり、sn含右量を0.1〜6.0%と限定した
のは、下限未満では効果が乏しく、上限を越えると加工
性を低下し、製造が困難となるためである。The reason for limiting the sn content to 0.1 to 6.0% is to suppress variations due to finishing temperature, cold TJI speed, etc. Below the lower limit, the effect is poor, and above the upper limit, the processability is reduced. This is because manufacturing becomes difficult.
Zn、Mn、M9.MM、B、Sb、Tc。Zn, Mn, M9. MM, B, Sb, Tc.
S i、Co、Zr、Aj!、Fc、V、P、Ga。S i, Co, Zr, Aj! , Fc, V, P, Ga.
I n、A9.Y、Ca、Pbの何れか1種又は2種以
−りの添加は、脱酸作用により鋳造性を向上し、均¥1
化α埋時の再熱割れや熱間圧延時の圧延割れを防止し、
更にメッキ密着性やハンダとの接合界面の強化にJ:リ
ハンダ接合強度の経]14劣化を抑制するためで、これ
等の合剖含有Mを0.005〜3.0%と限定したのは
、下限未満では効果が薄く、上限を越えると鋳造性、メ
ッキ密着性及び曲げ成型性を悪化するためである。In, A9. Addition of one or more of Y, Ca, and Pb improves castability due to deoxidizing effect, and the average
Prevents reheat cracking during alpha embedding and rolling cracking during hot rolling,
Furthermore, in order to strengthen the plating adhesion and the joint interface with solder and suppress the deterioration of J: Re-solder joint strength]14, the content of these anatomical M was limited to 0.005 to 3.0%. If it is less than the lower limit, the effect will be weak, and if it exceeds the upper limit, the castability, plating adhesion, and bending formability will deteriorate.
02含右((iはur 造1に’lの溶湯中で20pp
m以下(S]ましくは10 p pIII以ド)とした
のは、これを越えると工iか酸化物として溶場J、リス
ラグとなり、Tiの成分:1ントL1−ルを難しくする
と共に、1眉^↑Tiを悪化さUるばかりか、メッキ密
着性やハング接合性を悲くする。また析出物粒子の大ざ
さを5μ7n以下と°したのは、粒子の大ささがこれを
越えるとメッキの表面状態ヤ密る性、史にはハング濡れ
性を大さくJ!4なうためである。02 Contains right ((i is ur) 20pp in molten metal
The reason why the value is less than m (S) or less than 10 p pIII is that if it exceeds this value, it will become a melt field J as an oxide, and it will become a lithium slag, making it difficult to solve the Ti component. 1 eyebrow ^↑ Not only does it worsen Ti, but it also impairs plating adhesion and hang bonding. Also, the size of the precipitate particles was set to 5μ7n or less because if the particle size exceeds this, the surface condition of the plating will become denser and the hang wettability will be greatly affected. 4.
次に本発明製造法は、上記組成の合金Vif鬼を750
〜960 ℃で0.5〜1504間均1′I化処理した
後、700・〜880℃から熱間圧延を行ない、しかる
後直15に冷却するしのである。合金成分である]°i
は活性に冨/νでおり、人気中で酸化物となり易く、ス
ラグを発生して成分不良の原因を作る。しかしArl”
Nz等の非酸化性雰囲気中てi’fT F/’/ >l
i 3聞を(1なうことにより、これをカバーすること
が可能となり、生産性の点で大きな向上がはかれる。ま
た半連続又は連続鋳造における冷7JI速度は100
℃,/sec以上が望ましく、それ未満では溝成元索に
よる析出物を生じてしまい、熱間圧延前の均質化氾埋時
に粗大化を示し、その後の特性や製造性に悪影響を及ぼ
す。Next, in the manufacturing method of the present invention, the alloy Vifoni with the above composition is made into 750
After uniform 1'I treatment at 960 DEG C. for 0.5 to 1504 hours, hot rolling is carried out from 700 DEG C. to 880 DEG C., and then immediately cooled to 15 degrees Celsius. It is an alloy component] °i
It has a high activity of ν, and is popular and easily becomes an oxide, which generates slag and causes component defects. But Arl”
i'fT F/'/ >l in a non-oxidizing atmosphere such as Nz
i 3 times (1) makes it possible to cover this and greatly improves productivity. Also, the cold 7JI speed in semi-continuous or continuous casting is 100
℃,/sec or more is desirable; if it is less than that, precipitates will be generated due to groove formation, coarsening will occur during homogenization flooding before hot rolling, and subsequent properties and manufacturability will be adversely affected.
また均質化処理を750〜960 ℃で0.5〜15時
間と限定したのは、それぞれ下限未満では均Ti化の効
果か見られず、上限を越えると再熱割れや生産コストを
悪化ざUるためで、好ましくは800〜880°Cで2
〜8晴間とすることが望ましい。また熱延開始温度を7
00〜880 ℃と限定したのは、この範囲を外れると
熱延υ[れを生じ易いためであり、J、り好ましくは7
50〜850℃で開始することが望ましい。Furthermore, the reason why the homogenization treatment was limited to 0.5 to 15 hours at 750 to 960 °C is because below the lower limits, the effect of Ti homogenization cannot be seen, and when the upper limits are exceeded, reheating cracks may occur and production costs may worsen. Preferably at 800-880°C for 2
It is desirable to set it to 8 clear days. In addition, the hot rolling start temperature was set to 7.
The reason why it is limited to 00 to 880 °C is because hot rolling tends to occur when outside this range, and J, preferably 7
It is desirable to start at 50-850°C.
尚熱間斤延俊の冷却は3n添加の効果により、どのにう
な冷却速麿で行なってもかまわないが、特に500°C
/分以上とづることが望ましい。また本発明製造法とし
では、熱間加工後に、冷間77Ti1と400〜800
℃で10秒〜360分間の焼鈍を繰)3し、最終的に2
00〜500℃の調質焼鈍やテンシコンレベラー等を組
み合けることによって、より優れた1!1性をnること
かできる。Due to the effect of 3N addition, cooling of hot Nobutoshi can be done at any cooling speed, but especially at 500°C.
/minute or more is desirable. In addition, according to the manufacturing method of the present invention, after hot working, cold working 77Ti1 and 400-800
Repeated annealing at ℃ for 10 seconds to 360 minutes), and finally 2
By combining temper annealing at 00 to 500°C, a tensicon leveler, etc., better 1:1 properties can be achieved.
雰囲気温W(炉を用い、Arガス中で第1表に小刃組成
の銅合金を溶解・鋳造し、厚さ50mm、+1」120
In+Ti.長さ200 mmの鋳塊を’+”−1だ。Atmosphere temperature W (using a furnace, melt and cast a copper alloy with the cutter blade composition shown in Table 1 in Ar gas, thickness 50 mm, +1''120
In+Ti. An ingot with a length of 200 mm is '+'-1.
L:、 ’l’L ?: 面削シ、850 ℃T−3T
i,t RJ均v1化処理L/ jニー i!、830
℃U熱間圧延し、これを水冷して片さ10mnIの仮と
した。L:, 'l'L? : Surface cutting, 850℃T-3T
i, t RJ uniform v1 processing L/j knee i! , 830
CU hot rolling was carried out, and this was water-cooled to make a tentative piece with a piece size of 10 mnI.
これ簀の仮について冷間ff延と中間焼鈍(第1表中N
O1〜21は570℃で1時間、〜o、22は700°
CてTi1;’を間)を繰返し、最終加工率40%で1
9さ0、251淵の板に仕−Lげ、300℃で0.5時
間の調7゛1焼鈍を施した後、試験片を切り出しτ引張
強さ、曲げ成型性(R/l)、メッキ密ン1性、:U:
−ルト↑J(酸化膜剥離性)を調べた。これ簀の結果を
第2表に示1゜
引張強さはJIS−12241に阜づき、々電率はJ
lS−Ti0505に基づき測定した。曲げ成j1°!
・j’)(R/()はJIS−Z22/18のブロック
法に基づいて試験を行ない、試験片表面に割れを牛じざ
Uる最少曲げ半径< R)を試験片の貼さくシ)てυ]
った値で示した。Cold ff rolling and intermediate annealing (N in Table 1)
O1-21 at 570°C for 1 hour, ~o, 22 at 700°
1) at a final processing rate of 40%.
A plate with 9 lengths and 251 depths was plated and annealed at 300°C for 0.5 hours, and test pieces were cut out to determine the tensile strength, bending formability (R/l), Plating density: 1: U:
- The root ↑J (oxide film removability) was investigated. The results are shown in Table 2. The 1° tensile strength is based on JIS-12241, and the electrical conductivity is J
Measured based on 1S-Ti0505. Bending j1°!
・j') (R/() is tested based on the block method of JIS-Z22/18, and the minimum bending radius < R) that prevents cracks on the test piece surface is applied to the test piece. υ]
It is shown as a value.
メッキ密”li hは30X30ymlの試験片につい
て、表面清浄後、Agメッキを行ない、これを大気中で
加熱して、ぞの後のメッキ表面の脹れを観察し、550
℃r5分間加熱でINれの見られない′bのをQ印、脹
れの見られる一bのをX印で示した。また酸化膜剥離性
はTi0X50の試験片について、表面清浄化処理後、
大気中420℃で1分間加熱した後、セ[lデープによ
る剥離試験を行ない、はとんど剥離が見られないものを
Q印、仝而に剥離が認められるものをX印で示した。After cleaning the surface of a 30 x 30 yml test piece, conduct Ag plating, heat it in the air, and observe the swelling of the plated surface afterward.
After heating at ℃r for 5 minutes, the sample 'b' with no visible IN bleed is marked Q, and the sample 1b where swelling is observed is marked X. In addition, the oxide film removability was measured on Ti0X50 test pieces after surface cleaning treatment.
After heating at 420° C. for 1 minute in the atmosphere, a peel test was conducted using a Cedar dip, and those with almost no peeling were marked with a Q mark, while those with peeling were marked with an X mark.
ハンダ接合強度については、5x507gの試験片につ
いて、同形状の無酸素銅板と60/ 40共品ハングに
より接合し、150℃で500 n;y間の加熱加速試
験後に、引張試験を行ない、その強度が加速試験前の8
0%以上のものを○印、50〜80%のものをΔ印、そ
れ以下をX印で表わした。Regarding the solder joint strength, a 5 x 507 g test piece was joined to an oxygen-free copper plate of the same shape using a 60/40 hang, and after an accelerated heating test at 150°C for 500 n; y, a tensile test was performed to determine the strength. 8 before the accelerated test
0% or more is indicated by ◯, 50 to 80% is indicated by Δ, and less than that is indicated by X.
i′Ti表及びi′12表から明らかなように木ざご明
合金N01・〜1)二は何れt)従来合金である42合
金(No2B)と比較し、強度及び脣電性が潰れかつ同
等の曲げ成型+4 、ハング接合強度、メッキ密ン習ノ
1及び七−ルドPIをイjすることが判る。As is clear from the i'Ti and i'12 tables, Kizagoaki Alloy No. It can be seen that equivalent bending forming +4, hang joint strength, plating density practice 1 and 7 - lead PI are obtained.
これに対しl−i含tr 27iが少ない比較合金N0
19及びNi含イ1品の少ない比較合金No22では強
度の向上が認められf、Ti含右早の多い比較合金NO
,20では熱間圧延が困テ]1となり、Ni含イ″1量
の多い比較合金〜o、 21ではハンダ接合強度が劣化
づるばかりか、メッキ密り性及びモールド゛1ノ■が劣
る。また3 n含イ1量の多い比較合金No、23では
比較合金N0.20と同様熱間圧延か国テ]1となり、
その他の元素含有量の多い比較合金No、24.25で
は39電性か劣るばかりか、メッキ密石スTiや曲げ成
型性も劣る。史にα含イーi吊が20ppmを越える比
較合金N026及σ析出粒径が5〕μTnを越える比較
合金No27では何れもハンダ接合強度とメッキ密石1
([が劣ることか判る。On the other hand, comparative alloy N0 with less l-i containing tr 27i
19 and Comparative alloy No. 22, which contains less Ni and one item, showed an improvement in strength.
, 20 has difficulty in hot rolling]1, and comparative alloys containing a large amount of Ni ~O, 21 not only have poor solder joint strength but also poor plating density and moldability. In addition, comparative alloy No. 23, which has a large amount of 3n, has a hot-rolled temperature of 1, which is the same as comparative alloy No. 20.
Comparative alloy No. 24.25, which has a high content of other elements, not only has poor 39 electrical properties, but also has poor plating density Ti and bending formability. Comparative alloy No. 26, in which the α-containing e-i ratio exceeds 20 ppm, and comparative alloy No. 27, in which the σ precipitate grain size exceeds 5 μTn, both have a low solder joint strength and plating crystallization of 1.
(I can see that [is inferior.
このように本発明によれば導電性2強I哀1曲げ成型性
、ハング接合性等が優れた銅合金を提供し得るもので、
リードフレーム等の半導体別器何科として使用し、その
薄肉化、小型化を可能にする等工業上顕著な効果を秦す
るものでおる。As described above, according to the present invention, it is possible to provide a copper alloy with excellent conductivity, 2 strong, 1 poor, bending formability, hang bondability, etc.
It can be used as a semiconductor device such as lead frames, and has remarkable industrial effects such as making it possible to make them thinner and smaller.
Claims (2)
wt%の範囲内でNiとTiをNi/Tiが4より大き
くなるように含み、更にSn0.1〜6.0wt%とZ
n、Mn、Mg、ミッシュメタル(MM)、B、Sb、
Te、Si、Co、Zr、Al、Fe、V、P、Ga、
In、Ag、Y、Ca、Pbの何れか1種又は2種以上
を合計0.005〜3.0wt%とを含み、O_2含有
量を20ppm以下、析出物粒子を5μm以下とし、残
部Cuと不可避的不純物からなる電子機器用銅合金。(1) Ni0.4-3.0wt%, Ti0.1-0.7
It contains Ni and Ti within the range of wt% so that Ni/Ti is greater than 4, and further contains Sn0.1 to 6.0wt% and Z.
n, Mn, Mg, misch metal (MM), B, Sb,
Te, Si, Co, Zr, Al, Fe, V, P, Ga,
Contains a total of 0.005 to 3.0 wt% of any one or more of In, Ag, Y, Ca, and Pb, the O_2 content is 20 ppm or less, the precipitate particles are 5 μm or less, and the balance is Cu. A copper alloy for electronic devices that contains unavoidable impurities.
wt%の範囲内でNiとTiをNi/Tiが4より大き
くなるように含み、更にSn0.1〜6.0wt%とZ
n、Mn、Mg、ミッシュメタル(MM)、B、Sb、
Tc、Si、Co、Zr、Al、Ic、V、P、Ga、
In、Ag、Y、Ca、Pbの何れか1種又は2種以上
を合計0.005〜3.0wt%を含み、O_2含有量
を20ppm以下、析出物粒子を5μm以下とし、残部
Cuと不可避的不純物からなる合金鋳塊を、750〜9
60℃で0.5〜15時間均質化処理した後、700〜
880℃から熱間圧延を施し、しかる後直ちに冷却する
ことを特徴とする電子機器用銅合金の製造法。(2) Ni0.4-3.0wt%, Ti0.1-0.7
It contains Ni and Ti within the range of wt% so that Ni/Ti is greater than 4, and further contains Sn0.1 to 6.0wt% and Z.
n, Mn, Mg, misch metal (MM), B, Sb,
Tc, Si, Co, Zr, Al, Ic, V, P, Ga,
Contains one or more of In, Ag, Y, Ca, and Pb in total of 0.005 to 3.0 wt%, O_2 content is 20 ppm or less, precipitate particles are 5 μm or less, and the remainder is Cu and unavoidable. An alloy ingot consisting of impurities of 750 to 9
After homogenization treatment at 60°C for 0.5-15 hours, 700-
A method for producing a copper alloy for electronic devices, characterized by hot rolling from 880°C and cooling immediately thereafter.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16631586 | 1986-07-15 | ||
JP61-166315 | 1986-07-15 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63145734A true JPS63145734A (en) | 1988-06-17 |
JPH0788546B2 JPH0788546B2 (en) | 1995-09-27 |
Family
ID=15829069
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10693287A Expired - Lifetime JPH0788546B2 (en) | 1986-07-15 | 1987-04-30 | Copper alloy for electronic equipment and its manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0788546B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006265731A (en) * | 2005-02-28 | 2006-10-05 | Furukawa Electric Co Ltd:The | Copper alloy |
CN1327017C (en) * | 2004-07-22 | 2007-07-18 | 同济大学 | Novel elastic conductive alloy and its preparing method |
JP2009153851A (en) * | 2007-12-27 | 2009-07-16 | Konica Minolta Medical & Graphic Inc | Ultrasonic diagnostic apparatus and manufacturing method of wire used therefor |
-
1987
- 1987-04-30 JP JP10693287A patent/JPH0788546B2/en not_active Expired - Lifetime
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1327017C (en) * | 2004-07-22 | 2007-07-18 | 同济大学 | Novel elastic conductive alloy and its preparing method |
JP2006265731A (en) * | 2005-02-28 | 2006-10-05 | Furukawa Electric Co Ltd:The | Copper alloy |
JP2009153851A (en) * | 2007-12-27 | 2009-07-16 | Konica Minolta Medical & Graphic Inc | Ultrasonic diagnostic apparatus and manufacturing method of wire used therefor |
Also Published As
Publication number | Publication date |
---|---|
JPH0788546B2 (en) | 1995-09-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS6250425A (en) | Copper alloy for electronic appliance | |
JPH09104956A (en) | Production of high strength and high electric conductivity copper alloy | |
JP3049137B2 (en) | High strength copper alloy excellent in bending workability and method for producing the same | |
JPS6199647A (en) | Material for lead frame for semiconductor and its manufacture | |
JPH02277735A (en) | Copper alloy for lead frame | |
JPS63145734A (en) | Copper alloy for electronic apparatus and its production | |
JPS63109134A (en) | Copper alloy for lead frame and its production | |
JPS59145745A (en) | Copper alloy for lead material of semiconductor apparatus | |
JP2000144284A (en) | High-strength and high-conductivity copper-iron alloy sheet excellent in heat resistance | |
JPS63105943A (en) | Copper alloy for semiconductor device and its production | |
JPH0425339B2 (en) | ||
JP2504956B2 (en) | Copper alloy for electronic equipment with excellent plating adhesion and solder bondability and its manufacturing method | |
JPS6250428A (en) | Copper alloy for electronic appliance | |
JPS63128158A (en) | Manufacture of high strength copper alloy having high electrical conductivity | |
JPS5895850A (en) | Copper alloy for lead frame of integrated circuit | |
JPS6376839A (en) | Copper alloy for electronic equipment and its production | |
JPS6142772B2 (en) | ||
JP2651122B2 (en) | Method for producing Cu-Ni-Si alloy for electric / electronic device parts | |
JP2662209B2 (en) | Copper alloy for electronic equipment with excellent plating adhesion and solder bondability and its manufacturing method | |
JP2945208B2 (en) | Method for producing copper alloy for electrical and electronic equipment | |
JPS6311418B2 (en) | ||
JPS63109132A (en) | High-strength conductive copper alloy and its production | |
JPS63293130A (en) | Lead frame material made of cu alloy for semiconductor device | |
JPS63192835A (en) | Lead material for ceramic package | |
JPS60194031A (en) | Copper alloy for lead material for semiconductor device |