JPS63144520A - Pattern formation - Google Patents

Pattern formation

Info

Publication number
JPS63144520A
JPS63144520A JP61293669A JP29366986A JPS63144520A JP S63144520 A JPS63144520 A JP S63144520A JP 61293669 A JP61293669 A JP 61293669A JP 29366986 A JP29366986 A JP 29366986A JP S63144520 A JPS63144520 A JP S63144520A
Authority
JP
Japan
Prior art keywords
resist
layer
pmma
lower layer
electron beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61293669A
Other languages
Japanese (ja)
Inventor
Nobuyuki Matsumoto
信之 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP61293669A priority Critical patent/JPS63144520A/en
Publication of JPS63144520A publication Critical patent/JPS63144520A/en
Pending legal-status Critical Current

Links

Landscapes

  • Photosensitive Polymer And Photoresist Processing (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE:To facilitate the fine pattern formation while improving the throughput by a method wherein two kinds of resists with different characteristics are laminated with each other complementing the mutual defects to form resist patterns with specific shape and characteristics. CONSTITUTION:A silicon substrate 1 is coated with PMMA 2 e.g. 0.8mum thick to be baked. Then, the PMMA layer 2 is coated with RE 5000 P 3 as novolak base electron beam resist,e.g., 0.2 mum thick to be baked. First, the RE 5000 P layer 3 is written with electron beams 4. Second, the layer 3 is developed with organic alkali exclusive for RE 5000 P to form the first patterns in line width not exceeding 0.2mum. Then, the layer 3 is subjected to RIE by oxygen to remove degenerated layers 5. Third, when overall surface is irradiated with far ultraviolet rays 6, the upper and lower layer resists are exposed. Finally, when the upper and lower layer resists are developed with xylene, uncoated region with RE 5000 P on PMMA as the lower layer resist only is melted away to transfer the upper resist patterns to the lower layer resist.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は半導体素子、光応用部品及びX線マスクの製造
時等に用いるレジストのパターン形成方法に関し、特に
はりフトオ7法を用いるレジストパターン形成方法に関
する。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a method for forming a resist pattern used in the manufacture of semiconductor elements, optical application parts, and X-ray masks, and in particular, a method for forming a resist pattern using the beam foot 7 method. Regarding the method.

〈従来の技術〉 近年、マイクロ波素子をはじめ半導体素子の高集積化、
微細化に伴い、リングラフィの分野では0.1〜0.2
μmといった超微細パターンの形成が必要とされる。し
かし、この程度の小さなパターンサイズになると、従来
の光によるパターン形成は困難となシ、電子線やX線等
の高エネルギービームを用いたリングラフィが開発され
ている。中でも電子線露光技術は露光装置の開発が進み
、光マスク作製や直播によるパターン形成、X線マスク
等、実際に生産に用いられる段階まで機能が高められて
いる。こういった電子線露光技術聞ポジ型レジストとし
てポリメチルメタクリレート(以下PMMA )が用い
られるが、このレジストはパターン形成工程上必要とさ
れる耐ドライエツチング性や耐熱性に乏しい上、感度が
低く、スループットに劣るという問題があった。
<Conventional technology> In recent years, semiconductor devices such as microwave devices have become highly integrated,
With miniaturization, in the field of phosphorography, 0.1 to 0.2
It is necessary to form ultra-fine patterns on the order of micrometers. However, when the pattern size becomes this small, pattern formation using conventional light becomes difficult, and phosphorography using high-energy beams such as electron beams and X-rays has been developed. In particular, electron beam exposure technology has progressed in the development of exposure equipment, and its functions have been improved to the point where it can actually be used in production, such as optical mask production, pattern formation by direct seeding, and X-ray masks. Polymethyl methacrylate (hereinafter referred to as PMMA) is used as a positive resist for such electron beam exposure technology, but this resist lacks the dry etching resistance and heat resistance required for the pattern formation process, and has low sensitivity. There was a problem that throughput was poor.

、 このような背景のもとで、従来用いられている  
・ノボラック系レジストのノボラック骨格に、電子線感
度を持つ官能基を組み入れたレジストが開発された。こ
のレジストは後工程で必要な耐熱性において、PMMA
より優れており、更に例えばこのノボラック系電子線露
光用レジストの一種であるRE5000P (日立化成
製)の、炭化フッ素ガスによるプラズマドライエツチン
グ耐性は、PMMAの2倍以上で、実用に充分耐え得る
ものであり、更に電子線感度は露光面積によりPMMA
の10〜100倍であシ、スループットもよシ良い。
, Against this background, the conventionally used
・A resist has been developed that incorporates a functional group sensitive to electron beams into the novolac skeleton of a novolac-based resist. This resist has PMMA in terms of heat resistance required in post-processing.
Furthermore, the resistance to plasma dry etching by fluorine carbide gas of RE5000P (manufactured by Hitachi Chemical), which is a type of novolak electron beam exposure resist, is more than twice that of PMMA, which is sufficient for practical use. Furthermore, the electron beam sensitivity varies depending on the exposed area of PMMA.
The throughput is also 10 to 100 times higher.

〈発明が解決しようとする問題点〉 一般忙半導体パターン形成プロセスに必要なレジスト膜
厚は、最小でも0.5μm必要であるが、リフトオフ用
レジストとしては1μm以上の厚さが必要とされる。と
ころが、上述の7ボラツク系電子線露光用レジストであ
るRE5000Pでは、よシ薄い0,5μmの膜厚でも
0.4〜0.5μmのラインパターンが形成できるに過
ぎず、近年要求されている0、1〜0.2μmといった
ラインパターンには及ばない。これは、上記RE500
0Pの開口上部が現像時に横方向に拡がって、現像後、
従来から用いられている電子線レジストが示すようなオ
ーバーハング形状(第2図(a))にならず、開口上部
が広がった形状(第2図(b))となるためである0こ
のように、上記RE5000PはPMMAより耐ドライ
エツチング性、耐熱性及び感度に優れていても、解像度
においてはPMMAより劣るという問題がある。
<Problems to be Solved by the Invention> The resist film thickness required for a general semiconductor pattern forming process is at least 0.5 μm, but a resist for lift-off requires a thickness of 1 μm or more. However, with RE5000P, which is the above-mentioned 7-borac type electron beam exposure resist, a line pattern of only 0.4 to 0.5 μm can be formed even with a very thin film thickness of 0.5 μm. , 1 to 0.2 μm. This is the above RE500
The upper part of the 0P opening expands laterally during development, and after development,
This is because the overhang shape (Fig. 2 (a)) shown in conventionally used electron beam resists does not occur, but the shape where the upper part of the opening widens (Fig. 2 (b)). Another problem is that even though RE5000P is superior to PMMA in dry etching resistance, heat resistance, and sensitivity, it is inferior to PMMA in resolution.

く問題点を解決するための手段〉 本発明は上述する問題点を解決するためになされたもの
で、基板上に解像度に優れたレジストを任意膜厚に形成
し、このレジスト上に耐ドライエツチング性、耐熱性及
び感度に優れたレジストを薄く形成して、二層状のレジ
ストパターンを形成する、パターン形成方法を提供する
ものである。
Means for Solving the Problems> The present invention was made to solve the above problems, and consists of forming a resist with excellent resolution to a desired thickness on a substrate, and applying a dry etching resistant film on this resist. The present invention provides a pattern forming method in which a two-layer resist pattern is formed by forming a thin resist having excellent properties, heat resistance, and sensitivity.

く作 用〉 上述の如く特性の異なる2種のレジストを積層すること
により、互いの欠点を補い合って、所望する形状、特性
を持ったレジストパターンを形成することが可能になる
Effect> By laminating two types of resists having different characteristics as described above, it is possible to compensate for each other's defects and form a resist pattern having a desired shape and characteristics.

また、レジスト上層の薄膜化が可能になるため微細パタ
ーンの形成が容易になシ、また、電子線のドーズ量を%
にできてスループットの大幅な向上が可能になる。
In addition, the upper layer of the resist can be made thinner, making it easier to form fine patterns.
This makes it possible to significantly improve throughput.

〈実施例〉 以下本発明の一実施例を図面にて詳述するが、本発明は
以下の実施例に限定されるものではない。
<Example> An example of the present invention will be described in detail below with reference to the drawings, but the present invention is not limited to the following example.

第1図(a)〜(d)は本実施例の工程を示す断面図で
ある。即ち、第1図(a)の如く、シリコン基板1上に
PMMA2をスピンコーティング法により0.8μmの
厚さに塗布し、140℃下で20分間ベーキングする。
FIGS. 1(a) to 1(d) are cross-sectional views showing the steps of this embodiment. That is, as shown in FIG. 1(a), PMMA 2 is coated on a silicon substrate 1 to a thickness of 0.8 μm by spin coating, and baked at 140° C. for 20 minutes.

上記PMMA層2上にノボラック系電子線レジストであ
るRE5000P3をスピンコーティング法により0.
2μmの厚さに塗布し、90℃下で30分間ベーキング
する。次に上記RE5000P層3に電子線4にて描画
を行なう。これはスポットビーム方式のEB描画機によ
シミ流値100PA。
RE5000P3, which is a novolac-based electron beam resist, is applied onto the PMMA layer 2 by a spin coating method.
It is applied to a thickness of 2 μm and baked at 90° C. for 30 minutes. Next, drawing is performed on the RE5000P layer 3 using an electron beam 4. This is a spot beam type EB lithography machine with a stain flow value of 100 PA.

ビーム径0.05μmで電子線ドーズ量0.2 nc/
鍔の条件にて行なう。
Beam diameter 0.05 μm and electron beam dose 0.2 nc/
This will be done under the conditions of the tsuba.

次いでRE5000P専用の有機アルカリにて現像を行
なうと、上層レジストをなすRE5000P層3の電子
線照射部のみが溶けて、0.2μm以下の線幅からなる
第1パターンが形成される。しかし、電子線の照射に伴
い、第1図(b)の如く、PMMA層2とRE5000
P層3との間に変質層5が形成され、下層レジストをな
すPMMA層2のバターニングができなくなる。そこで
、得られたRE5000P層3のパターンと変質層5に
対して、酸素RIEを行ない、変質層5を除去する。こ
のRIEは平行平板型エツチング装置を用い、出力io
ow。
Next, when development is performed with an organic alkali exclusively used for RE5000P, only the electron beam irradiated portion of the RE5000P layer 3 forming the upper resist layer is melted, and a first pattern having a line width of 0.2 μm or less is formed. However, as shown in FIG. 1(b), due to electron beam irradiation, the PMMA layer 2 and RE5000
A degraded layer 5 is formed between the P layer 3 and the PMMA layer 2 forming the lower resist layer, which cannot be patterned. Therefore, the pattern of the RE5000P layer 3 and the altered layer 5 thus obtained are subjected to oxygen RIE to remove the altered layer 5. This RIE uses a parallel plate type etching device and outputs io
ow.

0、5 To rr下で酸素流量40 Seemにて7
秒間行なう。除去されるべき変質層5の膜厚は100〜
300Aであり、これを除去するためにRIEを行って
もRE5000P層3からなる上層レジストパターンを
損うことはない。
Oxygen flow rate 40 Seem under 0,5 Torr 7
Do it for seconds. The thickness of the altered layer 5 to be removed is 100~
300A, and even if RIE is performed to remove it, the upper resist pattern consisting of the RE5000P layer 3 will not be damaged.

次に、第1図(c)の如く遠紫外線6を全面に照射する
と、上層レジストパターンおよび下層レジストのRE5
000P非被覆領域が露光される。次いでキシレンにて
現像を行なうと、第1図(d)の如く、下層レジストで
あるPMMAのRE5000P非被覆領域のみが溶出し
、上層レジストパターンが下層レジストに転写される。
Next, when the entire surface is irradiated with far ultraviolet rays 6 as shown in FIG. 1(c), the RE5 of the upper resist pattern and the lower resist pattern is
000P uncovered areas are exposed. When development is then carried out with xylene, only the RE5000P non-covered region of PMMA, which is the lower layer resist, is eluted and the upper layer resist pattern is transferred to the lower layer resist, as shown in FIG. 1(d).

こうして得られた2層レジストパターンを走査型電子顕
微鏡にて観察すると、開口部のRE5000P層は0.
2μmの線幅のままであシ、下層レジストであるPMM
A層2は現像時間によって上層レジストパターンのなす
開口す・ 部以上に溶は出して、チットオフプロセスに有利なオー
バーハング形状が得られる。
When the two-layer resist pattern thus obtained was observed with a scanning electron microscope, the RE5000P layer at the opening was 0.
Leave the line width at 2 μm, and use PMM as the lower layer resist.
Depending on the development time, layer A 2 dissolves beyond the opening formed by the upper resist pattern, and an overhang shape advantageous for the chit-off process is obtained.

上記実施例と比較する念めに、シリコン基板上に0.5
μmの膜厚でRE5000Pを塗布したものを、上記実
施例と同様の電流値、ビーム径で、最適の電子線ドーズ
量(0,6n C/cm )にて電子線露光を行ない、
RE5000P用現像液を用いて現像を行なったところ
、開口部は実施例の如き0.2μmのパターンが得られ
ず、0.4〜0.5μmの線幅となった0 上記実施例において、上層レジストをなすRE5000
P層3をスポット露光する際電子線を用いたが、本発明
はこれに限定されるものではなく、高エネルギービーム
であれば、X線等であってもよい。
For comparison with the above example, 0.5
The RE5000P coated with a film thickness of μm was subjected to electron beam exposure at the same current value and beam diameter as in the above example, and at the optimum electron beam dose (0.6 n C/cm ),
When development was carried out using a developer for RE5000P, a pattern of 0.2 μm as in the example was not obtained for the openings, and the line width was 0.4 to 0.5 μm. RE5000 that forms the resist
Although an electron beam was used to spot-expose the P layer 3, the present invention is not limited to this, and X-rays or the like may be used as long as it is a high-energy beam.

上記実施例において、下層レジストをなすPMMA層2
を露光する際遠紫外線を用いたが、本発明はこれに限定
されるものではなく、電子線又はX線を用いても同様の
効果が得られる。
In the above embodiment, the PMMA layer 2 forming the lower resist layer
Although far ultraviolet rays were used for exposure, the present invention is not limited thereto, and similar effects can be obtained using electron beams or X-rays.

本発明において、リフトオフ等のパターン形成プロセス
においてo、 s 辷1μmのレジスト膜厚が必要とさ
れることから二層レジスト法を採用したが、レジストが
三層以上であっても同様の目的は果たされる。しかし、
例えば従来用いられるアイソレート層を中間層にもつ三
層レジスト法を用いるとプロセスが煩雑になり、不利で
ある。そ、こて、ノボラック系電子線露光用レジストを
上層にすることを前提にして、下層のレジストを種々選
択した結果、PMMAのみが塗布時にノボラック系レジ
ストと混ざらず、良好に二層化でき、更に、この時キシ
レンを現像液として用いれば、ノボラック系レジストを
侵すことなく現像できることが判り、二層レジスト法を
採用したのである。
In the present invention, a two-layer resist method was adopted because a resist film thickness of 1 μm in width is required in pattern forming processes such as lift-off, but the same purpose cannot be achieved even if the resist has three or more layers. It will be done. but,
For example, the use of the conventional three-layer resist method having an isolated layer as an intermediate layer is disadvantageous because the process becomes complicated. Well, with the assumption that novolac-based electron beam exposure resist would be used as the upper layer, we selected various resists for the lower layer, and as a result, only PMMA did not mix with the novolak-based resist during coating and was able to form two layers well. Furthermore, it was discovered that if xylene was used as a developer, the novolak resist could be developed without damaging it, and a two-layer resist method was adopted.

〈発明の効果〉 本発明により、電子線露光時のスループットと、耐ドラ
イエツチング性に優れたノボラック系電子線露光用レジ
ストの解像度とを同時に向上でき、しかもそのために煩
雑な形成プロセスを必要としないので、微細パターンの
形成が容易になる。特に、本発明は高集積化した半導体
素子、光応用部品及びX線マスクの製造に好適であり、
工業的利用価値は高い。
<Effects of the Invention> According to the present invention, the throughput during electron beam exposure and the resolution of a novolak electron beam exposure resist with excellent dry etching resistance can be simultaneously improved, and a complicated formation process is not required for this purpose. Therefore, formation of fine patterns becomes easy. In particular, the present invention is suitable for manufacturing highly integrated semiconductor devices, optical application components, and X-ray masks.
It has high industrial value.

【図面の簡単な説明】 第1図(a)〜(d)は本発明の一実施例の工程を示す
断面図、第2図(a)、(b)は2種のレジストパター
ン形状を示す断面図である。 1、シリコン基板、  2.PMMA層、  3.RE
sooop層、  4、電子線、  5.変質層 6.
遠紫外線 代理人 弁理士 杉 山 毅 至(他1名)第 lI2
[Brief Description of the Drawings] Figures 1 (a) to (d) are cross-sectional views showing the steps of an embodiment of the present invention, and Figures 2 (a) and (b) show two types of resist pattern shapes. FIG. 1. Silicon substrate; 2. PMMA layer, 3. R.E.
sooop layer, 4. electron beam, 5. Altered layer 6.
Far Ultraviolet Agent Patent Attorney Takeshi Sugiyama (and 1 other person) No. 12
1

Claims (1)

【特許請求の範囲】 1、基板上に形成した二層状のレジストをパターニング
してレジストパターンを形成する際、上層に電子線、X
線等の高エネルギービームに感光し、且つ耐ドライエッ
チング性を有するレジストを用い、 下層に前記上層のレジストと異なる現像特性を有するレ
ジストを用いることを特徴とするパターン形成方法。
[Claims] 1. When forming a resist pattern by patterning a two-layer resist formed on a substrate, an electron beam or
A pattern forming method characterized by using a resist that is sensitive to a high-energy beam such as a line and has dry etching resistance, and using a resist having development characteristics different from those of the upper layer resist as a lower layer.
JP61293669A 1986-12-09 1986-12-09 Pattern formation Pending JPS63144520A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61293669A JPS63144520A (en) 1986-12-09 1986-12-09 Pattern formation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61293669A JPS63144520A (en) 1986-12-09 1986-12-09 Pattern formation

Publications (1)

Publication Number Publication Date
JPS63144520A true JPS63144520A (en) 1988-06-16

Family

ID=17797710

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61293669A Pending JPS63144520A (en) 1986-12-09 1986-12-09 Pattern formation

Country Status (1)

Country Link
JP (1) JPS63144520A (en)

Similar Documents

Publication Publication Date Title
JPH0471222A (en) Pattern forming method
JPH0210362A (en) Fine pattern forming method
JPS63144520A (en) Pattern formation
JPH0463349A (en) Photomask blank and photomask
JPH0744147B2 (en) High resolution X-ray mask including absorber pattern with high aspect ratio
JPH03138922A (en) Minute-pattern forming method
EP0104235A4 (en) Electron beam-optical hybrid lithographic resist process.
JPH02156244A (en) Pattern forming method
JPH03283418A (en) Resist pattern forming method
JPH03141632A (en) Formation of pattern and manufacture of semiconductor device
JPS63104327A (en) X-ray mask and manufacture thereof
JPS62284356A (en) Formation of resist pattern
JPS61131446A (en) Formation of resist pattern
JPS60106132A (en) Formation of pattern
JPS646448B2 (en)
JPS59141227A (en) Formation of fine pattern
JPS62183449A (en) Formation of pattern
JPH01296620A (en) Pattern formation
JPS60123842A (en) Production of photomask
JPS63316055A (en) Manufacture of semiconductor device
JPS61294821A (en) Method for forming fine pattern
JPH01304457A (en) Pattern forming method
JPS5968744A (en) Manufacture of photomask
JPH04225353A (en) Production of photomask with phase shift layer
JPH0350719A (en) Formation of fine pattern