JPS63144324A - Method for orientating electric field of high polymer liquid crystal and liquid crystal element used same - Google Patents

Method for orientating electric field of high polymer liquid crystal and liquid crystal element used same

Info

Publication number
JPS63144324A
JPS63144324A JP29378886A JP29378886A JPS63144324A JP S63144324 A JPS63144324 A JP S63144324A JP 29378886 A JP29378886 A JP 29378886A JP 29378886 A JP29378886 A JP 29378886A JP S63144324 A JPS63144324 A JP S63144324A
Authority
JP
Japan
Prior art keywords
liquid crystal
electric field
polymer liquid
insulating layer
high polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29378886A
Other languages
Japanese (ja)
Inventor
Kiyoto Otsuka
清人 大塚
Koichi Sato
公一 佐藤
Mitsuo Matsumoto
松本 光郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP29378886A priority Critical patent/JPS63144324A/en
Publication of JPS63144324A publication Critical patent/JPS63144324A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133365Cells in which the active layer comprises a liquid crystalline polymer

Abstract

PURPOSE:To orientate the electric field of the high polymer liquid crystal which has a low dielectric breakdown voltage by coating at least one of pole of the electrode with an insulating layer. CONSTITUTION:The insulating layer 5 is provided at both poles of the electrode 2, but the sufficient effect is obtd. even in case that the insulating layer 5 is provided on at least one of the electrodes. Any one of an org. and an inorg. substances can be used as the material of the insulating layer 5, and is exemplified by a high polymer material such as polyimide, teflon and polyester etc., or an inorg. material such as quartz and mica, etc., or a mixture thereof, and is preferably, used the material having high withstand voltage. In case that the transition temp. of the liquid crystal is a high temp. of >=100 deg.C, a heat-resisting material is preferably used for the insulating layer. The thickness of the insulating layer is not especially specified, but, the thinner layer is preferably used to increase the electric field strength which applies to a sample. Thus, even in case that the high polymer liquid crystal having a smaller dielectric breakdown voltage than the orientation voltage, is used, the electric field sufficient to orientate the high polymer liquid crystal can be supplied to the titled element.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は高分子液晶を電場により配向させる場合におい
て電場を印加する電極の少なくとも一方の極に絶縁Nを
設けたことを特徴とする高分子液晶の電場配向法に関し
、良好な高分子液晶の寛楊配向相金得ることを目的とす
る。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a polymer characterized in that when a polymer liquid crystal is aligned by an electric field, an insulating N is provided on at least one electrode of an electrode to which an electric field is applied. Regarding the electric field alignment method of liquid crystal, the purpose is to obtain a good well-aligned phase metal of polymer liquid crystal.

〔従来の技術〕[Conventional technology]

近年高性能高機能性有機材料の素材として高分子液晶に
関する産業界の関心が高まっており、活発に研究開発が
くり広げられている。高分子液晶はぜん断応力下におい
て、容易に分子鎖が一方向に配向することから、該高分
子より高度に配向し念高強度、高弾性率の各種成形品が
得られることはよく知られている。このような性質を利
用し、高強力、高弾性率繊維、あるいは自己補強世射出
成形品として多くの高分子液晶が提案され、一部工莱的
に製造されるに至っているものもある。
In recent years, industrial interest in polymer liquid crystals as a material for high-performance, highly functional organic materials has increased, and research and development is being actively carried out. It is well known that the molecular chains of liquid crystal polymers are easily oriented in one direction under shear stress, and that various molded products with higher strength and higher elastic modulus can be obtained by highly oriented polymers. ing. Taking advantage of these properties, many polymeric liquid crystals have been proposed as high-strength, high-modulus fibers, or self-reinforcing injection molded products, and some of them have even been manufactured using industrial processes.

一方、高分子液晶の光学的な異方性を利用して、各種機
能性材料への応用も試みられている。とり棉 わけ、一定の温度以上で光学的に異方性の溶I相を形成
する鯖ゆるサーモトロピック液晶高分子は、温度を変化
させることにより、液晶相を凍結させることが可能なた
め、記録材料等への応用が期待されている。この場合に
は、液晶状態において、電場を印加し1分子を配向させ
る方法が通常用いラレテイル(例えばPolymer、
 l 985年26号、1801〜1806頁参照)。
On the other hand, attempts have been made to utilize the optical anisotropy of polymer liquid crystals to apply them to various functional materials. In particular, the Sabayu thermotropic liquid crystal polymer, which forms an optically anisotropic molten I phase above a certain temperature, can be frozen by changing the temperature, making it possible to record It is expected to be applied to materials, etc. In this case, a method is usually used in which an electric field is applied to orient one molecule in the liquid crystal state.
1985, No. 26, pp. 1801-1806).

またこの場合に印加する電場としては直流よシも交流の
方がより良好な電場配向相を与える(同上)。
In addition, as for the electric field applied in this case, alternating current provides a better electric field alignment phase than direct current (same as above).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

高分子液晶は電場により均一配向するが、その場合に与
えなければならない電場は高分子液晶の厚さが1fl以
下、例えば20〜50μmの場合数十V(ボルト)から
数千V一般的には数百Vの電圧が必要である。電界強度
(V/m )では約10’V/mからIQ8V/ms一
般的には107V/mという極めて高い電界を加えなけ
ればならない。
Polymer liquid crystals are uniformly aligned by an electric field, but in this case, the electric field that must be applied is generally several tens of volts to several thousand volts when the polymer liquid crystal has a thickness of 1 fl or less, for example 20 to 50 μm. A voltage of several hundred volts is required. In terms of electric field strength (V/m2), an extremely high electric field of about 10'V/m to IQ8V/ms, generally 107V/m, must be applied.

高分子液晶が電場配向するための必要条件として、高分
子液晶の絶縁破壊電圧が電場配向させるために与える電
圧よりも大きくなければならない。
As a necessary condition for the polymer liquid crystal to be aligned in an electric field, the dielectric breakdown voltage of the polymer liquid crystal must be greater than the voltage applied for electric field alignment.

絶縁破壊電圧が1f場配向させるための電圧よりも小さ
い場合には配向電圧まで到達する以前に高分子液晶に絶
壊破壊が発生するためにそれ以上の電圧印加が不可能に
なり電場配向を行うことができない0 穣 高分子液晶が絶縁l壊する原因は高分子液晶そのものの
耐電圧が低い場合と高分子液晶に水分等の不純物が混入
することによって耐電圧が低くなっている場合がある。
If the dielectric breakdown voltage is lower than the voltage for 1f field alignment, breakdown occurs in the polymer liquid crystal before the alignment voltage is reached, making it impossible to apply any more voltage and performing electric field alignment. 0 The dielectric breakdown of polymer liquid crystals can occur if the withstand voltage of the polymer liquid crystal itself is low, or if impurities such as moisture are mixed into the polymer liquid crystal, which lowers the withstand voltage.

高分子液晶が絶縁破壊を起こした場合にこの原因が上記
のいずれに起因するのかを解明することは実際は極めて
困難である。
When dielectric breakdown occurs in a polymer liquid crystal, it is actually extremely difficult to determine which of the above causes is the cause.

高分子液晶の不純物除去を行う場合の手法としては低分
子液晶の精製に用いるような蒸溜とか再結晶のような手
法を用いることはできない。高分子液晶に適切な溶媒が
存在する場合にはもっばら再沈殿を利用できるが、これ
でも十分な不純物除去を行うことは困難であった。
When removing impurities from polymeric liquid crystals, methods such as distillation and recrystallization, which are used for purifying low-molecular liquid crystals, cannot be used. Reprecipitation can be used when a suitable solvent is present in the polymer liquid crystal, but even with this, it has been difficult to remove impurities sufficiently.

高分子液晶の場合交流電場を使用した方が格段に良好な
ホメオトロピック相を与えるが、本発明者らの実験によ
れば、交流TJL場を使用した場合には同電圧の直流を
使用した場合と比較し極めて絶縁破壊が発生しやすかっ
た。
In the case of polymer liquid crystals, using an alternating current electric field gives a much better homeotropic phase, but according to the experiments of the present inventors, when using an alternating current TJL field, when using a direct current of the same voltage, In comparison, dielectric breakdown was extremely likely to occur.

而して本発明の目的は絶縁破壊電圧が低い高分子液晶を
’を場配向させることを目的とする。
Therefore, the object of the present invention is to field-align a polymer liquid crystal having a low dielectric breakdown voltage.

〔間頌を解決する九めの手段〕[The ninth means of resolving interludes]

不発明者らは上記目的に店みて鋭意研究したところ電圧
を印加する電極の少なくとも一方の極を絶縁層でおおう
ことによって上記の目的を達成できることを見い出し本
発明を完成するにいたった。
The inventors of the present invention conducted extensive research with the above object in mind and found that the above object could be achieved by covering at least one of the electrodes to which a voltage is applied with an insulating layer, thereby completing the present invention.

本発明をさらに詳しく説明する。高分子液晶を電場配向
させる場合に用いる電極としては電導体が用いられる。
The present invention will be explained in more detail. A conductor is used as an electrode used when aligning a polymer liquid crystal in an electric field.

具体的な材質としては銅、金、白金などの金属、酸化・
インジウム、酸化スズなどの透明1!導体等が用いられ
る。これらの電導体は、そのまま板状あるいはローラー
状に成凰されて使用される場合もあるが、他の材質例え
ばガラス等で作られたものの上に薄膜状で製膜される場
合もある。例えば酸化インジウム、酸化スズよりなる透
明電極の場合はガラス板上に上記の材料がスパッタリン
グ等の手法により製膜されている。本発明は上記いずれ
の素材を用いた場合にも適応できるO 本発明で用いる絶縁層の材料としては有機物、無機物い
ずれのものも用いることができる。具体的にはポリイミ
ド、テフロン、ポリエステル等の高分子材料、石英、ウ
ンモ等の無機材料又はこれらの混合物が用いられる。本
発明ではこれらのいずれの材料を用いてもよいが、耐電
圧が高いものを用いるのがよい。また液晶相への転移温
度が100℃以上と高い場合には絶縁1にも財熱性のも
のを用いるのがよい。絶縁層の厚さは特に限定はされな
いが試料に与える電界強度を上げる之めに薄い方が好ま
しい。具体的には2闘以下、さらにはIIa1以下、よ
り好ましくは500μm以下、特に好ましくは200μ
m以下のものを用いるのがよい0 本発明で設ける絶縁層は電極の両極に設けてもよいが、
電極のいずれか一方に設けるだけでも十分な効果がある
Specific materials include metals such as copper, gold, and platinum, as well as oxidized and
Transparent 1 of indium, tin oxide, etc. A conductor or the like is used. These conductors may be used as they are in the form of a plate or roller, but they may also be formed into a thin film on another material such as glass. For example, in the case of a transparent electrode made of indium oxide or tin oxide, a film of the above material is formed on a glass plate by a method such as sputtering. The present invention can be applied to any of the above-mentioned materials. As the material for the insulating layer used in the present invention, both organic and inorganic materials can be used. Specifically, polymeric materials such as polyimide, Teflon, and polyester, inorganic materials such as quartz and turquoise, or mixtures thereof are used. Although any of these materials may be used in the present invention, it is preferable to use a material with a high withstand voltage. Further, when the transition temperature to the liquid crystal phase is as high as 100° C. or higher, it is preferable to use a thermally efficient material for the insulation 1 as well. Although the thickness of the insulating layer is not particularly limited, it is preferable that it be thin in order to increase the electric field strength applied to the sample. Specifically, it is 2 mm or less, further IIa 1 or less, more preferably 500 μm or less, particularly preferably 200 μm.
The insulating layer provided in the present invention may be provided on both poles of the electrode, but
Even if it is provided on either one of the electrodes, sufficient effects can be obtained.

本発明の手法を用いることにより、絶縁破壊電圧が配向
電圧よりも小さな筋分子液晶においても配向するに十分
な電界を与えることができる。
By using the method of the present invention, it is possible to apply an electric field sufficient to align even a muscle molecular liquid crystal whose dielectric breakdown voltage is smaller than the alignment voltage.

またより高電場を印加することにより配向度と配向速度
を上げる場合において高分子液晶に簡単に高電場を印加
できるという効果もあった。
In addition, when applying a higher electric field to increase the degree of orientation and the orientation speed, there was also the effect that a high electric field could be easily applied to the polymer liquid crystal.

更に、高分子液晶中に何らかの導電性の不純物が含まれ
ている場合にも特別の精製をせずに高電場を印加するこ
とが可能となり、実用上極めて有用である。
Furthermore, even if the polymer liquid crystal contains some kind of conductive impurity, it becomes possible to apply a high electric field without special purification, which is extremely useful in practice.

本発明の方法が適用可能な高分子液晶化合物としては、
電場配向可能なすべての高分子液晶化合物が該当する。
Polymer liquid crystal compounds to which the method of the present invention can be applied include:
This applies to all polymeric liquid crystal compounds that can be aligned in an electric field.

それらは低分子の液晶化合物残基を側鎖に有する側鎖型
高分子液晶及び主鎖に液晶化合物残基を有する主鎖型高
分子液晶の双方を包含する。液晶の配列方法もネマティ
ック、コレステリック、スメクテイツクいずれであって
もよい。
They include both side chain type polymer liquid crystals having a low molecular weight liquid crystal compound residue in their side chains and main chain type polymer liquid crystals having a liquid crystal compound residue in their main chain. The liquid crystal arrangement method may be nematic, cholesteric, or smectic.

本発明の電場配向可能な高分子液晶化合物としては、サ
ーモトロピック液晶高分子を用いることは特に好適であ
る。かかるサーモトロピック液晶高分子化合物としては
既に多数知られている。主鎖型高分子液晶としては既に
多くの構造が提案されているが具体例として次の繰り返
し単位を有する重合体が挙げられる。
As the electric field orientable liquid crystal polymer compound of the present invention, it is particularly suitable to use a thermotropic liquid crystal polymer. Many such thermotropic liquid crystal polymer compounds are already known. Many structures have already been proposed for main chain polymer liquid crystals, and specific examples include polymers having the following repeating units.

側鎖型高分子液晶としても、既に多数知られているが、
具体例としては例えば次の構造単位を有するビニル系高
分子又はシリコーン系高分子が挙けられる。
Many side-chain polymer liquid crystals are already known, but
Specific examples include vinyl polymers or silicone polymers having the following structural units.

や。H2−b + ♂会N=N(■)X H3 本発明の方法においては主鎖型高分子結晶および側鎖型
高分子液晶いずれも用いることができるが、電場下での
配向がより容易である側鎖型高分子液晶がよυ好ましい
or. H2-b + ♂ N=N(■) Certain side-chain polymer liquid crystals are particularly preferred.

以下実施例により本発明を具体的に説明するが本発明は
以下の実施例に限定されるものではない。
EXAMPLES The present invention will be specifically explained below with reference to Examples, but the present invention is not limited to the following Examples.

実施例l Mo1ecular Crystals  and L
iquid Crystals、 1985年、122
巻、205頁から218頁記載の方法に従って下記式で
表わされるポリマーを合成した。
Example l Molecular Crystals and L
iquid Crystals, 1985, 122
A polymer represented by the following formula was synthesized according to the method described in Vol., pages 205 to 218.

?H3 ホットステージ(リンカム社製TH−600)を備えた
偏光顕微鏡直交ニコル下で観測を行なったところ本ポリ
マーは170℃以下においてスメクチック液晶相を示し
、170℃よ如高温で等方性;ζ15液体となることが
確認された。
? When observed under crossed Nicols polarizing microscope equipped with H3 hot stage (TH-600 manufactured by Linkam), this polymer exhibited a smectic liquid crystal phase at temperatures below 170°C, and was isotropic at temperatures as high as 170°C; ζ15 liquid. It was confirmed that

このようにして得られた高分子液晶を使用し電場による
配向実験を行った。該高分子液晶を使用し、第1図に示
すセルを作製した。1絶縁膜5には厚さ7.5μmのポ
リイミドフィルム(宇部興産;ユーピレツクス)を用い
た。またスペーサー3にも同じポリイミドフィルムを用
いた。高分子液晶は約140℃で軟化させスペーサー0
間4に充填した。電極2には透明電極であるネサガラス
を用い之0 このセル全周い電場配向実験を行った。偏光顕微鏡のク
ロスニコル中に上記のセルを入れホットステージを用い
168℃まで加熱したところ、スメクチック相が観察さ
れた。この状態において、500V(実効値)3畳の交
流電場を印加したところ瞬時にホメオトロピック相に転
位した。セル温度を下げることによってホメオトロピッ
ク相が凍結できることも確認された。また得られたホメ
オトロピック相は極めて良好なものであってクロスニコ
ルを通した後の光の透過量はスメクチック相の場合のわ
ずか14%であった。
Using the polymer liquid crystal thus obtained, an orientation experiment using an electric field was conducted. Using the polymer liquid crystal, a cell shown in FIG. 1 was produced. 1. As the insulating film 5, a polyimide film (Ube Industries, Ltd.; Upilex) with a thickness of 7.5 μm was used. The same polyimide film was also used for the spacer 3. Polymer liquid crystal is softened at about 140℃ and spacer is 0.
It was filled between 4 and 4. Nesa glass, which is a transparent electrode, was used for electrode 2. An electric field orientation experiment was conducted around the entire circumference of this cell. When the above-mentioned cell was placed in a crossed nicol of a polarizing microscope and heated to 168° C. using a hot stage, a smectic phase was observed. In this state, when an alternating current electric field of 500 V (effective value) of 3 tatami was applied, it instantaneously transitioned to the homeotropic phase. It was also confirmed that the homeotropic phase could be frozen by lowering the cell temperature. The obtained homeotropic phase was very good, and the amount of light transmitted after passing through crossed nicols was only 14% of that in the smectic phase.

実施例2 実施例1と同様な装置、同様な条件で直流を場によシ配
向実験を行った。500■の直流電場を印加したところ
瞬時にホメオトロピック相に転位した。しかしこの場合
に得られたホメオトロピック相は9.流電場を用いた場
合程良好なものではなく光の透過fはスメクチック相の
場合の45%であった。
Example 2 An orientation experiment was conducted using a direct current in the same apparatus and under the same conditions as in Example 1. When a DC electric field of 500 μm was applied, it instantaneously transitioned to the homeotropic phase. However, the homeotropic phase obtained in this case was 9. It was not as good as when a current electric field was used, and the light transmission f was 45% of that in the smectic phase.

比較例1 実施例1で用いた高分子液晶f、使用し絶縁膜を設ける
事なくセルを作製した(第2図)0スペーサーには厚さ
7.5μm のポリイミドフィルムラ用いた。
Comparative Example 1 A cell was prepared using the polymer liquid crystal f used in Example 1 without providing an insulating film (FIG. 2). A polyimide film 7.5 μm thick was used as a spacer.

このセルを用い電場配向実験を行った。実施例と同様な
装置を使用し同様な条件において3 KHzの交流電、
Jft印加し之。電場を80Vまで印加したところ高分
子液晶に絶縁破壊が発生し、これ以上の電圧印加はでき
なかった。またこの電圧では該高分子液晶はまったくt
場配同しなかった。セルを冷却し取り出したところ、セ
ル中の高分子液晶の一部が黒色化していた。
Electric field alignment experiments were conducted using this cell. Using the same equipment as in the example and under the same conditions, 3 KHz alternating current,
Jft is applied. When an electric field of up to 80 V was applied, dielectric breakdown occurred in the polymer liquid crystal, and no higher voltage could be applied. Moreover, at this voltage, the polymer liquid crystal is completely t
I didn't agree with the situation. When the cell was cooled and taken out, part of the polymer liquid crystal inside the cell had turned black.

比較例2 比較例1と同様な装置同様な条件で直流電場によシ配向
実験を行った。120Vの直流電圧を印加したところ高
分子液晶は瞬時にホメオトロピック相に転位したが元の
透過量は76′%もあり良好なホメオトロピック相では
なかつ之。さらに電圧を200vまで上げたところ絶縁
破壊が発生し、これ以上の電圧は印加できなかった。
Comparative Example 2 An orientation experiment using a DC electric field was conducted using the same apparatus as in Comparative Example 1 under the same conditions. When a DC voltage of 120 V was applied, the polymer liquid crystal instantaneously transitioned to a homeotropic phase, but the original transmission amount was 76'%, so it was not a good homeotropic phase. When the voltage was further increased to 200V, dielectric breakdown occurred and no higher voltage could be applied.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例で用い次セルの断面図、第2図は比較例
で用いたセルの断面図。 1;ガラス板      2;透明電極(不す)3ニス
ペーサ−4;高分子液晶 5;絶縁膜
FIG. 1 is a sectional view of the next cell used in the example, and FIG. 2 is a sectional view of the cell used in the comparative example. 1; Glass plate 2; Transparent electrode (sustainable) 3 Varnish spacer 4; Polymer liquid crystal 5; Insulating film

Claims (1)

【特許請求の範囲】 1)高分子液晶を電場により配向させる場合において電
極の少なくともいずれか一方の極に絶縁層を設けること
を特徴とする高分子液晶の電場配向法。 2)電場として交流電場を用いることを特徴とする特許
請求の範囲第1項記載の電場配向法。 3)高分子液晶がサーモトロピツク液晶高分子であるこ
とを特徴とする特許請求の範囲第1項又は第2項記載の
電場配向法。 4)一対の電極間に高分子液晶を封入してなる素子にお
いて、少なくとも一方の電極が絶縁層を介して高分子液
晶と接触していることを特徴とする高分子液晶素子。
[Scope of Claims] 1) A method for aligning a polymer liquid crystal with an electric field, which comprises providing an insulating layer on at least one of the electrodes in the case of aligning the polymer liquid crystal with an electric field. 2) The electric field alignment method according to claim 1, characterized in that an alternating current electric field is used as the electric field. 3) The electric field alignment method according to claim 1 or 2, wherein the polymer liquid crystal is a thermotropic liquid crystal polymer. 4) A polymer liquid crystal element comprising a polymer liquid crystal sealed between a pair of electrodes, wherein at least one electrode is in contact with the polymer liquid crystal via an insulating layer.
JP29378886A 1986-12-09 1986-12-09 Method for orientating electric field of high polymer liquid crystal and liquid crystal element used same Pending JPS63144324A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29378886A JPS63144324A (en) 1986-12-09 1986-12-09 Method for orientating electric field of high polymer liquid crystal and liquid crystal element used same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29378886A JPS63144324A (en) 1986-12-09 1986-12-09 Method for orientating electric field of high polymer liquid crystal and liquid crystal element used same

Publications (1)

Publication Number Publication Date
JPS63144324A true JPS63144324A (en) 1988-06-16

Family

ID=17799176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29378886A Pending JPS63144324A (en) 1986-12-09 1986-12-09 Method for orientating electric field of high polymer liquid crystal and liquid crystal element used same

Country Status (1)

Country Link
JP (1) JPS63144324A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5910930A (en) * 1982-07-10 1984-01-20 Konishiroku Photo Ind Co Ltd Information recording medium
JPS60111224A (en) * 1983-11-21 1985-06-17 Canon Inc Liquid crystal element
JPS60114823A (en) * 1983-09-14 1985-06-21 ザ ビクトリア ユニバ−シテイ オブ マンチエスタ− Liquid crystal information memory
JPS6214114A (en) * 1985-07-10 1987-01-22 Nec Corp Display device and its driving method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5910930A (en) * 1982-07-10 1984-01-20 Konishiroku Photo Ind Co Ltd Information recording medium
JPS60114823A (en) * 1983-09-14 1985-06-21 ザ ビクトリア ユニバ−シテイ オブ マンチエスタ− Liquid crystal information memory
JPS60111224A (en) * 1983-11-21 1985-06-17 Canon Inc Liquid crystal element
JPS6214114A (en) * 1985-07-10 1987-01-22 Nec Corp Display device and its driving method

Similar Documents

Publication Publication Date Title
EP0160302B1 (en) Ferroelectric liquid crystal cell
EP1710617B1 (en) Liquid crystal display device
KR100216160B1 (en) Lcd element
KR19980077350A (en) Photo-oriented polymer and photo-oriented composition containing same
Gardiner et al. Spontaneous induction of the uniform lying helix alignment in bimesogenic liquid crystals for the flexoelectro-optic effect
KR20080112384A (en) Bistable ferroelectric liquid crystal devices
KR101618785B1 (en) Liquid crystal alignment layer, vertical alignment liquid crystal device using the same and method for manufacturing the same
JP3771619B2 (en) Liquid crystal display element
KR20100097114A (en) Oligosiloxane-modified liquid crystal formulations and devices using same
JPS63144324A (en) Method for orientating electric field of high polymer liquid crystal and liquid crystal element used same
EP0645662B1 (en) A liquid crystal display device
Malik et al. Effect of polymer viscosity on morphological and electro-optic properties of aligned polymer dispersed ferroelectric liquid crystal composite films
US9664930B2 (en) In situ polymerisation process for obtaining an electro-optical apparatus, said polymer and electro-optical apparatus; and uses thereof
CN102348779A (en) Ferroelectric liquid crystal (FLC) polymers
US5231525A (en) Apparatus for orienting a liquid crystal material using a shear force and electric field
EP0397153B1 (en) Chiral smectic liquid crystal device
EP0409194B1 (en) Ferroelectric liquid crystal element
Nazemi et al. Electric field induced AC alignment and realignment, a study of a liquid-crystalline copolymer having longitudinally and laterally attached mesogenic groups as side chains monitored through dielectric spectroscopy and optical thermomicroscopy
KR19980048361A (en) Photo-alignment composition, alignment film formed from this, and liquid crystal display element provided with this alignment film
Tanaka et al. Electrorheological effect of anisotropic solution of poly (γ‐benzyl‐L‐glutamate) induced by stepwise electric fields
JPH0348481B2 (en)
JPS63287924A (en) Liquid crystal display element
Urayama Stimulus–Responsive Nematic Gels
Kawabata et al. Uniaxially ordered conjugated polymer film prepared by electrochemical polymerization in a nematic liquid crystal with rubbing orientation method showing redox-driven tunable dichroism
JPH0588186A (en) Liquid crystal orientation controlled film and liquid crystal element using same